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Abstract 

Background 

Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic at large scale associated 
with altered cognitive functioning. Interindividual variability of brain activity is a source of 
heterogeneity in this disorder. Here, we aimed at analyzing dynamical reconfiguration of brain activity, 
using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive 
correlates in TLE. 
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Methods 

We collected 10 minutes of resting state electroencephalography (128 channels), free from 
epileptiform activity, from 68 TLE patients and 34 healthy controls. The functional network was defined 
by the spatio-temporal spreading, across cortical regions, of aperiodic bursts of activations (neuronal 
avalanches). This metric allowed encapsulating brain reconfiguration patterns into the avalanche 
transition matrix (ATM). We used a neural fingerprint approach to differentiate across controls and 
patients diagnosis, linking altered brain dynamic with cognitive outcome. 

Findings 

Patients’ brain dynamics were more stereotyped as compared to controls. The neural fingerprint using 
ATMs differentiated, in a data-driven fashion, patients with respect to healthy controls, being sensitive 
not only to the pathology but also to the subtype (unilateral vs. bilateral TLE). Notably, in unilateral TLE 
patients, a better memory performance was associated with a larger similarity of the brain dynamic 
configuration with controls. 

Interpretation 

TLE is characterized by reduced variability and more stereotyped brain dynamics, implicating 
widespread alterations across the brain. These alterations correlate with cognitive function in patients 
with unilateral TLE. This study underscores the utility of brain fingerprinting in elucidating disease-
specific brain dynamics, offering novel metrics for personalized patient care. 

 

Keywords: temporal lobe epilepsy, neuronal avalanches, brain dynamics, brain fingerprint, memory, 
cognitive impairment 
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1. Introduction 

