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Abstract 

In this study, we present a comprehensive radiogenomic analysis of pediatric low-grade 

gliomas (pLGGs), combining treatment-naïve multiparametric MRI and RNA 

sequencing. We identified three immunological clusters using XCell enrichment scores, 

highlighting an 'immune-hot' group correlating with poorer prognosis, suggesting 

potential benefits from immunotherapies. A radiomic signature predicting immunological 

profiles showed balanced accuracies of 81.5% and 84.4% across discovery and 

replication cohorts, respectively. Our clinicoradiomic model predicted progression-free 

survival with concordance indices of 0.71 and 0.77 in these cohorts, and the 

clinicoradiomic scores correlated with treatment response (p = 0.001). We also explored 

germline variants and transcriptomic pathways related to clinicoradiomic risk, identifying 

those involved in tumor growth and immune responses. This is the first radiogenomic 

analysis in pLGGs that enhances prognostication by prediction of immunological 

profiles, assessment of patients’ risk of progression, prediction of treatment response to 

standard-of-care therapies, and early stratification of patients to identify potential 

candidates for novel therapies targeting specific pathways.  
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1 Introduction 

Pediatric low-grade glioma (pLGG), classified as grade I or II tumors by the World 

Health Organization (WHO), constitutes the most common childhood brain tumors 1,2. 

They represent roughly 30% of all pediatric central nervous system tumors and include 

a diverse spectrum of histologies, from glial to mixed glioneuronal entities 1,2. The 

prognosis and treatment responses among patients with pLGG vary widely. Gross total 

resection offers the most favorable response in pLGG patients with 10-year 

progression-free survival (PFS) exceeding 85% 3. Complete resection cannot be 

achieved for all tumors, especially for highly infiltrative or deep-seated tumors. 

Incompletely resected tumors often require additional therapy ranging from conventional 

chemotherapy to targeted inhibitors. Notably, for a significant portion of patients, the 

tumor progresses, resulting in a 10-year PFS rate under 50%, leading to concerns 

about long-term complications and an elevated mortality risk 3.  

The potential of molecularly targeted therapeutics to transform pLGG treatment is 

increasingly recognized, as evidenced by the FDA approval and ongoing clinical trials of 

RAF and MEK inhibitors 4,5. Nonetheless, a thorough understanding of the biological 

and molecular foundations of pLGG tumors, beyond merely identifying specific markers 

such as BRAF alterations, is crucial to the success of targeted treatments. This 

knowledge is also essential in preventing paradoxical tumor growth as seen with the 

sorafenib kinase inhibitor drug in BRAF-altered pLGGs 4. Accordingly, with increasingly 

encouraging reports on the efficacy of immunotherapies in a number of solid pediatric 

brain tumors 6, it is vital to understand the immunological characteristics of brain tumors. 
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The tumor immune microenvironment (TIME) – composed of a diverse set of immune 

and stromal cells exhibiting complex interactions with each other and with tumor cells – 

influences the suppression or promotion of tumor growth. It plays a significant role in 

shaping the prognosis and affecting the response to treatment 7.  

Radiomics has demonstrated potential in offering non-invasive, in vivo biomarkers of 

tumor molecular composition, which complement well-established clinical variables in 

supporting risk stratification by quantifying the underlying tumor heterogeneity and 

revealing the molecular underpinnings of the tumor via radiographic phenotypes (i.e., 

radiophenotypes) 8. We propose that in pLGG, the use of radiomic analysis on 

treatment-naïve multiparametric MRI (mpMRI) sequences coupled with machine 

learning (ML) can reveal associations between radiophenotypes and the tumor's 

molecular composition, encompassing the TIME and prospective treatment targets. This 

approach extends the scope of analysis beyond the capabilities of molecular subtyping, 

which has traditionally been the focus of radiogenomic research in pLGGs 9-12. By 

integrating imaging-derived phenotypes of pLGG with genotypic traits discerned from 

transcriptional analysis, our goal is to offer an in-depth characterization of pLGGs, 

aiding the implementation of precision therapies.  

This study provides a comprehensive radiogenomic analysis through creating a model 

for characterization of pLGG tumor immune microenvironment (TIME) subgroups, 

developing a radioimmunomic signature for predicting these immunological subgroups, 

and generating a clinicoradiomic model for predicting pLGG progression-free survival, 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306046doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306046


  

 

  

 

6

assessing progression risk and treatment response. Additionally, an interpretability 

analysis was conducted to identify pathways associated with the predicted risk.  

2 Results 

2.1 Study Design and Cohort Description 

The study design focuses on three main elements (Figure 1): (1) predicting pLGG 

immunological profiles, (2) predicting the immunological subgroups using a 

radioimmunomic signature, (3) developing a clinicoradiomic model to predict 

progression-free survival, along with an interpretability analysis of transcriptome 

pathways that are related to the risk of tumor progression. We analyzed retrospective 

data from 545 patients (See Table 1 for detailed description) in the Children’s Brain 

Tumor Network (CBTN 13), encompassing 494 with multi-omic (RNA-seq and WGS) 

data and 201 with standard multiparametric MRI (mpMRI) scans. A subset of 150 had 

both WGS and mpMRI data, with 91 also including diffusion-weighted imaging (and 

apparent diffusion coefficient (ADC) maps). The imaging cohort (201 patients) was split 

into a 'discovery' (160 patients) and an unseen 'replication' (41 patients) cohort 

randomly, ensuring the inclusion of rare tumor locations like the basal ganglia in the 

discovery group. This division was consistent in all ML models, although sample sizes 

varied for analyses combining transcriptomic data. Specifically, the radioimmunomic 

analysis included 120 patients in the discovery group and 30 in the replication set. 
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2.2 Transcriptome Enrichment Analysis Identifies Three Immunological 

Clusters 

Clustering of 494 pLGGs with available RNA-sequencing data in our cohort revealed 

three distinct immunological groups based on immune cell infiltration-related gene 

expression, with immune cluster 1 (n = 189) showing intermediate inferred infiltration, 

immune cluster 2 (n = 164) showing high inferred infiltration, and immune cluster 3 (n = 

141) showing the lowest inferred immune cell infiltration (Figure 2A). We observed a 

significant negative correlation between immune score and estimates of tumor purity 

derived from copy number (ABSOLUTE) 14, expression (ESTIMATE) 15, and 

methylation-based assessments (LUMP) 16 (Supplemental Figure 1).  

