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Abstract 

 

Background: Identifying the characteristics of individuals who demonstrate response to an intervention 

allows us to predict who is most likely to benefit from certain interventions. Prediction is challenging in 

rare and heterogeneous diseases, such as primary progressive aphasia (PPA), that have varying clinical 

manifestations. We aimed to determine the characteristics of those who will benefit most from transcranial 

direct current stimulation (tDCS) of the left inferior frontal gyrus (IFG) using a novel heterogeneity and 

group identification analysis.  

 

Methods: We compared the predictive ability of demographic and clinical patient characteristics (e.g., 

PPA variant and disease progression, baseline language performance) vs. functional connectivity alone 

(from resting-state fMRI) in the same cohort.   

 

Results: Functional connectivity alone had the highest predictive value for outcomes, explaining 62% and 

75% of tDCS effect of variance in generalization (semantic fluency) and in the trained outcome of the 

clinical trial (written naming), contrasted with <15% predicted by clinical characteristics, including 

baseline language performance. Patients with higher baseline functional connectivity between the left 

IFG (opercularis and triangularis), and between the middle temporal pole and posterior superior temporal 

gyrus, were most likely to benefit from tDCS.   

  

Conclusions: We show the importance of a baseline 7-minute functional connectivity scan in predicting 

tDCS outcomes, and point towards a precision medicine approach in neuromodulation studies. The study 

has important implications for clinical trials and practice, providing a statistical method that addresses 

heterogeneity in patient populations and allowing accurate prediction and enrollment of those who will 

most likely benefit from specific interventions. 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 20, 2024. ; https://doi.org/10.1101/2024.04.19.24305354doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.19.24305354
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

1. Introduction  

Precision medicine allows for specialized care, the minimization of unnecessary procedures, and a 

streamlined approach to treatment. Precision medicine implementation is emerging in language therapy 

interventions in aphasia (for both post-stroke and primary progressive aphasia), through prediction 

studies that show which patients will benefit from specific treatments are not yet clinically applicable. 

Some problems with prediction studies in aphasia include variability in aphasia profiles, the lack of 

area/symptom correspondence, the extent of damage / atrophy, and premorbid cognitive/language 

abilities. Addressing this heterogeneity is essential, because predicting whether and how well an 

individual with aphasia will respond to treatment is a key factor in developing individualized treatment 

plans. This need to address heterogeneity becomes even more important when considering new 

pharmacological, genetic, and neuromodulatory treatments that are becoming available for 

neurodegenerative conditions.  

Our interest lies in primary progressive aphasia (PPA), a neurodegenerative disorder affecting 

language functions primarily [1,2], for which the only disease-modifying treatments are symptomatic 

language therapy and emerging neuromodulation approaches, especially transcranial direct current 

stimulation (tDCS) [3,4]. There is feasibility and efficacy of tDCS stimulation to trained items, as well as 

transfer of benefits to untrained items/words [4–6]. Investigation of factors that predict treatment response 

in PPA is at a nascent stage (see [7,8] for recent reviews) and is challenging, because PPA is a 

heterogenous clinical syndrome that includes at least three different clinical variants with varying patterns 

of decline [2]. Early prediction of treatment outcomes (before any treatment starts) is important in a 

neurodegenerative disorder because losing time means losing brain tissue.  

Recent studies from different groups, including our own, have identified several baseline factors that 

predict efficacy of tDCS for a given patient or patient group [see [6–8] for reviews]. Five predictive factors 

have been identified: (1) baseline language and cognitive performance [9,10], (2) baseline cortical volume 

and thickness [11–13], (3) baseline white matter integrity [14], (4) clinical variant PPA [15], and (5) 
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baseline sleep efficiency [16]. To our knowledge, no studies have utilized baseline functional brain 

connectivity as a predictor of tDCS effects in PPA. This is an important gap for tDCS, since evidence 

suggest that it modulates language outcomes in PPA is changes via functional brain connectivity changes 

[17–19]. Brain functional connectivity is correlated with general cognition as in Fronto-Temporal Dementia 

Clinical Rating Scale FTD-CDR, as we and others have reported. Finally, change in functional 

connectivity is one of the first alterations that happen in neurodegeneration including PPA [20,21]. 

Functional connectivity has been used as a predictor only in some recent tDCS studies research [22–24] 

that aimed  to predict responses to tDCS in schizophrenia or healthy controls. 

Recent studies in healthy controls highlight the specificity of functional connectivity (FC) changes 

after electrical stimulation [25]. We were among the first to demonstrate this particular mechanism 

(changes in FC) in PPA [17,19]. We found that tDCS downregulates the abnormally high FC in PPA in 

the areas stimulated. This hyperconnectivity was correlated with higher FTD-CDR, i.e., worse global 

cognition. Hyperconnectivity or hyperexcitability is a known hallmark of AD, and probably is involved in 

other neurodegenerative disorders [26,27]. Reductions in FC between the stimulated area (left inferior 

frontal gyrus, IFG) and other brain areas (such as the left middle temporal gyrus, MTG, with which it is 

structurally and functionally connected [28]), correlated with improvement in treatment outcomes.  