In the last decades, understanding epilepsy as a network disease has proved successful in the 
conceptualization of its pathophysiology (Bartolomei et al., 2017; Corona et al., 2023). In particular, 
alterations of brain dynamics on the large-scale have been identified in several epilepsy types, and they 
are related both to clinical and neuropsychological outcomes (Courtiol et al., 2020; Duma et al., 2021). 
Amongst the epilepsy types, temporal lobe epilepsy (TLE) is the most frequent drug-resistant focal 
epilepsy. A proportion of patients with TLE displays bilateral (simultaneous and/or independent) 
temporal ictal involvement, a condition defined as bilateral temporal lobe epilepsy (BTLE) (Aghakhani 
et al., 2014). Some studies have described distinctive clinical-anatomo-electrophysiological features of 
BTLE as compared to unilateral TLE (UTLE), suggesting that BTLE may be considered a relatively specific 
condition within the TLE spectrum (Di Vito et al., 2016; Didato et al., 2015). From a neurocognitive 
perspective, TLE has been associated with impairment in different cognitive domains, including 
memory, language, attention, and executive functions (Ives-Deliperi & Butler, 2021; Jokeit et al., 2000). 
Converging evidence has shown a link between the disruption of large-scale functional organization in 
TLE and cognitive performance (Duma et al., 2022; Girardi-Schappo et al., 2021; He et al., 2018). More 
specifically, recent findings suggested that patients with BTLE are characterized by worse 
neuropsychological performance as compared to UTLE (Baggio et al., 2023). Cognitive functions rely on 
the coordinated interactions amongst multiple brain areas over time. In fact, in the healthy brain, the 
capability of reorganization of large-scale functional properties (Zalesky et al., 2014) has been related 
to cognitive proficiency (Braun et al., 2015; Kao et al., 2020; Mattar et al., 2015). The dynamics of the 
reconfigurations over time contain enough information to unambiguously identify individuals, 
representing a subject-specific neural fingerprint (da Silva Castanheira et al., 2021). Neurological 
diseases can induce a loss of the neural fingerprint, which has been deployed as a clinical biomarker 
(Cipriano et al., 2023; Sorrentino, Rucco, et al., 2021; Troisi Lopez et al., 2023). Concerning epilepsy, a 
dysregulation of the whole-brain dynamics, captured by scalp-electroencephalography (EEG) derived 
microstates, has been identified as a potential neural signature differentiating not only patients from 
controls, but also UTLE from  BTLE (Baldini et al., 2024). Indeed, microstates are stable configurations 
of topographical EEG maps related to an underlying functional organization on the large scale (Michel 
& Koenig, 2018). In this perspective, the present study aims at exploiting dynamical  features captured 
by  the EEG signals in order to define the neural fingerprint of patients with epilepsy as compared to 
controls. Additionally, the second aim of this work is to identify potential biomarkers to provide 
evidence about whether BTLE constitutes a distinct nosological entity with respect to TLE. To this 
purpose, we focused on the topography of the spreading of aperiodic perturbations across the whole-
brain (Rucco et al., 2020; Sorrentino, Petkoski, et al., 2022), namely the neuronal avalanches (NA). The 
NA represent the  aperiodic bursts of brain activities spreading over the large scale (Romano et al., 
2023; Sorrentino, Seguin, et al., 2021). Converging evidence has shown that functional connectivity is 
driven by these aperiodic bursty components (Sorrentino, Rabuffo, et al., 2022; Zamani Esfahlani et al., 
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2020). Specifically, here we exploited avalanche transition matrices (ATMs) to track the propagation of 
the aperiodic bursts across brain regions (Sorrentino, Seguin, et al., 2021). The ATMs are a TLE-sensitive 
measure, which provides information about functionally altered regions, as well as the relationship of 
the disrupted brain dynamics and the morphological configuration of the gray matter in patients with 
epilepsy (Duma et al., 2023, 2024). Moreover, the ATMs are optimally suited to capture fingerprinting,  
as compared to classical functional connectivity measures (Corsi et al., 2023; Sorrentino et al., 2023). 
Here, we exploited ATMs to capture the neural fingerprint of patients with TLE vs. a control group. To 
this purpose, we recorded 10 minutes of resting state activity with high-density EEG (hdEEG, 128 
channels) from which we performed electrical source imaging. No seizures were recorded during the 
resting state. However, we purposely excluded interictal epileptic discharges (IEDs) to investigate if the 
basal configuration of the brain, irrespective of epileptiform activities, could provide enough 
information to differentiate between individuals with epileptic conditions (UTLE vs. BTLE), and healthy 
controls. We hypothesize that the patients may express increased differentiability as compared to 
controls, given the alteration observed in their dynamical activity in previous studies (Duma et al., 2021, 
2022, 2023). In other words, the presence of the alterations in TLE provokes changes in the dynamics, 
such that “healthy”, optimally flexible dynamics are lost, in a way that is specific to each patient. As a 
consequence, we expect the patients to be less similar to each other, as compared to how much the 
healthy subjects are similar to each other. Conversely, the impoverished, less flexible dynamics of each 
patient would lead to activities that are more similar over time, within each patient. We expect this 
pattern to be more pronounced in BTLE patients as compared to UTLE patients, to be able to 
differentiate between these two populations (Baldini et al., 2024; Didato et al., 2015). Finally, we 
hypothesized that alterations in brain fingerprinting might capture suboptimal cognitive functioning. In 
particular, considering that dynamic functional flexibility is one of the scaffolding elements of cognitive 
function, we expect to detect larger similarity of the reconfiguration patterns of activity, as compared 
to healthy controls, in patients with a better cognitive outcome.  

 

2. Methods 
2.1. Participant 

We retrospectively enrolled 72 patients with temporal lobe epilepsy, who underwent high-
density electroencephalography (hdEEG) for clinical evaluation between 2018-2022 at the 
Epilepsy and Clinical Neurophysiology Unit, IRCCS Eugenio Medea in Conegliano (Italy). The 
diagnostic workflow included clinical history and examination, neuropsychological assessment, 
long-term surface Video EEG (32 channels) monitoring, high-density EEG (hdEEG) resting-state 
recording, magnetic resonance imaging (MRI) of the brain, and positron emission tomography 
(PET) as an adjunctive investigation in selected cases. The diagnosis of temporal lobe epilepsy 
was established according to the ILAE guidelines. A number of 4 patients received invasive 
surgery before the hdEEG recording. For this reason, we reduced the final sample to 68 (31 left-
TLE; 17 right-TLE; 20 bilateral TLE) (whole sample mean age = 41.40 [SD = 17.11]; 33 females). A 
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description of patients’ demographic and clinical characteristics is provided in Table 1. The 
control group was composed of 35 healthy participants with no history of neurological or 
psychiatric disorders (mean age = 34.92 [SD = 9.22]; 25 females). Patients signed the informed 
consent for the study. The study protocol was conducted according to the Declaration of 
Helsinki and approved by the Comitato Etico Area Nord Veneto (number protocol: 0001878/24). 
A description of patients’ demographic and clinical characteristics is provided in Table 1. 