Cluster 1 showed highest enrichment in stromal scores, eosinophils, and cancer-

associated fibroblasts (CAFs) and lower levels of hematopoietic stem cells (HSCs), 

memory CD4+ T-cells, and CD4+ Th1 cells than clusters 2 and 3 (Figure 2B). Cluster 2 

illustrated higher levels of common lymphoid progenitors, M2-polarized macrophages, 

and CD4+ Memory T-cells and the lowest enrichments for class-switched memory B-

cells, eosinophils, T-regulatory cells (Tregs), and stromal scores compared to clusters 1 

and 3 (Figure 2B). Cluster 3 exhibited higher expression of hematopoietic stem cells 

(HSCs), Tregs, and naïve CD8+ T-cells and lower levels of activated myeloid dendritic 

cells, monocytes, and M1-polarized macrophages in comparison with clusters 1 and 2 

(Figure 2B).  
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We also found that expression of the tumor inflammation signature (TIS), a clinically 

predictive expression-based measure of response to nivolumab and pembrolizumab 17, 

was statistically significant between clusters 1 and 2 (p = 2.6e-6), clusters 1 and 3 (p = 

2.4e-8), and clusters 2 and 3 (p = 2.2e-16) (Figure 3 C & D). Cluster 2 revealed the 

highest TIS across all the immune groups, consistent with the independent measures of 

immune infiltration-related genes that we observed from XCell  18 with this group. 

Notably, tumor mutational burden (TMB), a clinical biomarker of response to immune 

checkpoint blockade 19,20, was significantly different between Cluster 1 and Cluster 2 (p 

= 3.9e-5) and between Cluster 1 and Cluster 3 (6.3e-5), but not between Clusters 2 and 

3 (p = 0.75) (Figure 3E).  

We evaluated the relationship between immune groups with known pLGG molecular 

subtypes related to WHO brain tumor entities using a chi-square test of independence 

to ascertain a potential association between immunophenotype and molecular driver 

events (Figure 3F). To delineate specific XCell cluster and molecular subtype 

combinations that deviated from expectation, we quantitatively determined significant 

group-level associations through a Poisson generalized linear model. The LGG 

“wildtype” subtype, which refers to tumors that do not harbor a driver mutation in 

Histone H3, IDH, FGFR1/2 genes, or MAPK pathway components (KRAS, NRAS, 

HRAS, BRAF MAP2K1, MAP2K2, ARAF, or RAF1), was underrepresented in the 

immune-high cluster 1 (Figure 3F), while tumors harboring a KIAA1549::BRAF fusion, 

partial or complete losses in CDKN2A/B, MAPK pathway mutations, or mutations in 

IDH, NF1, or receptor tyrosine kinases (RTKs, MET, KIT, PDGFRA, ALK, ROS1, 
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NTRK1/2/3) were over-represented in this group (Figure 3F, Supplemental Figures 4 - 

5, p < 0.001). Wildtype subependymal giant cell astrocytomas (SEGAs) were also 

under-represented in this cluster (Figure 3F, Supplemental Figures 4 - 5, p < 0.001). In 

cluster 2, which showed a similar level of immune infiltration-related gene expression 

overall relative to cluster 1 based on the XCell immune score, we observed the reverse 

trend among LGG wildtype tumors, which were over-represented (Figure 3F). By 

contrast, wildtype GNGs (p < 0.001) and tumors harboring IDH mutations (p = 0.0496), 

tumors with BRAF alterations, and tumors harboring mutations in RTK genes were 

under-represented in this immune group (Figure 3F, Supplemental Figures 4 - 5, p < 

0.001). In the immune-low cluster 3, we observed strong over-representation of wildtype 

GNGs and SEGAs and a strong under-representation of KIAA1549::BRAF fusion-driven 

pLGGs from an analysis of the Pearson residuals in Figure 3F. Collectively, these data 

suggest that tumor-cell intrinsic factors may be important mechanistic determinants of 

the tumor-immune phenotype in pLGGs, an observation that has also been noted in a 

number of other tumor types 21-23. These data, along with our observations of 

associations between immune clusters with TIS and TMB, suggest that subtype-specific 

driver mutations may be more important and specific determinants with respect to the 

tumor-immune microenvironment and that total mutational count may play a secondary 

role given our observations between Clusters 2 and 3 19,20. 

We then evaluated the association of the three immunological clusters with prognosis 

using survival endpoints progression-free survival (PFS) and overall survival (OS) 

(Figure 3 A&B; Supplemental Figure 2). A log-rank comparison across the three clusters 
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revealed that the immune-high cluster 2 had the worst overall prognosis, followed by 

cluster 1 which illustrated intermediate infiltration-related gene expression, and finally 

cluster 3, which was predicted to have a low level of immune cell infiltration. Notably, 

the cluster 2 subgroup had the highest expression of TIS and cluster 3 the lowest, and 

TIS has been shown to inversely associate with survival in adult low-grade gliomas 

consistent with our observations 24.  When modeling the effects of cluster when adjusted 

for age at diagnosis, reported sex, race, the anatomical region of the tumor, and the 

molecular subtype of the tumor in a Cox regression model, we found significantly higher 

progression-related hazard for tumors belonging to cluster 2 (p < 0.001, Figure 3B; 

Supplemental Table 2). The OS outcomes were not statistically different among the 

three patient groups by non-parametric Kaplan Meier analysis (Supplemental Figure 2).  

We evaluated the relationship between immunological clusters and tumor locations, 

investigating if specific brain regions are inclined to exhibit distinct immune 

microenvironments. As the Sankey diagram in Supplemental Figure 6 presents, the 

immunological clusters are distributed fairly evenly across the cerebellar region, which 

is the most common tumor location across all three immunological clusters, followed by 

lobar tumor location (i.e., frontal, parietal, temporal, or occipital lobes). Suprasellar 

tumors were predominantly associated with immune-high clusters (1 and 2) and were 

less common in the immune-low cluster 3. This pattern indicates that there is no 

significant predilection for specific brain regions for immunological profiles. 
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2.3 Radioimmunomic Signature: Differentiating Between Poor and 

Favorable Prognosis Immune Clusters 

We assessed the potential of radiomic analysis in predicting pLGG immunological 

clusters, focusing on developing a radioimmunomic signature using machine learning 

classifiers. Since immune clusters 1 and 3 were not prognostically distinct (Figure 3A), 

we aimed to distinguish cluster 2 from clusters 1 and 3. Our analysis involved 150 

patients with conventional MRI sequences and 91 with additional ADC-map data. We 

trained radioimmunomic models on imaging features and age for prediction, testing 

them independently on the replication set. The conventional MRI-based 

radioimmunomic signature for cluster 2 versus clusters 1 and 3 showed an AUC of 0.77 

| 0.74 and balanced accuracy of 76.8% | 86.0% in the discovery | replication sets. 