Our modified outcome analysis predicts individual causal effects (e.g., had they been assigned to 

active tDCS vs. sham tDCS, along with oral and written naming treatment in both tDCS conditions) rather 

than the actual responses for the assigned intervention. Such heterogeneity analysis of tDCS in PPA 

patients offers an opportunity to predict the additional benefit received from active tDCS compared to 

sham tDCS, even before actual treatment begins. Outcomes of such analysis will be valuable to 

clinicians, patients, and caregivers, as it assists personalized precision health decisions. 

This study closes the loop between the mechanism of tDCS and the clinical prediction of who will 

benefit from tDCS based on its mechanism. We hypothesized that: (1) if tDCS downregulates 

hyperconnectivity in stimulated areas, then baseline hyperconnectivity of the stimulated area will predict 
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treatment outcomes. Furthermore, we hypothesized that: (2) baseline hyperconnectivity will predict tDCS 

effects better than other demographic or clinical factors. We tested these hypotheses using special 

statistical methods to account for heterogeneity in a rare disease. This study has important implications 

for clinical trials of potential new treatments in the spirit of precision medicine, because the methods 

implemented herein appear to allow us to predict the effects of these treatments before they are initiated.  
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2. Materials and Methods  

2.1 Participants  

Thirty-six patients with PPA participated in this study (17 female): 14 with logopenic variant PPA 

(lvPPA), 13 with non-fluent variant PPA (nfvPPA), and 9 with semantic variant PPA (svPPA). All were 

right-handed, native English speakers, between 50 and 80 years old, and diagnosed based on clinical 

assessment, neuropsychological and language testing, and MRI, according to consensus criteria [2]. 

Informed consent was obtained from participants or their spouses, and all data were acquired in 

compliance with the Johns Hopkins Hospital Institutional Review Board. Figure 1 shows recruitment and 

randomization to the active tDCS or sham tDCS conditions. Each PPA variant group was matched for 

sex, age, education, years post onset of symptoms, overall FTD-CDR score and language severity 

measures (Tables 1A, 1B). 
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Figure 1. Participants recruited and randomized to active tDCS or sham tDCS. 

 

Table 1A. Means and standard deviations of demographic variables and baseline semantic fluency 
scores grouped by first-phase condition (n=36). *Fisher’s exact test used. FTD-CDR, Frontotemporal 
Dementia Clinical Dementia Rating Scale sum of boxes [29]. F, female; M, male. L, logopenic; N, 
nonfluent; S semantic. 

 

 Active tDCS 
first 

Sham tDCS 
first 

F (1,34) p-value 

Sex 9 F, 9 M 8 F, 10 M * 1.000 
Variant 7 L, 6 N, 5 S 7 L, 7 N, 4 S * 0.500 
Age (years) 66.17 (7.49) 69.72 (5.42) 2.66 0.113 
Years post symptom onset 5.17 (3.40) 4.72 (2.55) 0.20 0.660 
Language severity (FTD-CDR) 1.92 (0.90) 1.83 (0.71) 0.10 0.759 
Total severity (FTD-CDR) 6.89 (4.53) 7.53 (4.66) 0.17 0.679 
Number of sessions in phase 1 12.72 (2.11) 11.06 (1.63) 7.05 0.012 
Baseline semantic fluency 
(words per minute) 

14.50 (11.17) 11.81 (7.49) 0.72 0.400 
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Table 1B. Means and standard deviations of demographic variables and baseline semantic fluency 
scores grouped by PPA variant (n=36). *Fisher’s exact test used. FTD-CDR, Frontotemporal Dementia 
Clinical Rating Scale sum of boxes [29]. F, female; M, male. s, sham tDCS; t, active tDCS. 

 lvPPA nfvPPA svPPA F(2,33) p-value 
Sex 7 F, 7 M 5 F, 8 M 5 F, 4 M * 0.800 
First-phase condition 7 s, 7 t 7 s, 6 t 4 s, 5 t * 1.000 
Age (years) 66.29 (8.11) 69.77 (6.00) 67.89 (4.96) 0.91 0.412 
Years post symptom onset 4.82 (3.33) 4.65 (2.66) 5.56 (3.08) 0.25 0.780 
Language severity (FTD-CDR) 1.57 (0.83) 2.04 (0.72) 2.11 (0.78) 1.76 0.188 
Total FTD-CDR 6.18 (3.76) 7.85 (4.19) 7.89 (6.17) 0.57 0.571 
Number of sessions in phase 1 11.93 (2.02) 11.85 (1.91) 11.89 (2.47) 0.01 0.990 
Baseline semantic fluency 
(words per minute) 17.50 (10.97) 12.08 (8.38) 7.94 (5.15) 3.30 0.049 