 
Patients with TLE Mean ± Standard 

deviation 
Age 41.40 ± 17.11 
Age of onset 23.55 ± 17.49 
Duration of Epilepsy (years) 17.95 ± 18.29 
Number of Antiseizure Medications   1.92  ±  1.09 
Antiseizure Medications Number 
ACT 1 
AZM 2 
BLB 1 
BRV 7 
CBZ 14 
CLB 8 
CZP 2 
ESL 15 
LCM 15 
LEV 11 
LTG 6 
OXC 7 
PB 2 
PER 15 
VPA 12 
ZNS 1 
NO-ASMs 2 
MRI 
Mesial Number 
HS 14 
DNET 1 
UKN 10 
Amygdala enlargement 6 
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Anterior (temporal pole) 
FCD 12 
Encephalocele 2 
Gliosis 2 
Anterior + mesial 
FCD+ HS 5 
Developmental Venous Anomaly 1 
Negative MRI 15 

Table 1. Demographic and clinical characteristics of the patients with temporal lobe epilepsy. The table 
describes the demographic and clinical characteristics of the patients with temporal lobe epilepsy. MRI 
abnormalities are reported by sublobar localization. The continuous variables are reported as mean ± 
SD. Antiseizure medication abbreviations: ACT, acetazolamide; AZM, acetazolamide; BRV, brivaracetam; 
CBZ, carbamazepine; CLB, clobazam; CZP, clonazepam; ESL, eslicarbazepine; LCM, lacosamide; LEV, 
levetiracetam; LTG, lamotrigine; OXC, oxcarbazepine; PB, phenobarbital; PER, perampanel; VPA, valproic 
acid; ZNS, zonisamide; NO-ASMs, no pharmacological treatment. Abbreviation of the identified 
anomalies on the MRI: FCD, focal cortical dysplasia; HS, hippocampal sclerosis; DNET, dysembryoplastic 
neuroepithelial tumours; UKN, unknown. 
 

2.2. Resting State EEG recording 
The hdEEG recordings were obtained using a 128-channel Micromed system referenced to the 
vertex.  Data was sampled at 1,024 Hz and the impedance was kept below 5kΩ for each sensor. 
For each participant, we recorded 10 minutes of closed-eyes resting state while comfortably 
sitting on a chair in a silent room. 
 

2.3. EEG pre-processing 
Signal preprocessing was performed offline via EEGLAB 14.1.2b 22 (Delorme & Makeig, 2004). 
The continuous EEG signal was downsampled at 250 Hz and then bandpass-filtered (0.1 to 45 
Hz) with a Hamming windowed sinc finite impulse response filter (filter order = 8250). The visual 
inspection was performed to identify interictal epileptiform discharges (IEDs) by the clinicians. 
The signal was then segmented into 1-sec-long epochs and epochs containing IEDs were 
removed. We purposely removed epochs containing IEDs since we wanted to focus on the 
intrinsic brain functional organization, independent of epileptiform activities. The epoched data 
underwent automated bad-channel and artifact detection algorithm using the TBT plugin 
implemented in EEGLAB. This algorithm identified the channels that exceeded a differential 
average amplitude of 250μV and marked those channels for rejection. Channels that were 
marked as bad in more than 30% of all the epochs were excluded. Additionally, epochs having 
more than 10 bad channels were excluded. We automatically detected possible flat channels 
with the Trimoutlier EEGLAB plug-in within the lower bound of 1μV. We rejected an average of 
55.04 ± 52.96 (SD) epochs related to IED and artifacts. This preprocessing analysis pipeline has 
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been applied by our group in previous studies investigating neuronal avalanches in epilepsy with 
resting state EEG activity (Duma et al., 2023, 2024). Data cleaning was performed with 
independent component analysis, using the Infomax algorithm as implemented in EEGLAB. The 
resulting 40 independent components were visually inspected and those related to eye blinks, 
eye movements, muscle, and cardiac artifacts were discarded. An average of 9.89± 4.75 (SD) 
components were removed. The remaining components were then projected back to the 
electrode space. Finally, bad channels were reconstructed with the spherical spline 
interpolation method (Perrin et al., 1989). The data were then re-referenced to the average of 
all electrodes. At the end of the data preprocessing, each subject had at least 6 minutes of 
artifact-free signal. 
 