Adding ADC features to conventional MRI improved performance, with an AUC of 0.83 | 

0.79 and balanced accuracy of 81.5% | 84.4% in the discovery | replication sets (Figure 

4 A).  

Our analysis further demonstrated different imaging characteristics within tumor 

subregions across the three immunological clusters (Figure 4 B). Immune cluster 2 

exhibits more pixels with low enhancement in the ED tumor subregions, while cluster 3, 

characterized by lower immune cell expression and higher tumor purity (section 2.1.1 

and Supplemental Figure 1), showed more pixels in the lower ADC range in the ED 

region. This possibly indicates restricted diffusion and a higher tumor cell density rather 

than immune cell infiltration in peritumoral edema. A negative correlation between ADC 
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values and tumor purity within the peritumoral edema has been reported in adult high-

grade glioma 25. 

2.4 Predictive Clinicoradiomic Model: Assessing Progression-Free 

Survival and Treatment Resistance Association 

We hypothesized that a combination of clinical variables and radiomic features from 

pre-surgical/pre-treatment MRI sequences could predict tumor progression risk. In our 

discovery cohort (n = 160), we developed a Cox proportional hazards model combining 

these variables. Ridge regularization was applied to radiomic variables, while clinical 

variables remained unpenalized (refer to Methods section 5.4). This model, tested on 

the replication set, aimed to predict patient risk scores (Figure 5A). In the discovery and 

replication sets, the clinicoradiomic model achieved Harrell’s concordance indexes of 

0.71 [95% CI: 0.63, 0.79] and 0.77, Uno’s concordance indexes of 0.72 [95% CI: 0.64, 

0.80] and 0.80, and integrated Brier scores (IBS) of 0.24 [95% CI: 0.19, 0.29] and 0.16, 

respectively (Table 2). Supplemental Figure 7 shows hazard ratios for all variables in 

ascending order. Key clinical predictors include tumor resection extent, chemotherapy, 

age at diagnosis, and tumor location. Regularization selected 22 radiomic features, with 

8 statistically significant. Patients were categorized into low, medium, and high-risk 

groups, with risk cutoffs applied independently in the replication set. ANOVA tests 

yielded p-values of 3.12e-58 and 1.29e-54 across risk groups in the discovery and 

replication sets.  
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Our analysis revealed that a model based solely on clinical variables did not yield 

markedly different results from those of the clinicoradiomic model, as detailed in Table 2 

and Supplemental Section 6.3. Nevertheless, given the notable predictive importance of 

total resection in pLGGs, we compared the efficacy of the trained clinicoradiomic and 

clinical-only models specifically in patients who did not undergo total/near-total 

resection. In this subset, the clinicoradiomic model demonstrated significantly enhanced 

performance relative to the clinical-only model, as evidenced by higher Harrell’s 

concordance indexes (0.70 vs 0.55), Uno’s concordance indexes (0.70 vs 0.57), and a 

lower IBS of 0.18 compared to 0.24 for the clinicoradiomic and clinical-only models, 

respectively (Table 2). This finding underscores the clinicoradiomic model's potential 

value in stratifying patients who are not adequately classified using only clinical 

variables. 

We investigated the relationship between our predicted risk scores and treatment 

resistance, focusing on patients who showed progression (n = 61) within five years post-

diagnosis. These patients were divided into two groups based on their treatment: those 

receiving minimal systemic therapy (chemotherapy or, rarely, radiotherapy post 

biopsy/surgery; n = 31), forming a treatment low-risk group, and those undergoing 

multiple treatments (n = 30), forming a treatment high-risk group. A Student’s t-test 

revealed a significant difference in mean predicted risk scores between these groups (p 

= 0.0010), with higher risk scores linked to patients less responsive to initial treatments, 

as shown in Figure 5B.  
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Our analysis of the clinicoradiomic risk groups in relation to treatment risk categories 

revealed a significant association, indicated by a Chi-squared test statistic of 13.69 and 

a p-value of 0.0011. As Figure 5C shows, there is an over-representation of 

clinicoradiomic high-risk patients in the treatment high-risk group, and an under-

representation in the treatment low-risk group. Conversely, clinicoradiomic low-risk 

patients are more prevalent in the treatment low-risk group and less so in the treatment 

low-risk group. Most medium-risk clinicoradiomic patients fall into the treatment low-risk 

category. These findings imply that patients with higher clinicoradiomic risk scores may 

require multiple lines of treatment. 

We explored correlations between clinicoradiomic risk categories and immunological 

clusters. Figure 5D illustrates this relationship, showing a rare occurrence of immune 

cluster 3 in the clinicoradiomic high-risk group, and a high occurrence of the 

prognostically worse immune cluster 2 in the clinicoradiomic high or medium-risk 

groups. Most of the tumors in immune cluster 1 were grouped in the medium and low-

risk groups.  

Our findings show that immune cluster 3, linked to a favorable prognosis, rarely appears 

in the predicted high-risk category, validating our clinicoradiomic model's ability to 

predict immunological factors related to progression risk. Predominantly, the 

clinicoradiomic high-risk group includes patients from immunological clusters 1 and 2, 

characterized by an inflamed yet possibly tumor-promoting immune environment.  

Finally, we examined how molecular subtypes enhance the clinicoradiomic model's 

accuracy in predicting tumor progression risk. This analysis yielded Harrell’s 
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concordance indexes of 0.74 [95% CI: 0.65, 0.83] and 0.69, Uno’s concordance indexes 

of 0.74 [95% CI: 0.65, 0.84] and 0.74, and integrated Brier scores (IBS) of 0.24 [95% CI: 

0.14, 0.27] and 0.18, for the discovery and the replication sets, respectively, as detailed 

in Supplemental Material, section 6.3.3. 

2.5 Biological Interpretability of Clinicoradiomic Risk Scores: 

Associations with Germline Variants and Transcriptomic Pathways 

We then aimed to independently investigate whether genomic and transcriptomic 

characteristics may be associated with radiomically-defined risk of progression. We 

interrogated deleterious and likely deleterious germline variants present in the pLGG 

population through the criteria outline in Materials and Methods (Section 4.1.2.3), 

annotating for presence or absence of a germline variant among cancer genes and 

those involved in structural birth defects 26-29 (Supplementary Table 7). From a chi-

square test of independence testing for the association of gene-specific germline variant 

counts across clinicoradiomic risk groups, we identified the synaptic nuclear envelope 

protein 1 (SYNE1) gene as significantly over-represented in the medium risk 

clinicoradiomic group (adjusted p = 0.015). Notably, SYNE1 germline mutations have 

been implicated in cerebellar ataxia and somatic mutations of the gene are known to 

contribute to the development and progression of multiple cancers, among them adult 

glioblastoma 30-33.  