 
 

2.2 Overall Design  

We used a within-subjects, double-blind, crossover design with two experimental conditions: 

speech-language therapy plus conventional anodal tDCS over the left IFG, and speech-language 

therapy plus sham tDCS. Each condition lasted approximately 12 consecutive weekday sessions; the 

two phases were separated by a 2-month wash-out period. Stratified randomization of stimulation 

condition within each variant determined whether each participant received active tDCS or sham tDCS 

first, according to our main clinical trial (ClinicalTrials.gov identifier: NCT02606422). Performance was 

assessed before, immediately after, two weeks after, and two months after each period of stimulation 

(active tDCS or sham tDCS). Participants, speech-language pathologists, and examiners were blinded 

to the experimental condition. In statistical analysis, we focused on first-phase data only in order to 

avoid impact of carryover effects due to possibly insufficient wash-out period as we had noticed when 

we analyzed the behavioral results[15].  

 

2.3 tDCS Methods  

Each daily therapy session lasted one hour. For both active tDCS and sham conditions, two 5cm x 5 

cm, non-metallic, conductive, rubber electrodes covered with saline-soaked sponges were placed over 
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the right cheek (cathodal electrode) and the left IFG centered at F7 of the EEG 10-20 electrode position 

(anodal electrode) [30]. The electrodes were hooked up to a Soterix 1x1 Clinical Trials device, which 

elicited a tingling sensation on the scalp as it ramped up within 30 seconds, to deliver current at an 

intensity of 2 mA (estimated current density 0.08 mA/cm2; estimated total charge 0.096 C/cm2). In the 

active tDCS condition, current was delivered for 20 minutes for a daily maximum of 2.4 Coulombs; in the 

sham tDCS condition, current ramped up to 2 mA over a 30 sec interval and immediately ramped down 

to elicit the same tingling sensation, a procedure that has been shown to blind participants to treatment 

condition [31]. Stimulation started at the beginning of each therapy session and lasted for 20 minutes; 

speech-language therapy continued for the full session, i.e., 25 additional minutes, for 45-50 minutes. 

Twice during each session, participants rated their level of pain with the Wong-Baker FACES Pain Rating 

Scale (www.WongBakerFACES.org). 

 

2.4 Language intervention 

In the present study we based our prediction methodology on generalization effects we previously 

found in semantic fluency [32] and not on the trained task, since trained tasks are always expected to 

show benefits and generalization of treatment to other tasks is the most desirable outcome in 

neurodegenerative disorders.  Also, we have extensively reported on the results for the trained task, oral 

and written naming [4].  We replicated the prediction analysis for the trained task and reported the results 

in Appendix 5.  

 

2.5 Imaging methods  

Of the 36 participants, 29 had magnetic resonance imaging (MRI) scans—five were severely 

claustrophobic and two had pacemakers and were therefore excluded. MRI scans took place at the 

Kennedy Krieger Institute at Johns Hopkins University. Magnetization-prepared rapid acquisition gradient 
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echo (MPRAGE) and resting-state functional MRI (rsfMRI) scans were acquired before treatment on a 3-

Tesla Philips Achieva MRI scanner with a 32-channel head coil. See Appendix 1 for more details.  

 

Resting-state fMRI scans were co-registered with MPRAGE scans into the same anatomical space 

(native space); then 78 of the ROIs were parcellated on the rsfMRI scans, according to  a multi-atlas 

fusion label algorithm (MALF) and large deformation diffeomorphic metric mapping, LDDMM [33,34]. 

Average time courses for the voxels in each ROI were normalized, and correlations between ROI pairs 

were calculated and normalized with the Fisher z-transformation. Of the 78 ROIs, we chose the ones that 

comprise the language-network ROIs and are functionally or structurally connected to the left IFG, the 

stimulated areaz0.  In total 13 ROIs from the left hemisphere were selected. In addition, we conducted 

sensitivity analysis with an extended network that also includes the right homologues.  

 

2.6 Statistical analyses  

Prediction of potentially heterogeneous tDCS effects 

In our prediction analysis, we modeled the additional, individual-specific tDCS effect using the so 

called modified outcome method, which adheres to established guidelines that account for heterogeneity 

in treatment effects [35–39]. For each participant, the individual-specific additional tDCS effect was 

defined as the difference between the potential change in the outcome if the participant had been 

assigned to active tDCS vs. sham tDCS, Yi
T = 1 - Yi

T = 0. We modeled the conditional average treatment 

effects (CATE), E[Yi
T = 1 - Yi

T = 0 | Xi] = E[Y|T = 1, X] - E[Y|T = 0, X], via direct prediction modeling of a 

transformation Ui = 2YiTi – 2Yi(1 - Ti) given the baseline covariates, X. This method replaced unobserved 

individual-specific additional tDCS effects, Yi
T = 1 - Yi

T = 0, with a fully observed modified outcome, Ui, which 

allowed for prediction analysis of U given X. In addition, compared with the modeling analysis of E[Y|T, 