2.4. Cortical Source modeling 
We used the individual anatomy MRI to generate individualized head models for the patients 
with TLE. The anatomic MRI for source imaging consisted of a T1 isotropic three-dimensional 
(3D) acquisition. For twelve patients and for the control group we used the MNI-ICBM152 
default anatomy (Evans et al., 2012) from Brainstorm (Tadel et al., 2011), since the 3D T1 MRI 
sequences were not available. The MRI was segmented into skin, skull, and gray matter using 
the Computational Anatomy Toolbox (CAT12) (Dahnke et al., 2013). The resulting individual 
surfaces were then imported in Brainstorm, where three individual surfaces adapted for 
Boundary Element Models (BEM) were reconstructed (inner skull, outer skull and head) and the 
cortical mesh was downsampled at 15,002 vertices. The co-registration of the EEG electrodes 
was performed using Brainstorm by projecting the EEG sensor positions on the head surface 
with respect to the fiducial points of the individual or the template MRI (Fig. 1A). We applied 
manual correction of the EEG cap on the individual anatomy whenever needed, prior to 
projecting the electrodes on the individual head surface. We then derived an EEG forward model 
using the 3-shell BEM model (conductivity: 0.33, 0.165, 0.33 S/m; ratio: 1/20) estimated using 
OpenMEEG method implemented in Brainstorm (Gramfort et al., 2010; Kybic et al., 2005). 
Finally, we used the weighted minimum norm (Hämäläinen & Ilmoniemi, 1994) imaging as the 
inverse model, with the Brainstorm’s default parameters setting. 
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Figure 1. Processing and analysis pipelines. A displays the signal processing pipeline from resting state 
EEG to the source reconstruction and downsampling to a set of 68 regions of interest (ROI) using the 
Desikan-Killiany cortical parcellation to extract ROIs time series. B displays the data analysis pipeline: 
neuronal avalanches individuation; activity propagation; avalanche transition matrix (ATM). C displays 
the fingerprinting analysis: test and re-test ATMs of each group were correlated, separately, obtaining 
a differentiation matrix for each group. 
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2.5. Brain dynamics 

To explore the dynamics of brain activity, we derived "neuronal avalanches" from the time 
series reconstructed at its source (Fig. 1B). Firstly, for a fair comparison we used the same 
duration for each recording of each participant. For a fingerprint analysis we needed two 
recordings (test and retest) for each individual, hence each recording was composed of a time 
series of 100 seconds. Then, we discretized the time series for each region of interest by 
calculating the z-score as follows: 

𝑍(𝑡) =
(𝑥௧ −  𝜇)

𝜎
 

where x is the signal, μ is the average value of the signal across time, and σ is its standard 
deviation. 
 
Subsequently, we detected both positive and negative excursions surpassing a specified 
threshold, as: 
 

𝑋(𝑖, 𝑡) = {1 𝑖𝑓 𝑎𝑏𝑠(𝑋(𝑖, 𝑡) > 𝑇ℎ𝑟𝑒𝑠   0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒  

 
Specifically, the analyses were performed setting the threshold at 2.8 standard deviations, and 
then repeated at 2.6 and 3 standard deviations, to check that the results were not dependent 
on a single specific threshold. A neuronal avalanche begins when, in a sequence of contiguous 
time bins, at least one ROI is active (i.e., above threshold), and ends when all ROIs are inactive 
(Sorrentino, Seguin, et al., 2021). Then, to ensure that we were observing a system operating 
in a near-critical regime, we calculated the branching ratio (i.e., a measure that characterizes 
the division or divergence of pathways within a structure or process), that in systems 
operating at criticality typically displays value ∼1. Specifically, the branching ratio was 
determined by geometrically averaging the ratio of the number of events (activations) 
between subsequent time bins and the current time bin, over all time bins, and then averaging 
it across all avalanches, as: 
 

𝜎 =  ෑ ቆ
𝑛௩௧௦ (𝑗 + 1)

𝑛௩௧௦ (𝑗)
ቇ

ଵ
ே್ିଵ

ே್ିଵ

ୀଵ

 

𝜎 =  ෑ (𝜎)
ଵ

ேೌೡೌ    

ேೌೡೌ

ୀଵ
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Where σi is the branching parameter of the i-th avalanche in the subject, Nbin is the total 
amount of bins in the i-th avalanche, Naval is the total number of avalanches in the dataset. 
Then, for each avalanche n, the transition matrix AvalATM (n) was defined as: 