We performed single-sample GSEA (ssGSEA) to derive per-sample enrichment scores 

for 1692 Reactome pathways spanning across all known cellular biological functions. 
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Consistent with prior studies 23,34, we found that the KIAA1549::BRAF fusion subtype 

was linked to lower risk of progression. Among notable pathways negatively associated 

with risk and cancer initiation/progression, we identified CD209+ dendritic cells, with an 

important role in initiating 35 and non-canonical NFKB signaling 36-38. Furthermore, we 

found that up-regulated signaling of the eicosanoid family of lipid mediators, produced 

by poly-unsaturated fatty acids, were associated with higher risk, consistent with their 

known pro-angiogenic, proliferative, and inflammatory effects in glioma 39-41. We 

identified several inflammatory pathways with known biological significance in glioma 

that were associated with greater risk. Interleukin-3, suppressing anti-tumor immune 

responses via activation of PDL1 pathway 42, and Interleukin-5 signaling that promotes 

cancer metastasis by remodeling the TIME 43, were associated with greater risk of 

progression. Type I interferon signaling, previously found to promote a mesenchymal 

phenotype and poor prognosis in glioma 44. Additional pathways that remodel the 

inflammatory phenotype and promote tumor growth or proliferation, and were 

associated with higher risk, included alpha protein kinase 1 45, TRAF6-mediated NFKB 

activation 46, and oncogene-induced senescence pathways 47.  

3 Discussion 

In this study, we undertook a comprehensive radiogenomic analysis of pLGGs using 

both supervised and unsupervised ML techniques. Our primary objective is to pave the 

path for curing pLGGs while reducing the need for invasive tumor resection or systemic 

treatments, thereby reducing related morbidities in children. We focused on identifying 

intrinsic imaging and molecular characteristics of pLGG tumors, exploring their 
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phenotype-genotype relationships from various analytical perspectives for distinct 

clinical applications. This method also addresses a major hurdle in ML: the lack of 

biological or clinical interpretability which hinders its integration into treatment decisions.  

The analysis of immunological clusters revealed their association with clinical outcomes, 

wherein immune-high cluster 2 was associated with worst progression-free survival 

rates, likely linked to enrichment of M2-polarized macrophages, which suppress local 

tumor immunity and mast cells reshaping the TIME to promote angiogenesis 48,49. 

Conversely, memory B-cells that favor anti-tumor T-cell mediated immunity in glioma 36 

were relatively low in cluster 2 and higher in prognostically-favorable cluster 1.  

Immune cluster 1, with more favorable prognosis, showed relatively higher inferred 

levels of eosinophils, also observed in independent LGG cohorts 50. In cluster 3, which 

showed the longest median overall survival of all immune groups, we detected 

signatures related to NK and CD8+ cell types, both reported to confer more favorable 

prognosis in glioblastoma 51-54. This suggests that profiling immune cell types in pLGG 

may provide insights with respect to disease prognosis.  

These findings also suggest the potential benefit of immune clustering in determining 

response to and stratifying patients for checkpoint inhibitor therapy. BRAF is vital in the 

MAPK signaling pathway, influencing various cellular functions like proliferation and 

angiogenesis 55. Although BRAF inhibitors are potential treatments in pLGGs 56,57, there 

is a prevalent issue of therapeutic resistance 58 and serious side effects like secondary 

neoplasms 59. As such, exploring alternative treatments like immunotherapy, either on 

its own or combined with targeted therapies, may be beneficial for pLGGs with BRAF 
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mutations 60. In our study, we discovered that BRAF-altered pLGGs exhibit increased 

immune cell infiltration-related gene expression. It has been shown that the BRAF 

V600E mutation may boost immunogenicity in LGG patients, leading to the 

development of BRAF V600E-specific T-cells, which can then be targeted with T-cell 

therapy 61. However, another study focusing on pLGGs found no link between PD-1 

expression levels and the BRAF V600E mutation status 62. As we continue to make 

advancements in molecular research, further investigations will be essential to pinpoint 

the optimal immunotherapeutic strategies for pLGG patients. 

In our research, a strong correlation was found between higher TIS and immunological 

groups in pLGGs, whereas TMB was relatively high in only one cluster with relatively 

inferred immune cell content (Cluster 1). This is consistent with a previous study on 

angiosarcoma patients where TIS was linked to specific immune clusters, including 

neutrophils, macrophages, and PD-L1+ cells 63. Furthermore, a breast cancer study 

found TIS scores closely aligned with tumor-infiltrating lymphocyte numbers 64. Pan-

cancer studies have also recognized TIS as a consistent predictor of immunotherapy 

response across multiple cancers 17. 

Wang et al. 65 previously reported the immunological classification of pediatric gliomas, 

including both low- and high-grade tumors, based on RNA-sequencing. They identified 

three primary immunological subgroups, with the immune-hot group showing a higher 

presence of M2-polarized macrophages and CD4+ Memory T-cells, which aligns with 

our findings. However, unlike their study, we did not observe any differences in OS 

among the three immunological subgroups. This discrepancy could primarily be due to 
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Wang et al.'s inclusion of high-grade tumors in their analysis. In contrast, pLGGs usually 

have a prolonged OS, leading to a higher proportion of censored data in our study. In 

our research, we advanced the methodology by developing an imaging-based 

radioimmunomic signature that predicts immunological clusters. This signature acts as a 

surrogate biomarker for immunological profiles in situations where RNA-sequencing is 

unfeasible, such as when the tumor location impedes surgical resection, or in settings 

where RNA-sequencing and transcriptomic analysis are not possible due to limited 

resources. 

The ability of our imaging-based ML model to distinguish the 'immune-hot' cluster 2 from 

immune clusters 1 and 3, each harboring distinct cellular profiles, may prove clinically 

beneficial when it comes to predicting the efficacy of immune-based therapies in pLGG 

upfront. Radiomics has been used for predicting immune phenotypes 66 and specific 

immune cell populations 67-69 in adult glioblastoma. Nonetheless, our investigation 

stands as the pioneering effort to create imaging-based ML models capable of 

predicting immune clusters in pediatric brain tumors. Our study highlights the value of 

integrating ADC-derived features that provide quantitative assessments of pattern of 

diffusivity of water molecules in the TIME. The reports on the positive or negative 

correlation of ADC values and tumor microenvironment markers remain contradictory 68-

70. Moreover, a radiomic study based solely on ADC maps did not outperform a model 

constructed using post-contrast T1-weighted MRI sequences, indicating the complexity 

of identifying the most informative imaging features for such predictive tasks 66. While 

studies in the adult brain tumor domain have pointed to the improved accuracy of 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306046doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306046


  

 

  

 

20

radiogenomic classifications after the inclusion of features from advanced MRI 

sequences such as ADC map 8,71, there remains a paucity of research that directly 

correlates ADC values with the TIME in brain tumors 69,70.  

