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Abstract 

Polycystic ovary syndrome (PCOS) and its underlying features remain poorly understood. In 
this genetic and proteomic study, we expand the number of genetic loci from 19 to 29, and 
identify 31 associated plasma proteins. Many risk-increasing loci were associated with later 
age at menopause, underscoring the reproductive longevity related to a larger functional 
ovarian reserve. Hormonal regulation in the aetiology of this condition, through metabolic 
and reproductive features, was emphasised. The proteomic analysis highlighted 
perturbations of metabolically-related biology that are typical in women with PCOS. A PCOS 
polygenic risk score was associated with adverse cardio-metabolic outcomes, with differing 
contributions of testosterone and BMI in women and men. Finally, while oligo- and 
anovulatory infertility are characteristic features of PCOS, we observed no impact of PCOS 
susceptibility on childlessness. We suggest that PCOS susceptibility confers balanced 
pleiotropic influences on fertility in women, and life-long adverse metabolic consequences in 
both sexes.  

Introduction 
Polycystic ovary syndrome (PCOS) is the most common reproductive endocrinopathy in 
women1, with varied impacts across the lifespan. The diagnostic criteria include two of the 
following three features: hyperandrogenism, oligo-anovulation, and polycystic ovarian 
morphology (PCOM)2. PCOS is the most common cause of anovulatory infertility and is 
frequently associated with insulin resistance, which confers an increased risk of adverse 
metabolic outcomes such as type 2 diabetes (T2D)3,4. Previous large-scale genetic studies 
demonstrated that PCOS is a complex polygenic disorder that encompasses interactions 
between brain, metabolic and gonadal function5. High BMI and raised fasting insulin levels 
were identified as causal risk factors for PCOS, supporting the link to metabolic disease. 
Association at the FSHB genetic locus has highlighted the pituitary as a driver for PCOS5,6. 
Later age at menopause risk was also identified as causal, suggesting links to DNA damage 
and repair pathways in PCOS aetiology7. However, the small number of susceptibility loci 
identified thus far has limited exploration of the hereditary component8. There are no 
adequately powered prospective studies of women with PCOS beyond their reproductive 
years. Therefore, their long-term health outcomes remain unknown. In addition, our 
understanding of the genetic risk factors for PCOS on other health outcomes in women and 
men is not complete. 
 
To address these limitations, we conducted a GWAS meta-analysis, which doubled the 
number of women with PCOS compared to previous GWAS6 (Supplementary Table 1), 
including data from 21,570 cases and 523,971 controls from 13 studies. We assessed the 
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identified signals for association with a range of phenotypes encompassing three 
mechanisms thought to be related to PCOS: metabolic pathways, hormonal regulation 
including through the hypothalamic-pituitary-gonadal axis, and the oocyte/follicle 
complement. We also conducted a complementary proteomic-based analysis to further 
identify the biology related to this condition. 
 
In addition, previous studies used genetic instruments to explore the causal links from a 
range of phenotypes to PCOS, but few have considered the downstream impacts of PCOS9. 
Many of these are likely to be a feature of “common soil” effects, a situation in which several 
conditions stem from the same source; in this case the adverse metabolic or hormonal 
background. However, there may be conditions in which PCOS has a specific, additional, 
adverse effect. In particular, while previous work has highlighted that variants associated 
with male-pattern balding increase the risk of PCOS5, whether PCOS risk variants impact 
disease risk in men has only been addressed to a limited extent10. Here the impact of PCOS 
on cardio-metabolic disease, disorders of reproductive organs (both cancer and non-cancer), 
and mental health are examined in both men and women.  

Results 

Genome-wide discovery for signals for PCOS 
We identified 29 independent loci associated with PCOS (P<5×10-8) in the all-ancestries 
meta-analysis, of which 13 had not previously been reported5,6,11-13 (Figure 1, 
Supplementary Table 2). Novel GWAS signals for PCOS include a variant at FTO 
(rs8047587), confirming earlier findings from a candidate gene study14. The link to FTO 
strengthens the reported effect of increasing BMI on risk of PCOS6,15. Other novel PCOS 
signals have relevance to reproductive hormone pathways, such as AMH (rs732310), INHBB 
(rs6712151), and SHBG (rs1641518). Alongside the known European signal at FSHB 
(rs11031005) we report a signal at FSHR (rs13004711), replicating the association seen in 
Han Chinese for the first time in a majority European-ancestry GWAS11. Three of the 29 loci 
(INHBB, NEIL2, DENND1A) had evidence of secondary signals (within 500kb of the lead 
signal) (Supplementary Table 3).  
 