𝐴𝑣𝑎𝑙𝐴𝑇𝑀(𝑖, 𝑗) = 𝑃(𝑋(,௧ା ẟ) > 𝑇ℎ𝑟𝑒𝑠 | 𝑋(,௧) >  𝑇ℎ𝑟𝑒𝑠) 

 
where the element (i, j) represents the probability that region j is active at time t+ẟ, given that 
region i was active at time t, where ẟ∼3ms. The ATMs were averaged within each participant, 
as: 
 

𝐴𝑇𝑀 (𝑖, 𝑗) =  
1

𝑁𝑎𝑣𝑎𝑙
 𝑎𝑣𝑎𝑙𝐴𝑇𝑀(𝑖, 𝑗, 𝑛)

ே௩

ୀଵ

 

 
and finally symmetrized. Introducing a time delay diminishes the likelihood that our findings 
can be easily attributed to field spread. Field spread refers to the simultaneous detection of 
multiple sources by various sensors, leading to spurious zero-lags correlations in the recorded 
signals. For a detailed analysis of field spread in this dataset, please consult (Sorrentino et al., 
2021c).  
 

2.6. Fingerprint analysis 
We based our fingerprinting analysis on the brain dynamics by the means of ATMs, similarly to 
(Sorrentino et al., 2023). Initially, our goal was to construct an Identifiability Matrix (IM) 
following the methodology outlined by Amico and Goñi (Amico & Goñi, 2018) (Fig. 1C). The IM 
organizes participants into rows and columns, with entries representing Pearson's correlation 
coefficients between the test and retest ATMs for each participant. The IM encapsulates 
information on self-similarity (Iself, found on the main diagonal elements), indicating the 
comparison of test and retest ATMs for the same participant. Additionally, it includes the 
similarity of each subject with others (Iothers, off-diagonal elements), signifying the 
resemblance between different individuals of the same group. Then, by computing the 
difference between the Iself and Iothers, we derive the differential Identifiability (Idiff) (Amico 
& Goñi, 2018; Sorrentino, Rucco, et al., 2021) that provides an estimate of the fingerprint level 
within a specific group. Lastly, by correlating the test-retest ATMs of healthy individuals and 
patients, we can obtain the Iclinical score (referred to as "clinical identifiability" or "clinical 
fingerprint"). This score reflects the similarity of a patient in comparison to healthy subjects. 
For a more in-depth understanding, please consult (Sorrentino, Rucco, et al., 2021). 
 

2.7. Edges’ stability 
Then, we wanted to assess the stability of pathways of activation represented by the edges of 
the ATMs. Building upon earlier work on identifiability (Amico & Goñi, 2018), we utilized the 
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intraclass correlation coefficient (ICC) (Koch, 2004) to assess the edge-wise reliability of 
individual connectomes. Edges exhibit high ICC values when they consistently demonstrate 
similar levels of synchronization across test-retest sessions. 
 

2.8. Neuropsychological assessment  
All the patients (UTLE and BTLE) underwent a neuropsychological assessment focusing on 
memory, attention/executive functions and intelligence. Short-term memory (STM) was 
investigated with Digit Span Test and Corsi block tapping test (Wechsler, 1945) while long term 
memory (LTM) was studied via Rey–Osterrieth Complex Figure Test (ROCFT) (Caffarra et al., 
2002) and Rey Auditory Verbal Learning Test (Carlesimo et al., 1996). Attention and executive 
functions were evaluated with the Trail Making Test (TMT) (Giovagnoli et al., 1996). Specifically, 
we included in the analysis both the part A and B as a measure of motor speed and shifting 
capabilities, respectively. Finally, we used the total IQ of the WAIS-IV (Wechsler, 1981) or WISC-
IV (Orsini et al., 2015) scales as a global intelligence measure. Table 2 shows the descriptive 
statistics of the neuropsychological scores. 
 