X], the modeling of E[U|X] avoided interaction terms between the treatment  and covariates, thereby 

allowed valid prediction modeling with lower dimension, which was crucial given the modest sample size.  
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We conducted stepwise predictor selection based on cross-validation for the prediction of the 

modified outcome (see details in Appendix 2). Baseline covariates, i.e., the candidate predictors, were 

divided into multiple groups for further comparison across prediction models: 1) Demographic and clinical 

factors, including baseline semantic fluency, PPA variant, number of treatment sessions, sex, age, years 

post onset of symptoms, and total FTD-CDR severity and language severity measures. 2) Imaging 

factors, which consisted of correlations between the hypothesis-selected 13 language ROIs of the 

baseline rsfMRI; thus 78 ROI pairs (13 choose 2) in total. For sensitivity analysis, we also tested the 

functional and volumetric imaging factors within an extended network that involves right hemisphere 

areas as well (26 ROIs and thus 325 ROI pairs). The predictive R-squared (R2) and the root mean 

squared error (RMSE) are reported. Linear coefficients in the final prediction model are reported in 

Appendix 3 for diagnostic purposes. 

 

3. Results  

 3.1 Prediction of potentially heterogeneous tDCS effects: clinical and demographic predictors 

We tested the following non-imaging factors for predicting the additional tDCS effect on semantic 

fluency: baseline semantic fluency, PPA variant, number of treatment sessions, sex, age, years post 

onset of symptoms, and dementia and language severity (FTD-CDR overall sum and language measure, 

respectively) [29]. None of the non-imaging factors predicted the individual tDCS effect with R-squared 

increment thresholded at 0.1 (10%). Only dementia severity (overall FTD-CDR sum) marginally predicted 

the additional tDCS effect in semantic fluency with 4.4% increase in predictive R-squared, although 

RMSE did not improve after adding dementia severity into the model (Table 2). Even if one allows an 

additional round, the results remains similar: having lvPPA (or nfvPPA) provides only an additional 8.6% 

(or 5.4%) R2 increase, which leads to 13.0% (or 9.8%) accumulated R2 and RMSE 8.021 (or 8.166) with 

both overall FTD-CDR and having lvPPA (or nfvPPA) in the model. Therefore, neither lvPPA or nfvPPA 
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would be selected in either the first or the second round. This result shows that PPA variant and severity 

of cognitive/language impairment cannot accurately predict individual tDCS effects. 

 

 

Table 2. Non-imaging factors for individual tDCS effect prediction.  
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 8.360 
Overall FTD-CDR 0.044 0.044 8.407 

 

 

 

3.2 Prediction of potentially heterogeneous tDCS effects: functional connectivity predictors 

Since we did not find any demographic or clinical factor to predict the additional tDCS effect above 

the R-squared minimum threshold of 10%, we did not enter any other factors in the regression model to 

save degrees of freedom However, key baseline covariates via the literature and previous studies were 

included for completeness, including behavioral baseline performance.  

The comparison between the final models from the non-imaging and imaging predictors (Tables 3 

and 4) in terms of the accumulated predictive R2 (0.044 vs 0.498) and the RMSE (8.407 vs 6.287) 

indicated that the imaging predictors outweighed the non-imaging ones in predictive value.  

Consider specifically the left hemisphere, given that PPA is considered a LH syndrome. Two baseline 

resting-state functional connectivity ROI pairs predicted the additional tDCS effect on semantic fluency 

above 10% of R-squared increase (0.1 threshold): (1) the left superior temporal gyrus (STG)-to-left medial 

temporal gyrus (MTG) pole, and (2) left IFG opercularis-to-left IFG triangularis (Table 4 & Figure 2). 

Variable selection stopped at the last round with left IFG triangularis-to-left angular gyrus (AG) and just 

below 10% R-squared increase. The cumulative predictive R-squared of the final model was 49.8% 

(RMSE=6.29). The associated coefficients of the final model are reported in the supplementary materials 

(Appendix 3). Higher baseline connectivity in the first two pairs (most predictive, above 10% R2 increase) 
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was associated with higher additional tDCS effect in the final model, whereas the trend was reversed in 

the last pair (8.2% R2 increase). In addition, we monitored all the pairs with above 10% R2 increases in 

each round of variable selection (see Figure 3).  

In the sensitivity analysis that predicts individual treatment effects using the expanded connectivity 

network of 325 ROI pairs in both the LH and RH, three pairs were selected in each round, two overlapping 

with the main analysis (right AG-to-right MTG, left IFG triangularis-to-left AG, and left STG-to-left MTG 

pole, each providing R2 increases of 38.0%, 14.6%, and 9.5%; see Table 4 & Supplementary Table 3). 