We also performed a BMI-adjusted model in a subset of the cohorts (Supplementary Table 
4; Supplementary Figure 1). In this adjusted analysis only the association at the FTO locus 
was substantially attenuated (P=0.019 after adjustment for BMI) (Supplementary Figure 2). 
To explore whether our GWAS findings were affected by differences in the diagnostic criteria 
used to assign a PCOS diagnosis, we stratified studies based on the method of case 
identification. There was no difference in the effects of the 29 PCOS signals by case 
definition (Supplementary Figure 3). Furthermore, effect sizes for each variant were 
comparable across individual studies (Supplementary Figure 4).  
 
We assessed the transferability of 10 PCOS signals previously reported in East Asian 
women11 (Supplementary Table 5). Of these signals all but three (variants near C9orf3, 
INSR and SUMO1P1) had statistically significant associations in our cohort (P<0.005). The 
SUMO1P1 minor allele was more common and had a relatively smaller effect size 
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(OR=1.03) with borderline evidence for association (P=0.0058) in our data. The variant at 
C9orf3 had a frequency in our data of approximately half that in the Chinese data, whereas 
the variant in INSR, coding for the insulin receptor, was more common in our data. Although 
rare deleterious variants in INSR cause a severe PCOS phenocopy16, previous studies have 
not demonstrated a genome-wide PCOS association at the INSR locus in women of 
European ancestry17. The relative frequency of the INSR variant suggests that there might 
be a gene-environment interaction that explains the different findings between these two 
studies or that the Han Chinese variant tags a haplotype that is not present in Europeans.  
 
 
 

 
Figure 1. Manhattan plot showing the 29 genomic loci associated with PCOS. Variants 
within 300kb on either side of a genome-wide significant signal are highlighted in red. The 
dotted line indicates the genome-wide significance level. Gene names indicate the 
consensus PCOS gene at each locus. 

Fine-mapping and genes of interest 
Fine-mapping of the identified PCOS loci was performed using a LD reference based on 
European ancestry women in the MyCode/DiscovEHR and, separately, using the BioVU 
study (Supplementary Tables 6 and 7). At seven of the loci, both analyses resolved to the 
same sentinel variant. At LLPH, rs117568227 was the only variant in the 95% credible set 
(PP>0.99) in both studies, and at YAP1, rs7925543 was the only variant (PP=0.64 in 
MyCode/DiscovEHR and 0.79 in BioVU). Another 10 PCOS loci resolved to 20 or fewer 
variants across the two analyses. 
 
We used two complementary approaches to link potential PCOS risk genes, which we call 
“consensus genes”. First, we performed a literature review of all genes within 500kb of the 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


10 

29 signals to identify genes with a reported link to one of four processes - i) reproductive 
function, ii) steroid metabolism and sex-hormone levels, iii) pathways related to metabolic 
syndrome, and iv) DNA damage repair, selected due to reported links between PCOS and 
age at menopause for which DNA damage repair is the dominant process7 (Figure 2). 
Second, we used the GWAS-to-Gene bioinformatic approach that leverages data on eQTLs, 
pQTLs, predicted deleterious variants, and variant based scoring methods to rank genes 
based on their causal likelihood (Supplementary Table 8)18. Findings from these two 
approaches were then harmonised for each PCOS signal (Supplementary Table 9).  
 
In sixteen cases both approaches prioritised the same gene. In others, there was a strong 
rationale for prioritizing the literature-based gene instead of the bioinformatics-identified 
gene, such as SHBG over ATP1B2 at rs1641518, particularly because the variant was also 
genome-wide significantly associated with circulating SHBG levels (Figure 2). The rs732310 
variant was assigned to the AMH gene, based on the known functions of AMH in inhibiting 
recruitment of ovarian follicles from the primordial follicle pool, inhibiting FSH-sensitivity of 
growing follicles and regulating GnRH-dependent LH pulsatility19,20. Although rs732310 
shows no association with AMH levels (Figure 2), the GWAS data used for the AMH 
analysis was derived from normo-ovulatory women21, and may not reflect variations in AMH 
levels in women with PCOS, in whom the expression pattern of AMH differs from normo-
ovulatory women22. 
 