We sought to determine the predictive value of clinically significant variables, known for 

their prognostic impact in pLGG, and radiomic features from pre-surgical MRIs for 

assessing tumor progression risk. The high reproducibility of our clinicoradiomic model, 

evident with concordance indexes of 0.71 and 0.77 in the discovery and replication sets, 

respectively, indicates its potential for future application in unseen patient cohorts, 

including prospective studies. Consistent with existing literature 72,73, the extent of tumor 

resection was a key determinant of progression-free survival. In our study, among 61 

progressed tumors, only 7 had undergone total or near-total resection, with progression-

free intervals ranging from 222 to 921 days and a median of 660 days post-surgery.  

When comparing our clinicoradiomic risk groups with treatment risk categories, we 

found that most treatment high-risk tumors were also identified as clinicoradiomic high-

risk tumors, while a few were in the medium-risk category. Most treatment low-risk 

tumors corresponded to our low to medium-risk clinicoradiomic groups. Notably, the 

treatment low-risk tumors categorized as high-risk by our model still progressed within 

five years, (progression-free survival range 4.8 - 131.5, median, 19.2 months), 

suggesting accuracy of our model in predicting progression-free survival and 

progression risk. These findings underscore our model's potential to guide treatment 

strategies, suggesting consideration for a targeted therapy approach or enrollment onto 

a clinical trial upfront, rather than at recurrence, for 'high-risk' tumors and more 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306046doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306046


  

 

  

 

21

conservative, monitoring-focused approaches for 'low-risk' cases. The 'medium-risk' 

category could be considered for a proactive treatment approach  3, although it currently 

lacks a clear clinical definition in pLGG tumors, which complicates understanding its 

clinical implications. However, our findings indicate an over-representation of SYNE1 

gene, linked to cerebellar ataxia and tumor progression, in the medium-risk 

clinicoradiomic group. Considering the long-term morbidities associated with pLGG 

tumors, including ataxia, children in this risk category may be predisposed to the 

development of progressive ataxia 74, underscoring the importance of upfront risk 

stratification to either prevent the onset or enable early management of these side 

effects.  

Biological interpretation of our clinicoradiomic model via radiogenomic analysis showed 

that the predicted risk scores were associated with molecular pathways known to 

influence tumor progression which may provide insights for clinical interventions. NFKB 

signaling, a pathway known for the maintenance of B-cells and its role in T-cell driven 

anti-tumor immune responses in glioblastoma 45-47, was negatively associated with risk. 

Pathways related to the balance of fatty acid synthesis and oxidation, as a metabolic 

switch to promote lipogenesis and lipid droplet formation – a well-established tumor-

promoting mechanism across cancers particularly high-grade gliomas 41,42 – were found 

to relate to elevated risk. IL-3, which suppresses anti-tumor immune responses via 

activation of the PDL1 pathway 42, and IL-5 signaling, shown to promote cancer 

metastasis by remodeling the immune microenvironment 43, were also linked to higher 

risk. 
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The existing literature on radiomic analysis for pediatric brain low-grade glioma is 

limited, primarily concentrating on the prediction of single genetic mutations or 

alterations, such as BRAF-V600E mutation and BRAF-KIAA1549 fusion  9-12. In light of 

the 2021 WHO classification of tumors of the central nervous system (CNS), 5th edition 

(WHO CNS 5) 2, which recommends the inclusion of driver molecular alterations in 

standard diagnostic processes, merely predicting a single mutation or fusion using 

imaging might not yield substantial clinical benefits. Our study is the first to offer a 

comprehensive radiogenomic analysis that integrates radiomics with transcriptomic 

pathways, extending beyond the predictive modeling of single molecular drivers and 

addressing a research gap in pediatric and adult brain tumor studies.  

The current study encountered challenges due to the limited availability of imaging and 

genomic data (WGS or RNA-sequencing), compounded by the rarity of pediatric brain 

tumors. The cohort comprised a limited number of patients with NF1 disease, non-

pilocytic astrocytoma histologies, and was confined to specific tumor sites. The time of 

progression was determined by reviewing clinical notes on treatment changes and MRI 

scans when progression was suspected, though this method may not be entirely 

objective. Future studies could improve accuracy by employing volumetric analysis, 

although its advantage over the traditional bidimensional method is not yet proven. Our 

analysis comprised radiomic, genomic, and transcriptomic data, whereas other 

important layers like methylation profiling, metabolomics, proteomics, and pathomics 

were not available for most of the patients. To gain a deeper understanding of the 

complex interplay between these data layers at micro and macro scales, and how they 
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influence the clinical presentation and treatment response of tumors, future studies 

incorporating a broader spectrum of data could further inform precision medicine 

approaches for individual patients. Additionally, due to unavailable tissue, we were 

unable to validate our transcriptomic findings through immunohistochemical staining, 

suggesting a need for further research to confirm cell enrichments in immunological 

subgroups. 

Acknowledging these limitations, our analysis sets the stage for the development of 

more personalized and less invasive treatment strategies for pLGGs in future research. 

Specifically:  

- The discovery of the radioimmunomic signature provides a non-invasive technique to 

identify immune-high pLGG tumors, with elevated TIS levels and typically a poorer 

prognosis, which may be candidates for immunotherapy. This approach can aid in the 

early stratification of patients, allowing for their inclusion in immunotherapy trials.  

- The clinicoradiomic predictive model can serve as an effective marker for assessing 

patient’s risk of progression and predicting treatment response. This model can be 

applied as a pre-interventional assessment tool, enabling consideration of different 

scenarios, such as varying degrees of surgical resection and chemotherapy use. Its 

predictive capability allows for the simulation of diverse clinical outcomes based on 

hypothetical treatment strategies prior to making patient management decisions. 

Moreover, the predictions of the clinicoradiomic model can be updated and recalibrated 

after each intervention, or as new data about tumor molecular subtypes emerge post-

resection. This iterative refinement ensures that the prognostic evaluations stay 
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accurate and applicable to the patient's changing clinical condition. Future 

enhancements to the model, including the incorporation of multi-omic data, will further 

refine its accuracy and utility. Integrating this predictive model into clinical practice will 

provide valuable guidance in treatment planning, thereby enhancing the management 

and care of patients with pLGGs.  

Overall, by leveraging the insights from our analysis, a more patient-centric approach 

can be adopted, tailoring treatments to the specific characteristics and needs of each 

patient, thus enhancing the overall quality and effectiveness of care for patients with 

pLGGs, aligning closely with the evolving field of personalized medicine. 