 

Test Score (mean ± standard dev) 

Digit Span 5.63 ± 1.12 

Corsi block Tapping Test 4.83 ± 1.05 

ROCFT - Copy 32.06 ± 4.83 

ROCFT - Reproduction 15.11 ± 6.48 

RAVLT - Immediate 39.12 ± 9.02 

RAVLT - Delayed 7.20 ± 3.23 

Total IQ 90.62 ± 19.55 

TMT-A 33.01 ± 16.30 

TMT-B 113.48 ± 72.91 

 
Table 2. Neuropsychological scores. The present table shows the mean value across groups of the 
neuropsychological performance. Abbreviation: IQ = intelligent quotient; RAVLT = Rey auditory verbal 
learning test; ROCF = Rey–Osterrieth complex figure test; TMT A/B = trail making test A/B 
 
2.9. Statistics  
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The statistical analysis was conducted using MATLAB 2020a. To compare Iself, Iothers, and I-diff 
values among the three groups, a PERMANOVA test with 10,000 permutations was employed. 
Pairwise post-hoc comparisons were executed through permutation testing, involving the 
random rearrangement of labels for the two groups 10,000 times. At each iteration, the 
absolute value of the difference was computed, resulting in a distribution of randomly 
determined differences (Nichols & Holmes, 2002). This distribution was then compared to 
observed differences to determine statistical significance. The potential relationships between 
variables were explored using Pearson's correlation and a multilinear regression model with k-
fold cross-validation (Varoquaux et al., 2017). Results underwent correction through false 
discovery rate (FDR) correction (Benjamini & Hochberg, 1995). The significance level was 
established at a p-value < 0.05 after correction. 
 

3. Results 

We set out to investigate brain fingerprinting in epileptic patients and controls, based on the brain 
dynamic evaluated by the means of ATMs. Firstly, we built the differentiation matrices for each group 
(i.e., healthy controls, patients with left unitemporal epilepsy, patients with right unitemporal 
epilepsy, and patients with bitemporal epilepsy) (Figure 2A). Thereafter, we observed significant 
differences in fingerprinting parameters; patients with unitemporal epilepsy were grouped since they 
did not show significant differences among themselves, while they showed the same significant 
differences compared to the other groups. Then, we investigated the stability of the dynamical brain 
patterns in each group. Finally, we investigated possible correlations between the Iclinical score and 
the neuropsychological variables. 

 

Fingerprinting analysis 

The PERMANOVA test (Figure 2B),  performed  on the Iself parameter that represents how similar two 
ATMs of the same individual are to each other, displayed significant differences among the three 
groups (p < 0.001). In particular, we found significant lower values in healthy controls with respect to 
patients with unitemporal (p = 0.023) and bitemporal (p = 0.006) epilepsy. Iothers resulted to be 
significant too (PERMANOVA test, p < 0.001). In this case, not only the healthy controls presented 
higher values than unitemporal (p < 0.001) and bitemporal (p < 0.001), but we also found that the 
unitemporal displayed higher Iothers’ values than bitemporal (p  = 0.001). Finally, the analysis of the 
Idiff resulted as significant too (p = 0.041). We found the lowest values in healthy controls (vs UTLE, p 
< 0.001; vs BTLE, p < 0.001), and the higher values in BTLE (vs UTLE, p = 0.048). 
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Figure 2. Differentiation analysis. A shows the differentiation matrices based on the avalanche transition 
matrix (ATM) of healthy controls (HC), patients with left and right unitemporal epilepsy (UTLE-Left and UTLE-
Right, respectively) and patients with bitemporal epilepsy (BTLE). The matrices present participants on rows 
and columns, while the elements within the matrices represent the similarity (measured using Pearson 
correlation coefficient (r)) between test and retest ATMs of the respective individuals. B shows the statistical 
comparison among healthy controls, patients with unitemporal epilepsy (both left and right) (UTLE) and 
patients with bitemporal epilepsy (BTLE). Left and right UTLE patients were grouped since they did not show 
significant differences among themselves, while they showed the same significant differences compared to the 
other groups. Significance level was assessed after false discovery rate correction as follows: * < 0.05, ** < 
0.01, *** < 0.001. 

 

Edges’ stability 

We investigated the stability of the edges of the ATMs, according to each group of participants. In line 
with the ICC analysis, higher ICC values corresponded to an increased stability of a given edge across 
the test-retest recordings of the examined group. In this case, we separated the right and left 
unitemporal participants, as this analysis considers the values of each specific edge across the 
participants. Figure 3 shows the regional contribution to the edges’ stability in the four groups. The 
HC displays the lowest stability globally (ICC mean in HC = 0.154, p < 0.001 vs all patients’ groups; 
UTLE-Left mean = 0.339, vs UTLE-Right mean = 0.267, vs BTLE mean = 0.36), suggesting that there is 
higher heterogeneity in the spreading patterns in physiological conditions. Conversely, patients 
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display higher stability and this alteration is mainly distinct in the bitemporal condition. It is 
interesting to note the marked involvement of the temporal lobe in patients with left UTLE. In the 
right UTLE the corresponding lobe does not display a similar behavior, while in bitemporal condition 
the involvement can be mainly observed in the left lobe. 