Relationship of the identified loci with other phenotypes 
Several of the 29 PCOS variants had previously been associated in GWASs for age at 
menopause (14 variants), age at menarche (six), female testosterone levels (seven), BMI 
(eight), and male-pattern baldness (two) (see Supplementary Table 10 for a complete list). 
We annotated our signals for the 29 PCOS loci with publicly available GWAS results, 
focusing in particular on the relationships between these variants and a range of metabolic, 
reproductive and hormonal phenotypes, given the suspected relationships to PCOS. 
Notably, all 29 PCOS signals showed at least nominal significance with one or more 
metabolic, reproductive and/or hormonal trait(s), providing evidence to support the 
multifactorial aetiology and comorbidities (Figure 2, Supplementary Tables 11 and 12).  
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Figure 2. Heatmap of GWAS associations for the 29 PCOS loci with other relevant 
traits. Direction and the strength of association between the 29 PCOS risk-increasing alleles 
with 20 other relevant traits and diseases with available GWAS summary statistics. Colour 
coding indicates strength and direction (z-scores) of associations: positive (red) or negative 
(blue). In the upper row of the heatmap, novel PCOS loci identified in this study (black 
boxes) and previously reported loci (white boxes) are shown with corresponding lead 
variants. Grey boxes indicate missing variant-trait association data. Genes are presented in 
the lower x-axis as ‘consensus gene’. BMI=body mass index, T2D=type 2 diabetes mellitus, 
WHR=waist:hip ratio, AMH=anti-Müllerian hormone, ANM=age at natural menopause, 
FSH=follicle stimulating hormone, LH=luteinizing hormone, SHBG=sex hormone binding 
globulin. 
  
In validation of the substantial overlap between signals for PCOS and age at menopause 
(ANM), eight signals showed evidence of colocalization (PP≥0.75). PCOS signals at FSHB, 
DENND1A, TOX3, RAD50, and MAF/MAFTRR were associated with ANM (Supplementary 
Table 13); conversely the reported ANM signals at FSHB, DENND1A, CASC22, BMP4, 
PPARG, and MAF/MAFTRR were associated with PCOS (Supplementary Table 14). At all 
eight colocalised signals, the PCOS risk-increasing allele conferred later ANM. Of these loci, 
the FSHB signal has been well described to impact other reproductive phenotypes including 
age at menarche23, and dizygous twinning24. Other shared loci are also related to breast 
cancer pathways - TOX3, CASC22 and RAD50. Interestingly, the shared PPARG locus 
suggests an effect of metabolic pathways independent of those related to BMI.   
 
A number of the PCOS-associated loci also showed strong effects on hormone levels, in 
particular on SHBG levels (including rs1641518 near SHBG). Approximately 30% (8/29) of 
the PCOS risk increasing alleles had nominal association with lower SHBG levels. There 
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were 2 loci in which PCOS risk alleles were associated with lower SHBG and higher total 
testosterone, suggesting a relationship driven by higher androgens, whereas 3 other loci, 
including SHBG and FTO had lower SHBG and lower total testosterone, suggesting an 
SHBG mediated effect (Figure 2). Three of the signals had evidence of colocalization with 
SHBG levels including the CYP3 complex, FTO and FSHB (Supplementary Table 15); 
notably this did not include the signal at SHBG25. The signal at FTO is likely due to the 
established links between an increase in BMI and decrease in SHBG levels26. The CYP3 
complex metabolizes estradiol and testosterone27, with mouse knockouts showing 
substantially increased free testosterone levels28 and thus the CYP3 risk allele may result in 
decreased SHBG. The FSHB locus is associated with an increased LH, which stimulates 
androstenedione, and therefore testosterone29, which would lower SHBG.  
 
There was additional evidence for the role of PCOS-associated loci impacting regulation of 
gonadotropins and the functional ovarian reserve. The PCOS risk-increasing allele at the 
FSHB locus was associated with lower levels of FSH and INHBB was nominally associated 

with lower FSH. Although the signal at FSHR was not associated with FSH levels in 2,913 
Europeans, a variant found in Han Chinese women, which shows some evidence of LD 
(R2=0.3 in Europeans) with the variant reported here, was associated with lower FSH levels 
30,31 (Figure 2, Supplementary Table 11). FSHR has also been recently linked to rates of 
twinning and FSH levels using gene-based approaches24. At twelve loci, PCOS risk alleles 
were also nominally associated with higher AMH levels (P<0.05), with 6 additional loci 
nominally significant. Nine of these twelve loci overlap with the loci related to age at natural 
menopause and are all associated with higher AMH levels and later age at menopause. 
AMH is measured clinically to indicate functional ovarian reserve, and its concentrations are 
strongly related to the age at which menopause occurs. Loci that are associated with both 
elevated AMH levels and later age at menopause imply their involvement in the 
establishment and preservation of the functional ovarian reserve as a fundamental element 
of PCOS.  