The final prediction model showed improved prediction performance (RMSE 5.463, accumulated R2 

62.1%) compared to the LH-only prediction (RMSE 6.287, accumulated R2 49.8%), as expected. In 

comparison, the volumetric predictors from the expanded network of 26 ROIs provided an accumulated 

R2 less than 10% (Appendix 4).  

 
Table 3. Imaging factors from the language network in the left hemisphere that predicted the individual 
tDCS effect. Predictiveness was evaluated by the LOOCV (predictive) R2. 
 
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 8.496 
Left STG: Left MTG pole 0.307 0.307 7.389 
Left IFG opercularis: Left IFG triangularis 0.416 0.109 6.782 
Left IFG triangularis: Left AG 0.498 0.082 6.287 

 
 
 
 
 
Table 4. Imaging factors from the language network in both hemispheres that predicted the individual 
tDCS effect. Predictiveness was evaluated by the LOOCV (predictive) R2.  
 
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 8.496 
Right AG : Right MTG 0.380 0.380 6.989 
Left IFG triangularis : Left AG 0.526 0.146 6.112 
Left IFG opercularis : Left IFG triangularis 0.621 0.095 5.463 
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Figure 2. Visualization of the selected predictive imaging pairs for the additional tDCS effects. The 
positions of the nodes represent the average centers of each ROI from the cohort, rather than actual 
spatial distance. ROI pairs are plotted and connected if predictiveness of the baseline connectivity is 
confirmed by providing >10% R2 increase and being selected in the stepwise procedure. Thickness of 
the edge represents contribution to the accumulated R2 in the final prediction model. 
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Figure 3. Functional connectivity pairs predicting the individual tDCS effects. Solid lines and points 
represent the selected factors in each round of the regression, whereas dotted lines represent the factors 
that were not selected but also provided over 0.1 increase of predictive R-squared in the first round. The 
3 out of 4 pairs are the same as in Table 4. Note that in the first round another imaging predictor, Left 
IFG orbitalis: Left FuG provided R-squared increases greater than 0.1, but they were not selected 
because the Left STG: Left MTG pole had been selected for providing a larger R-squared increase. 
 
 
 

4. Discussion 

The present study used a modified outcome prediction method that accounted for heterogeneity in 

PPA, to evaluate baseline clinical, demographic, behavioral (language) and imaging (rsFC and 

volumetric) predictors of tDCS effect on semantic fluency. Using the modified outcome addressed the 

problem of heterogeneity encountered in assessing treatment effects in this scenario and we conjecture 

that it would be similarly useful in any other heterogeneous neurodegenerative disorder. It was found 

that: (a) all clinical, demographic and behavioral baseline performance predictors together, accounted for 

10% of the tDCS effect; (b) baseline volumes of these areas accounted only for 10% of the effect; (c) 

rsFC from a 7-min rsfMRI task, between temporal areas (left MTG pole to left STG) and frontal  areas 
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(left IFG pars opercularis to pars triangularis) predicted  50% of the tDCS effect on semantic fluency, 

when considering the LH alone, and, when considering both hemispheres, prediction improved for a total 

62% of the tDCS effect on semantic fluency. 

 As far as we know, this is the first study that predicted a neuromodulatory effect (tDCS) in a 

neurodegenerative disorder and compared - in the same cohort, with the same method - other predictors 

of tDCS effect: clinical, demographic behavioral, and imaging (volumetric and rsFC) predictors. The 

present study has important implications for treatment prediction, advocating for rsFC as a biomarker for 

probable tDCS efficacy in PPA, and possibly for other neurodegenerative disorders, such as AD or MCI, 

with heterogeneous populations.   We emphasize this important role that rsFC may play as a biomarker 

for patient capacity for treatment efficacy, rather than its typical role as an estimate of disease sequelae.  

4.1 Semantic processing 

An important finding in our study is that the strength of functional connectivity between temporal areas 

(MTG and STG), and between frontal areas (IFG opercularis and triangularis), predicted the magnitude 

of tDCS effect on semantic fluency. Lesion studies have shown that the left temporal cortex stores 

information about semantic categories, and frontal areas are important in accessing this information [40]. 

We have previously shown that the left ITG is responsible for storage of lexical characteristics of nouns 

and verbs in PPA [41,42], as well as with semantic fluency [43]. Furthermore, atrophy in the anterior and 

inferior left temporal regions, as well as in frontal regions, was associated with semantic fluency deficits 

[44]. The present study showed that baseline functional connectivity within the neural substrates of 

semantic fluency (semantic storage and control areas) predicts tDCS effects on semantic fluency. 

4.2 Atrophy and FC considerations 

The results of the present study seem counterintuitive given the atrophy in frontal areas in nfvPPA, 

who showed the largest tDCS effect [4]. Nevertheless, we [20] and others [45] have not found any  

correlation between functional connectivity and atrophy.  Furthermore, we and others have found that 

active tDCS improves lower baseline function of atrophied regions by reducing the abnormally elevated 
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connectivity (hyperconnectivity), to improve the efficiency of language processing [17–19]. This 

hyperconnectivity may be due to compensatory or disease-progression reasons, as previously proposed 

for the hippocampus [26,27]. It follows that active tDCS over hyperconnected areas may be beneficial. 