4 Online Methods 

4.1 Data 

4.1.1 Overview of the Data  

In this HIPAA-compliant study, data from patients diagnosed histopathologically with de 

novo pediatric low-grade glioma (pLGG), retrospectively collected through the 

Children’s Brain Tumor Network (CBTN) 13, was included. RNA-sequencing data was 

available for 494 subjects from a combination of CBTN patient data and patient data 

available in the OpenPedCan repository (v12 data release), which is a collection of 

genomic and molecular data available on multiple sources, such as KidsFirst 75, 

TARGET 76, OpenPBTA 77,78, and the TCGA 79. Subjects had molecular subtype 

information available through the OpenPedCan database and through the application of 
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an in-house molecular subtyping pipeline on additional cases consented on CBTN’s 

research protocol after the v12 OpenPedCan release 77. 

Treatment-naïve multiparametric MRI (mpMRI) sequences, including pre- and post-

Gadolinium T1-weighted (T1w, T1w-Gd), T2-weighted (T2w), and T2 fluid attenuated 

inversion recovery (T2-FLAIR), acquired between 2006 and 2018, from 258 subjects 

with pLGG were obtained. Diffusion weighted imaging (DWI) and scanner-generated 

apparent diffusion coefficient (ADC) maps were collected for 153 subjects. Patients 

were excluded if: (1) age at the time of imaging was older than 18 years, (2) the images 

were not treatment-naïve, i.e., were not acquired prior to the initial surgery or treatment, 

(3) the primary site was not brain, (4) leptomeningeal dissemination was reported, (5) 

not all four standard mpMRI sequences were available, or (6) the images were 

determined to be of low-quality. A final cohort of 201 subjects with available standard 

mpMRI (91 with ADC-maps) was included in the imaging studies. In cases where 

multiple imaging sessions were available for the selected patients before their initial 

treatment or surgery, we chose the session that was closest in time to the intervention. 

The time interval between these sessions and the intervention for our cohort ranged 

from 1 to 370 days, with a median interval of 3 days. 

For the patients in the final cohort, we reviewed the clinical notes for the patients that 

had progressed. For the subjects that had tumor progression, we recorded the number 

of radiotherapy or chemotherapy treatments the patients had received over the course 

of the study within the five years since the initial diagnosis. A treatment change was 
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classified as a new treatment only in cases of treatment failure, not when a change in 

treatment method was required due to toxicity.  

4.1.2 Molecular Data Analysis 

4.1.2.1 Enrichment analysis and clustering of immune and stromal cell types  

To identify the enrichment of immune and stromal cell types and pathways, xCell 18, 

which is a cell type enrichment analysis from gene expression data, was applied on our 

pLGG transcriptomic data. We leveraged transcripts per million (TPM) generated by a 

harmonized STAR-RSEM RNA-sequencing pipeline developed as part of the Gabriella 

Miller Kids First Data Resource Center sequencing and benchmarking effort 78, which 

newly leverages Ensembl’s GENCODE version 39 80 for gene-level annotations. We 

leveraged the Immunedeconv R package 81 specifying default parameters and xCell as 

the method of interest. Tumor purity was inferred using three different approaches, 

including estimates of tumor purity derived from copy number (ABSOLUTE) 14, 

expression (ESTIMATE) 15, and methylation-based assessments (LUMP) 16 

(Supplemental Figure 1). Kruskal-Wallis’s test was performed to determine the 

differences in tumor inflammation signature (TIS) and tumor mutational burden (TMB) 

levels among the immune clusters. 

4.1.2.2 Enrichment analysis of molecular pathways 

To identify differentially expressed biological pathways across clinicoradiomic risk 

groups, we filtered gene expression data for the ‘protein coding’ gene type. We then 

provided expected counts as input to DeSeq2 82 for differential gene expression 
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analysis, specifying clinicoradiomic risk groups as the factor variable in the model’s 

design. Lists of differentially expressed genes derived from pairwise comparisons 

across all three imaging groups were ranked and used as input for pre-ranked GSEA 83 

to identify differentially expressed biological pathways. Pathway annotations were 

derived from Reactome using the Molecular Signatures Database v2023.1.Hs 84. 

4.1.2.3 Germline Variant Analysis 

To identify deleterious/likely deleterious germline variants in a list of cancer 

predisposition genes, we applied the following criteria to filter out single nucleotide 

variants (SNVs) and small insertions/deletions (indels): a) minor allele frequency in 

gnomAD (v2.1.1 85) and TOPMed (data freeze 7 86) is less than or equal to 0.0001; b) at 

least half of 21 prediction scores as listed in Supplementary Table X of the dbNSFP 

database (v4.2 87,88) label a variant as Deleterious, Detrimental, Damaging or 

Medium/High Impact; c) for quality control purposes we require that in heterozygous 

calls, alternate allele depth is between 25% and 75% of all sequencing depth of a 

variant site. We also checked if variants are cataloged in either ClinVar (release 

20240331 89) or Human Gene Mutation Database (HGMD; Professional Version 

2024Q1 90). Variants with membership in ClinVar/HGMD are considered “deleterious”, 

while others obtained through the germline variant filtering process described above are 

considered “likely deleterious”. 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306046doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306046


  

 

  

 

28

4.1.3 Imaging Data Processing and Analysis 

In our study, image standardization was performed prior to radiomic feature extraction.  

For each patient, all MRI scans were first re-oriented to left-posterior-superior (LPS) 

coordinate system. Subsequently, T1w, T2w, T2-FLAIR, and ADC-maps (when 

available) were co-registered with their corresponding T1w-Gd sequence. All images 

were then resampled to an isotropic resolution of 1 mm3 based on anatomical SRI24 

atlas using the Greedy algorithm, in Cancer Imaging Phenomics Toolkit open-source 

software v.1.8.1 (CaPTk, https://www.cbica.upenn.edu/captk). All preprocessed images 

were then skull-stripped using our dedicated brain tissue extraction tool 91. The skull-

stripped images were then normalized to the intensity range of [0, 255] after removing 

after removing the outlier pixels that did not fall into 99.9% percentile of the image 

histogram. Brain tumor segmentation was performed using our in-house automatic 

pediatric brain tumor segmentation tool, described in 91, and manual revisions were 

made when necessary. This tool generates segmentation of tumor subregions, including 

the enhancing tumor, nonenhancing tumor, cyst, and edema. A combination of all 

subregions is used to generate a whole lesion segmentation (indicated in Figure 1). 