 

Figure 3. Stability of brain activity. Brain plots revealing the stability of nodes and edges in each group, 
obtained by the means of intraclass correlation analysis. A. The figure shows the edge-wise stability from the 
top view, and from  lateral and medial views of both brain hemispheres. B. The figure shows the nodal stability 
from lateral and medial views. 

 

Clinical correlation 

Borrowing from a previous study we calculated the Iclinical score, which represents how much the ATM 
of a patient resembles the average ATMs of the healthy controls. We found that, in patients with 
unitemporal epilepsy, the Iclinical was significantly correlated to the score of the figure recall test 
(ROCF-recall) (r = 0.48, p = 0.004) (Figure 4). None of the remaining clinical variables displayed 
significant correlations. 
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Figure 4. Clinical correlation. The figure shows the scatter plot of the correlation between Iclinical values and 
the ROCF-recall scores of the patients with unitemporal epilepsy. The more the patients were similar to the 
healthy controls (higher Iclinical), the better the recalling performance. 

 

Regression model 

Furthermore, we also tested the ability of the Iclinical to predict, together with other predictors (i.e., 
affected hemisphere, gender, and age), the ROCF-recall scores. Hence, we built a multilinear regression 
model validated with a 5-fold cross validation (Figure 5) over 4000 iterations, and found that both age 
(β = -0.41, p =0.026) and Iclinical (β = 0.37, p = 0.041). The cross-validated model resulted to be 
significant (F(4,29) = 4.39, p = 0.007), with an explained variance equal to 18.8% (R2 = 0.188), a 
prediction error equal to 20% (NRMSE = 0.2), and a correlation coefficient between predicted and actual 
ROCF-recall scores equal to 0.718. 
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Figure 5. Multilinear regression model for clinical prediction. The figure shows the results of the multilinear 
model without (first row) and with (second row) 5-fold cross-validation. The multilinear model significantly 
predicts the scores of the Rey–Osterrieth complex figure recall test (ROCF-recall) in patients with unilateral 
epilepsy. The model is based on four predictors (i.e., lateralization of the condition, Gender, Age, Iclinical (IC). 
The left panels report the statistics of the model; predictors’ values are z-scored in order to make the beta 
coefficients comparable; significant predictors are reported in bold; NRMSE: normalized root mean square error. 
The middle panel is a scatter plot that compares the actual ROCF-recall scores with the ROCF-recall scores 
predicted by the model. The more the predictors are aligned along the diagonal, the higher is the accuracy of the 
prediction. Finally, the third panel shows the distribution of the standardized residuals. 

 