Unsurprisingly, in our previous clinical trial, patients with nfvPPA with the largest amount of atrophy in left 

IFG showed the largest benefits from IFG stimulation [32]. Therefore, active tDCS may be beneficial on 

compromised tissue (atrophied but still viable) when other network or compensatory brain areas remain 

intact. Finally, the present findings that hyperconnectivity between two semantic areas in the RH predict 

the tDCS effect, highlight the importance of RH semantic network areas, and their potential as tDCS 

targets.  

4.3 Structural connectivity considerations 

In the present study, we found that two of the most significant functional connectivity pairs that 

predicted the tDCS effect on semantic fluency,  (Left IFG triangularis – Left IFG opercularis and Left MTG 

pole – Left STG) correspond to the end points of structurally connected areas because they are at the 

edges of the extreme capsule fasciculus, i.e., a white-matter bundle connecting the left IFG triangularis 

to temporal areas as part of the ventral language stream [46]. Several studies have shown that the 

extreme capsule is important for semantic processing and comprehension [46–48]. This bundle is 

sometimes hard to detect and often is considered as part of the uncinate fasciculus, although the latter 

has a more medial trajectory. We recently identified the white-matter integrity of this bundle as a 

significant predictor of tDCS effects but not language therapy alone (sham condition) for trained words 

during written naming [14]. In that study the contribution of the structural connectivity to the tDCS effect 

was significant, although smaller than in the present study (predicting only 12% of variance in outcome).  

 

4.4 Limitations and implications  

Certain limitations of this work should be noted. The most important one is the small sample size (36 

patients with PPA), which, although not small for a neuromodulation randomized control trial in a rare 

neurodegenerative disorder such as PPA, is relatively small for robust conclusions in a prediction study. 
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To circumvent the sample size limitation, we used methods such as conservative stepwise linear 

predictor selection that aimed to discover the most predictive variables based on R2 increases of cross-

validation predictiveness measures, rather than the multiple testing of hundreds of variables where 

multiplicity would be a primary concern. The second limitation is our lack of power to perform an analysis 

by PPA variants and thus there is a need to replicate these results in bigger samples. The novel 

heterogeneity analysis has helped alleviate these issues and provide a tool for prediction analyses in 

heterogeneous disorders. Finally, we have not considered any cerebellar regions, which could be 

interesting for future investigation.  

5. Conclusion 

 The present study provides evidence that functional connectivity between areas of semantic processing 

(storage, control and working memory) better predict generalization of tDCS effects in semantic fluency 

than any other clinical, demographic, or imaging (volumetric and structural connectivity) factors in PPA. 

Functional connectivity was also found to be a better predictor for the main outcome than clinical, 

demographic, and volumetric predictors as shown in Appendix 5. These results have significant clinical 

implications. For example, baseline functional connectivity can serve as biomarker for selecting patients 

who will benefit from tDCS. These results demonstrate that a 7-minute rsfMRI scan of baseline resting-

state connectivity is adequate to reliably predict which patient with PPA will benefit from neuromodulatory 

tDCS treatment.  
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Appendix 1.  
 

T1-weighted MPRAGE sequence acquisition was performed according to the following parameters: 

a scan time of 6 minutes (150 slices); isotropic 1-mm voxel size; flip angle of 8°; SENSE acceleration 

factor of 2; TR/TE = 8/3.7 milliseconds (ms). Resting-state fMRI acquisition was performed according to 

the following parameters: scan time of 9 minutes (210 time-point acquisitions); slice thickness of 3 mm; 

in-plane resolution of 3.3x3.3 mm2; flip angle of 75°; SENSE acceleration factor of 2; SPIR for fat 

suppression; TR/TE = 2500/30 ms. 

MPRAGE images were preprocessed and segmented into 283 regions of interest (ROIs) using 

MRICloud, a multi-atlas based, automated image parcellation approach. Preprocessing used a multi-

atlas fusion label algorithm (MALF) and large deformation diffeomorphic metric mapping (LDDMM) [1,2], 

a highly accurate diffeomorphic algorithm that minimizes effects of atrophy or local space deformations 

on mapping. All images were processed in native space. Volumes for each ROI were normalized by total 

intracerebral volume (brain tissue excluding myelencephalon and cerebrospinal fluid) to control for 

relative regional atrophy. 

Resting-state fMRI scans were preprocessed using MRICloud and included standard routines from 

the SPM connectivity toolbox for coregistration, motion, and slice timing correction; physiological 

nuisance correction using CompCor [3]; and motion and intensity TR outlier rejection using “ART” 

(https://www.nitrc.org/projects/artifact_detect/). To correct for motion, ART detected “outlier” TRs (2 

standard deviations for motion and 4 standard deviations for intensity), which were used in combination 

with the physiological nuisance matrix in the deconvolution regression for the remaining TRs. 