Radiomic features (n = 881) of shape, volume, intensity, first-order histogram (10 bins), 

gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-

level size zone matrix (GLSZM), neighborhood gray tone difference matrix (NGTDM), 

local binary pattern (LBP), and Collage features were extracted after overlaying the WT 

mask on the mpMR images.  
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The data was randomly split into a “discovery” (n = 160) and an unseen “replication” (n 

= 41) cohort; since some tumor locations, such as basal ganglia, were rare in our 

cohort, we kept those subjects in the discovery set. We have used the same cohort split 

across all experiments throughout this study; however, some of the experiments had 

reduced sample sizes when intersected with transcriptomic data. Prior to each ML 

analyses, pairwise Pearson’s correlation was performed on the extracted radiomic 

features for the subjects in the discovery cohort, to remove one of the highly correlated 

pair of features (r > 0.90), reducing the dimension to 438. The features were then 

normalized using z-scoring approach. For categorical variables, including sex, NF1 

disease, tumor location, extent of tumor resection, chemotherapy, and radiotherapy, 

count encoding was performed. Age at diagnosis, as a continuous variable, was 

normalized using z-scoring method.  The mean and standard deviation calculated for 

the continuous features in the discovery set were used to normalize the corresponding 

features in the replication set. 

Histograms illustrating the most indicative features were produced for different groups of 

tumors in each of the experiments, to elucidate the inherent biological processes 

associated with specific genetic alterations. These histograms display the frequency (y-

axis) of a particular feature value (x-axis), collated from the entire patient dataset. 
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4.2 Imaging-Based Prediction of TIME Subgroups via Radioimmunomic 

Signature 

For this analysis, immunological subgroups of pLGG were determined using 

unsupervised clustering based on enrichment of immune and stromal cells (obtained 

from xCell), followed by application of supervised approach based on radiomic features 

for classification of the immune clusters (Figure 1 shows the workflow for this analysis). 

4.2.1 Characterization of TIME Subgroups 

We leveraged the xCell enrichment scores derived as described above as input for 

clustering. Clustering was carried out using an internally developed R package that 

comparatively and quantitatively assesses clustering quality across dissimilarity-based 

92, model-based 93, joint dimensionality reduction-based 94, and dbscan 95 clustering 

methods. We leveraged the fpc R package to derive a quantitative composite score 

using multiple metrics of clustering quality, selecting the highest scoring method based 

on cluster compactness and separation. The v-test, which is a measure of the difference 

in means across a given cluster relative to the remaining sample set scaled by the 

variance 96, was leveraged for identifying cluster-specific immune cell subsets. Heatmap 

plots were generated using the pheatmap R package, violin plots using ggplot2 R 

package, and radar plots using the fmsb R package.  

4.2.2 Radioimmunomic Signature 

To generate a radiomic signature of immunological profiles, we used the intersection of 

our imaging and transcriptomic cohorts, resulting in a total of 150 subjects (120 in the 
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discovery, 30 in the replication sets) with all four conventional MRI sequences (T1w, 

T1w-Gd, T2w, T2-FLAIR) and 91 subjects (72 in the discovery, 19 in the replication 

sets) when ADC-map was also available. On a feature set including the radiomic 

features (n = 438 when the four conventional MRI sequences were available and n = 

493 when ADC was also included) and age at diagnosis, support vector machines 

(SVM), wrapped with Maximum Relevance Minimum Redundancy (MRMR) feature 

selection, was applied to classify the subjects in the discovery set into three 

immunological groups. ML classifier was trained using a nested cross-validation (CV) 

approach, with five folds for the inner loop for the purpose of feature selection and ten 

folds for the outer loop to tune the hyperparameters and optimize the model. This 

nested CV approach is intended to avoid data overfitting and improve generalizability to 

the unseen replication cohort. To reduce overfitting to the training data, we used a linear 

kernel for SVM. Three binary classifiers for each of the immunological groups were 

trained in a one-versus-the-rest approach. This implementation was carried out in 

MATLAB 2023a (MathWorks Inc). The generated ML models were then independently 

applied to the replication set to evaluate the performance via area under the receiver 

operating characteristic (ROC) curve (AUC) and balanced accuracy.  

4.3 Imaging-Based Prediction of Risk of Tumor Progression 

Patient demographics and clinical variables considered to play an important role in 

determining the risk of the patient for tumor progression, i.e., age, sex, extent of tumor 

resection, treatment method (radiotherapy, chemotherapy), tumor location, and 

germline Neurofibromatosis (NF1) cancer predisposition were included as input 
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variables. A baseline Cox-PH model only based on clinical variables was generated to 

study additional value of radiomics to these clinically available features. The data (n = 

201) was split into a discovery (n = 160) and replication (n = 41) sets. The discovery set 

was used for training a Cox-PH model using a stratified nested cross-validation (10 

folds for both inner and outer nests) approach. The trained model was applied on the 

“unseen” replication set. Consequently, we generated another Cox-PH model with 

ElasticNet penalization using a combination of clinical and radiomic variables. The 

penalization was set to zero for clinical variables but applied for radiomic features to 

decrease the dimensionality of the feature space. The performances of survival models 

were evaluated based on three metrics were employed: 1) Harrell’s concordance index 

(hereinafter referred to as “HAR”), 2) Uno’s concordance index (hereinafter referred to 

as “UNO”), and 3) the Integrated Brier Score (hereinafter referred to as “IBS”), which 

provides an overall calculation of the model performance at all available times. The 

patients were then stratified into the groups of low, medium, and high risk based on their 

predicted risk in the discovery set. To achieve this, we fitted the entire discovery cohort 

against the survival model to obtain risk scores. Based on the distribution of risk scores 

calculated by the model, the patients were grouped into three categories: 1) High 

(>=75%), 2) Medium (>=25%; <75%), and 3) Low (< 25%). 

4.4 Statistical Analysis 

Tumor mutational burden (TMB) and tumor inflammation signature (TIS) were 

calculated from the whole genome sequencing (WGS) data using the R package 

"maftools" based on VarScan method. Molecular Signatures Database (MSigDB, 
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http://www.gsea-msigdb.org/gsea/index.jsp) was used to extract immune or 

inflammation gene sets and differential expression analysis was performed between 

tumor and normal tissues. Analysis of correlation between the categorical variables from 

the discovered immune groups and pLGG molecular subtypes was carried out using 

chi-squared test. Kruskal-Wallis and one-way analysis of variance (ANOVA) tests were 

performed to evaluate the statistical difference in the mean values of TMB and TIS, 

respectively, across the three different immune groups. Student’s t-test was applied to 

calculate the difference between the mean values of the groups of patients that had 

progressed and had no or one treatment and more than one treatment. For evaluation 

of the performance of the multivariate classification approach, area under the receiver 

operating characteristic (ROC) curve (AUC) along with 95% confidence interval (95% 

CI) were calculated.  