4. Discussion 

In this study, we set out to investigate whether brain dynamics may represent a neural fingerprint to 
identify individuals and their clinical condition, namely epilepsy. We leveraged previous findings 
showing that neuronal avalanches capture the altered functional organization in epilepsy (Duma et al., 
2023, 2024). Recent findings highlighted that ATMs increase the performance in subject identification, 
i.e. neural fingerprint (Sorrentino et al., 2023). In this light, we quantified the similarity between the 
ATMs across and within groups, to test the hypothesis that the changes in large-scale dynamics  may 
characterize the individual neural fingerprint and differentiate between patients and controls. While 
multiple studies have demonstrated altered functional configurations in TLE, we chose to focus on 
changes in individual patients as compared to the healthy controls to better incorporate the intra-
individual variability characterizing this pathology. As a first result, we observed that patients diverge 
from the ‘healthy’ optimal configuration observed in controls,  as they display more stereotyped 
dynamics. As such, each patient is more similar to him/herself over time (larger Iself values), and less 
similar to the other patients (reduced Iothers value). Then, we chose to analyze in-depth what edges 
were driving the differences in identifiability. The edge-based results provide an additional piece of 
information on the global dynamics of patients. The controls were characterized by more flexible brain 
dynamics configurations, as shown by the lower number of stable connections across brain regions, as 
compared to patients. Conversely, TLE patients showed more stable edges, and more stereotyped 
dynamics of the fronto-temporal regions. Importantly, the number of stable edges increased from 
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unilateral to bilateral TLE (see Fig. 3). At first, these findings highlight that epilepsy is a network disorder 
impacting the brain dynamics at the whole-brain level. Secondly, while TLE may be considered a 
homogeneous clinical category, there is an array of clinical presentations according to the portion of 
the lobe involved in seizure generation (Bartolomei et al., 2008; Narasimhan et al., 2020; Song et al., 
2022). Such heterogeneity may be mirrored in corresponding variability of brain dynamics on the large 
scale. Our findings, while corroborating the concept of TLE as a heterogeneous category, provide novel 
insight into the possibility of individual identification based on the functional reconfiguration of the 
brain networks, leveraging the concept of personalized medicine. Additionally, the brain dynamics 
organization represents a sensitive measure of the lateralization of the clinical condition. In fact, we 
observed decreased Iothers value in the BTLE patients, supporting a difference in the functional 
configuration  of brain activity as compared to the UTLE. Accordingly, BTLE has been proposed as a 
separable and specific condition as compared to unilateral TLE (UTLE) (Chiang et al., 2022; Didato et al., 
2015). Recent evidence suggests increased segregation and lower global efficiency in the functional 
networks of patients with BTLE (Lucas et al., 2023). Our results align with the observed altered 
segregation/integration ratio in BTLE, highlighting a reduction in the repertoire of brain activity 
reconfiguration, resulting in more stereotyped dynamics in this population. A high degree of intra-
individual variability in brain activity patterns can be interpreted as an indicator of a healthy brain. This 
concept is based on the idea that the variability reflects the ability of the brain to flexibly adapt to 
multiple cognitive and behavioral tasks. To achieve this ability, the brain alternates moments of 
coherent activities over the large scale (integration) with moments of rearrangement of the activities 
(segregation) where no obvious pattern is observed on the large scale. The fine tuning of the 
integration-segregation ratio (Sporns, 2013) is considered to be optimizing the system capability to 
efficiently process environmental stimuli, while minimizing potential damage (Cohen & D’Esposito, 
2016). The physiological variation in brain activity patterns reflects the complexity and uniqueness of 
each individual, configuring a “neural fingerprint”. However, it must be noted that quantifying the 
trade-off between  variability/flexibility is challenging, and it can only be achieved as relative to the 
(presumably) optimal configuration observed in the healthy controls. In this case, brain pathology is 
often associated with a loss of flexibility and the emergence of stereotyped activities (Polverino et al., 
2022). In neurological and psychiatric disorders, rigid and repetitive brain activity patterns are often 
observed, which has been related to cognitive impairment (Liang et al., 2021; Wang et al., 2022). 
Importantly, patients with TLE are characterized by the impairment of multiple cognitive domains, 
which has been linked to the dysregulation of reconfiguration properties of brain dynamics at the large 
scale (Caciagli et al., 2023; Girardi-Schappo et al., 2021; He et al., 2018). Our results showed that the 
more the patterns of propagation of the whole-brain dynamics in patients resembled those of healthy 
controls, the better the cognitive proficiency, in this limited to the long-term memory (recall of the 
ROCFT). Overall, our results corroborate the use of ATMs as a straightforward way to capture  subject-
specific, large-scale spatio-temporal dynamics. The ATMs have proved to be sensitive to pathology-
induced alterations of brain dynamics, being able to discriminate between controls and patients with 
TLE. Additionally, by using ATMs we have been able to provide novel insight on the neurofunctional 
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mechanisms distinguishing UTLE from BTLE. Moreover, our findings endow the reconfigurations of 
neural activity with a functional meaning since they relate to a cognitive process that has been long 
known to be impaired in patients with TLE, namely memory. Importantly, our results are based on a 
signal cleaned from epileptiform activity with twofold implications. At first from a theoretical 
perspective we highlighted how the basal process of regulation of neural dynamics is altered in this 
clinical condition. Secondly, having a pathology-sensitive metric, characterizing individual patterns of 
neural activity without the need of epileptiform activities, drastically increases the usability in a real 
clinical scenario. This opens new possibilities for a tailored investigation of brain dynamics in disease 
conditions, providing novel metrics for a fine-tuning of patient-specific brain models.  
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