 
 
 
 
Appendix 2: Predictor selection criteria. 
 
Throughout this manuscript we focus on stepwise linear predictor selection based on leave-one-out 

cross-validated (LOOCV) predictive R-squared (R2) that handles the sample size of this data. 

Specifically, cross-validation was used in order to avoid biased evaluation of model predictiveness, and 
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the goals of such variable selection were: 1) to discover the most predictive linear predictors, and 2) to 

compare the predictiveness of final prediction models built from different sets of predictors (such as 

non-imaging versus imaging factors) following a same variable selection procedure.  

 

At each step, we test the increase of R2 after adding each of the variables that have not been added to 

the linear model, and select the variable with the largest R2 increase. Stepwise selection stops if the 

largest possible R2 increase of the last step is below 10%. The selected predictors till the last round are 

reported. Less important potential predictors may also be predictive if they are not selected into the 

model but have a larger than 10% R2 increase at a previous step, which might be correlated with the 

selected predictors and are of interest for future investigation. The predictive R-squared (R2) and the 

root mean squared error (RMSE) of each step, as well as the increase in R2 compared to the previous 

step, are reported. Linear coefficients in the final prediction model are reported in Appendix 3 for 

diagnostic purposes. The final prediction models built from non-imaging factors and imaging factors are 

compared by predictive R-squared and RMSE. 

 

Analysis of non-imaging (demographic and clinical) predictors 

 

We first investigated whether any of the non-imaging factors (baseline semantic fluency, PPA variant, 

number of treatment sessions, sex, age, years post onset of symptoms, and total FTD-CDR severity 

and language severity measures) was predictive of the individual tDCS effect (quantified by 

pseudovalues).  

 

Analysis of imaging predictors   

 

In this analysis, we tested the imaging factors (correlations between the hypothesis-selected 13 

language ROIs of the baseline rsfMRI; this left hemisphere connectivity network consists of 78 ROI 
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pairs in total). To handle missingness in the baseline resting-state functional connectivity data, an 

inverse propensity score weighting (IPW) method was applied. Propensity scores were estimated using 

logistic regression with the imaging missingness and baseline covariates. The inverse propensity 

scores weighted linear regression was then used in stepwise selection. The selection criteria based on 

LOOCV predictive R-squared increase for predicting pseudovalues remained the same.  

 

As sensitivity analysis, we also tested the imaging factors within an expanded network that involves 

right hemisphere areas as well (26 ROIs and 325 ROI pairs in total). The predictive pairs were then 

compared with the language network analysis. The predictiveness of the final prediction model was still 

compared with non-imaging factors and language network factors. But less important potential 

predictors (that were not selected into the model and only provided >10% R2 increase at a previous 

step) are not reported for the reasons that 1) such aggressive variable selection beyond the 

conservative stepwise procedure would be too unstable given the numbers of complete cases (24) and 

candidate predictors (325) even when leave-one-out cross-validation is implemented, and 2) the goal of 

this sensitivity analysis was to confirm the reliability of the implemented stepwise selection procedure.   

 

 

Appendix 3.  

 

In this appendix, we report the linear coefficients of each final prediction models for diagnostic purposes 

(non-imaging factors, language network factors, or expanded network factors that involve both 

language and DMN). Note that coefficients may be over-estimated, as the estimation was based the 

same data that was used for variable selection, and the p-values do not serve the usual purpose of 

valid hypothesis testing due to the selection bias in the estimates [4,5]. However, we report these 

statistics from the final prediction model fitting in order to be fully transparent for this study and provide 

information as a pilot study for possible directions of the associations.  
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Supplementary Table 1. Linear coefficients of the final prediction model using non-imaging factors.  
 
 Estimate SE t(34) P 
Intercept 4.27 2.58 1.66 0.107 
Overall FTD-CDR -0.59 0.30 -1.95 0.059 

 
Supplementary Table 2. Linear coefficients of the final prediction model using left hemisphere 
language network imaging factors.  
 
 Estimate SE t(20) P 
Intercept -6.58 4.62 -1.42 0.170 
Left STG : Left MTG pole 31.27 7.05 4.44 0.000 
Left IFG opercularis : Left IFG triangularis 12.50 4.67 2.68 0.014 
Left IFG triangularis : Left AG -12.74 5.74 -2.22 0.038 

 
 

Supplementary Table 3. Linear coefficients of the final prediction model using extended network 
(involving both left and right hemisphere) imaging factors.  
 
 Estimate SE t(20) P 
Intercept -5.32 3.14 -1.69 0.106 
Right AG : Right MTG 19.65 4.65 4.23 0.000 
Left IFG triangularis : Left AG -17.01 4.83 -3.52 0.002 
Left IFG opercularis : Left IFG triangularis 20.37 6.63 3.07 0.006 

 
 
 

Appendix 4.  