4.5 Data and Code Availability Statements 

4.5.1 Data Availability 

De-identified genomic and transcriptomic source data as well as clinical data, including 

patient baseline characteristics, molecular subtypes, and outcomes, can be found under 

the dbGaP study phs002517.v2.p2 as well as through the Kids First Data Resource 

Portal. The imaging data is available through Children’s Brain Tumor Network (CBTN, 

cbtn.org). The processed data is available at https://github.com/d3b-center/pLGG-

immune-clinicoradiomics.  
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4.5.2 Code Availability 

The code for analyzing processed clinical, genomic, transcriptomic, and radiomic data in 

relation to patient clinical characteristics can be found at https://github.com/d3b-

center/pLGG-immune-clinicoradiomics. All image processing tools used in this study are 

freely available for public use (CaPTk, https://www.cbica.upenn.edu/captk; ITK-SNAP, 

https://www.itksnap.org; the in-house automated tumor segmentation model, 

https://github.com/d3b-center/peds-brain-auto-seg-public). 
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6 Tables 

Table 1. Summary of demographics and clinical characteristics of the pLGG patients 
included in this study (collected through the CBTN data repository). 

Variable Value # of Patients 

Age Range (months) 0.16 – 253.9  545 

Sex Female 250 

 
Male 295 

Tumor Location Basal Ganglia 3 

 
Brainstem 34 

 
Cerebellar 237 

 
Intraventricular 27 

 

Lobar (i.e., frontal, parietal, temporal, 
or occipital lobes) 

117 

 
Multifocal 28 

 Suprasellar 65 

 Thalamus 16 

 Other 18 

Molecular Subtypes LGG, KIAA1549-BRAF 172 

 
LGG, BRAF V600E 53 

 
LGG, CDKN2A/B 17 

 
LGG, wildtype 80 

 
LGG, IDH 9 

 
LGG, NF1 21 

 LGG, RTK 50 

 LGG, other MAPK 25 

 LGG, MYB/MYBL1 5 

 GNG, KIAA1549-BRAF 9 
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 GNG, wildtype 24 

 SEGA, wildtype 16 

 Other LGG or GNG 13 

 Not Available 51 
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Table 2. Summary of the performances of clinical-only and clinicoradiomic models on all 
subjects, and a subgroup analysis on patients who did not undergo gross/near-total 
resection. The performance metrics include Harrell’s concordance index (HAR), Uno’s 
concordance index (UNO), and the Integrated Brier Score (IBS) 

 HAR UNO IBS 

Model 1: Clinical-Only  

Discovery 0.74 [95% CI: 0.67, 0.80]  0.75 [95% CI: 0.67, 0.82] 0.20 [95% CI: 0.16, 0.22] 

Replication 0.76 0.79 0.16 

Model 2: Clinicoradiomic  

Discovery 0.71 [95% CI: 0.63, 0.79]  0.72 [95% CI: 0.64, 0.80] 0.24 [95% CI: 0.19, 0.29] 

Replication 0.77 0.80 0.16 

Subgroup Analysis (Subjects who did not undergo gross/near-total resection) 

Model 1: Clinical-only 0.55 0.57 0.24 

Model 2: Clinicoradiomic 0.70 0.70 0.18 

 

 

 

  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306046doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306046


  

 

  

 

43

7 Figure Legends 

Figure 1. Graphical description of the primary analyses in this study: (A) Overview of 

the imaging, transcriptomic, and multi-modal (combination of imaging and 

transcriptomic) cohorts. (B) Identification of the immunological clusters within pediatric 

low-grade glioma. (C) Generating a radioimmunomic signature to predict immunological 

clusters. (D) Developing a clinicoradiomic model that incorporates radiomic features and 

clinical data to predict progression-free survival in pLGG and thereby, patients' risk of 

progression, stratify risk, and analyze the biological and immune pathways linked to 

clinicoradiomic risk. 

Figure 2. (A) Heatmap indicating the expression levels of immune cells across different 

patients in the three identified immunological profiles using XCell method (indicated 

above the heatmap as “cluster assigned”, along with the pLGG molecular subtypes for 

this cohort of subjects. (B) Radar plots indicating the upregulated and downregulated 

set of cell types in each of the immunological clusters. 

Figure 3. (A) Kaplan-Meier curves representing the probability of progression-free 

survival across different immunological clusters, suggesting a statistically significant 

difference (p<0.0001) between the clusters based on log-rank comparison. (B) Forest 

plot from Cox regression analysis illustrating the effects of immunological cluster 

assignment, molecular subtypes, age, and sex on PFS. (C) The heatmap of tumor 

inflammation signature (TIS) as a composite of 18 genes. The association with the 

molecular subtypes and Xcell clusters is indicated at the top of the heatmap plot. (D-E) 
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Violin plots representing the distribution of the values for TIS and tumor mutational 

burden (TMB), respectively, across the three immunological clusters. (F) Matrix of 

Pearson residuals illustrating the relationship between immune groups and pLGG 

molecular subtypes. Circle sizes are proportional to the Pearson residual values. 

Shades of blue and red, with varying degrees of opacity, indicate the degree of 

overrepresentation or underrepresentation of specific molecular subtypes within each 

immune cluster. 

Figure 4. (A) Radioimmunomic signatures generated for classification of Immune 

Cluster 2 versus Clusters 1 and 3, based only on conventional MRI features, as well as 

conventional MRI + ADC features (B) Histograms of image intensities within various 

tumorous subregions for the tumors in immunological clusters 1, 2, 3. 

Figure 5. (A) Kaplan-Meier Curves for the Progression-Free Survival Probability of 

Clinicoradiomic Risk Scores in the Discovery and Replication cohorts. (B) Box-and-

Whisker plots indicating the distribution of risk scores in the patients that received one 

or no “systemic” treatments (low-risk) (see section 2.3.1 in the manuscript for the 

definition of the two treatment risk categories), compared to those who received more 

than one treatment (high-risk) over the course of five years. (C) Association plot of 

standardized residuals for the relationship between the clinicoradiomic and the 

treatment risk categories (the numbers within each circle in the association plot 

represent the standardized residuals from the chi-square test of independence). Plots 

B-C only present the data for the subjects that had progression over a course of five 

years (n = 61). (D) Sankey plot illustrating the association between the Clinicoradiomic 
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risk groups and the immunological clusters. (E) Bar plot of GLM coefficient derived from 

an elastic net regression model illustrating pathways associated with the predicted 

clinicoradiomic risk. 
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