 

In this appendix, we report the sensitivity analysis with volumetric data in the extended network. 

Volumes of the ROIs are normalized by the intracerebral volume (total brain volume minus 

myelencephalon and cerebrospinal fluid).  

 

None of the 26 ROIs provided more than 10% R2 increase in the first round (Left STG: 5.90%, Left 

SMG: 5.22%, Right AG: 0.91%), and even if we select Left STG and then enforce additional rounds of 

variable selection, only two ROIs can provide increase in R2 (Left SMG in the second round: 1.21%, 
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Left IFG triangularis: 2.04%). This results in a prediction model with an accumulated R2 of 5.89% (it 

stops at the first round according to the selection criteria; if it exhausts the three rounds and only stops 

when no ROI provides R2 increase, it reaches 9.14%). For diagnostic purposes, the linear coefficients 

of the largest predictive model (the result of three rounds of selection so long as the predictor provides 

positive R2 changes) are reported below.  

 

Supplementary Table 4. Linear coefficients of the exhaustive search prediction model using extended 
network (involving both left and right hemisphere) volumetric data.  
 

 Estimate SE t(23) P 
Intercept -54.34 20.79 -2.61 0.02 
Left STG 1385.17 884.90 1.57 0.13 
Left SMG 2502.73 1382.96 1.81 0.08 
Left IFG triangularis 2603.51 2139.06 1.22 0.24 
 

Appendix 5.  

 

In this appendix, we report the same analysis using the main outcome for trained items (letter counts 

for spelling).  

 

 
Supplementary Table 5. Non-imaging predictors for trained item individual tDCS effects.  
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 43.393 
Logopenic variant 0.154 0.154 41.075 

 
 

 
Supplementary Table 6. Imaging predictors from the language network in the left hemisphere for trained 
item individual tDCS effects.  
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 43.861 
Left IFG opercularis : Left STG pole 0.218 0.218 40.466 
Left IFG opercularis : Left IFG triangularis 0.525 0.307 31.543 
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Left IFG orbitalis : Left SMG 0.628 0.103 27.916 
Left IFG orbitalis : Left MTG pole 0.667 0.039 26.414 

 

 
Supplementary Table 7. Imaging predictors from the language network in both hemispheres for trained 
item individual tDCS effects. 
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 43.861 
Left IFG opercularis : Left STG pole 0.218 0.218 40.466 
Left IFG opercularis : Left IFG triangularis 0.525 0.307 31.543 
Right STG pole : Right MTG pole 0.676 0.151 26.056 
Left IFG opercularis : Left FuG 0.752 0.076 22.778 

 

 
Supplementary Table 8. Volumetric predictors after an exhaustive search from the language network in 
both hemispheres for trained item individual tDCS effects. 
 
 
 Accumulated R2 R2 increase RMSE 
Null Model 0 0 44.978 
Right STG pole 0.152 0.152 42.881 
Left AG 0.173 0.021 42.349 
Left PCC 0.229 0.056 40.892 

 
 

 

 

Supplementary Table 9. Linear coefficients of the final prediction model using non-imaging factors.  
 
 Estimate SE t(34) P 
Intercept 4.77 10.82 0.44 0.663 
Logopenic variant -28.41 15.03 -1.89 0.068 

 
Supplementary Table 10. Linear coefficients of the final prediction model using left hemisphere 
language network imaging factors.  
 
 Estimate SE t(20) P 
Intercept -41.34 15.02 -2.75 0.013 
Left IFG opercularis : Left STG pole -185.04 28.14 -6.58 0.000 
Left IFG opercularis : Left IFG triangularis 59.10 22.62 2.61 0.017 
Left IFG orbitalis : Left SMG 81.58 24.55 3.32 0.004 
Left IFG orbitalis : Left MTG pole 57.53 31.93 1.80 0.087 
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Supplementary Table 11. Linear coefficients of the final prediction model using extended network 
(involving both left and right hemisphere) imaging factors.  
 
 Estimate SE t(20) P 
Intercept -52.37 13.50 -3.88 0.001 
Left IFG opercularis : Left STG pole -151.69 23.48 -6.46 0.000 
Left IFG opercularis : Left IFG triangularis 109.94 19.61 5.61 0.000 
Right STG pole : Right MTG pole 70.73 18.65 3.79 0.001 
Left IFG opercularis : Left FuG -69.49 27.22 -2.55 0.019 

 
 

Supplementary Table 12. Linear coefficients of the exhaustive search prediction model using 
extended network (involving both left and right hemisphere) volumetric data.  
 

 Estimate SE t(23) P 
Intercept 136.64 76.74 1.78 0.092 
Right STG pole -0.03 0.02 -2.19 0.042 
Left AG -0.03 0.01 -2.07 0.053 
Left PCC 0.01 0.01 1.78 0.092 
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