Protein-based analysis 
A total of 31 plasma proteins levels were phenotypically associated with ‘ovarian dysfunction’ 
in women defined as International Classification of Disease (ICD) 10 category E28 which 
includes PCOS (all P<3.4×10-5, Figure 3, Supplementary Table 16). These included 
recognized metabolic disease-associated proteins such as PCSK9, LDLR, FURIN, FABP1 
and FABP4. Other associated proteins metabolise hydroxysteroids, retinol and lipids, 
including ALDH1A1 and ADH4, which may regulate the metabolic response to a high fat 
diet32,33. Other proteins are potential contributors to diabetes and metabolic disease, 
GGT134, or their complications, SORD35. Finally, there were enzymes important for 
biosynthesis of progesterone or testosterone, GSTA1 and GSTA336, and fertilisation and 
implantation, PAEP37. We used STRING to perform a combined pathway-based analysis 
using proteins drawn from either the protein-based approach or the GWAS associated loci 
(Supplementary Figure 5, Supplementary Tables 17 and 18)38. In general, the two 
discovery methods highlighted different biology, with only one pathway, benzaldehyde 
dehydrogenase activity, driven by both proteomic and GWAS findings (which included 
FANCC, a known DNA damage repair gene). The results did include evidence of enrichment 
or pathways representing androgen binding, and ovarian follicle development neuregulin 
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receptor activity, the PCSK9-LDLR complex consistent with the lipid abnormalities of 
PCOS39,40.  
 

 
Figure 3. Manhattan plot showing the 31 plasma proteins associated with ovarian 
dysfunction.  Ovarian dysfunction was defined by ICD10 code E28, the supra-category that 
includes PCOS. 
 
In order to build causal pathways, we identified plasma proteins whose levels were 
associated with each of our PCOS GWAS signal variants, resulting in a total of 299 proteins 
(P<3.4×10-5, Supplementary Table 19). Of note, the PCOS signals at ERBB3, ERBB4 and 
ZBTB16 were associated with plasma levels of their encoded proteins, providing further 
support for these consensus genes. The PCOS signal at SHBG was associated with levels 
of TNSF12 and TNSF13, encoded by genes in the same region, and related to apoptosis 
and regulation of steroidogenesis 41. One PCOS signal at RAD50/IRF1 accounted for 199 
protein associations. This signal lies in a gene rich region on chromosome 2 that contains a 
large number of immune-related genes - IRF1, IL4, IL5 and IL13 and likely has a widespread 
impact on the plasma proteome. Another PCOS signal, overlapping the established obesity 
signal at NEIL2/GATA4, was associated with 29 plasma proteins. Other associated proteins 
included leptin, which is higher in obesity; PPY, a regulator of food intake; and several fatty 
acid binding proteins, which regulate fatty acid uptake in adipose cells.  
 
Having identified these 299 proteins, we then assessed if any showed evidence of 
association with a diagnosis of ICD E28 (ovarian dysfunction), based on a threshold of 
P<1.7×10-4 (0.05/299). This two-stage approach resulted in nine variant-protein pairs. Three 
proteins were associated with the PCOS signal at MAF (CDHR2, IGFBP2, CPM), one with 
ERBB3 (NCAM2) and five with FTO (ADM, FABP1, FABP4, LEP and SSC4D) 
(Supplementary Table 20). The FTO-locus related proteins are likely to be wholly explained 
the adiposity effect at this locus; this either as a result of the casual BMI association, or via a 
common soil effect. This is further highlighted by the fact that, of these proteins, FABP4 and 
LEP have recently been shown to be linked to aging specifically in adipose tissue42, which 
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would suggest that changes in the levels are due to a primarily BMI effect. To understand 
the direction between individual plasma proteins and PCOS, we compared the variance in 
each trait explained by its respective PCOS signal (variance in BMI was also compared for 
those proteins associated with FTO) (Figure 4). The approach is based on the assumption 
that if a variant was associated with greater explained variance in protein levels compared to 
PCOS, it was unlikely that protein was affected as a result of PCOS. All five FTO associated 
proteins, NCAM2 associated with ERBB3, and IGFBP2 associated with MAF, appeared to 
be upstream (i.e. more likely to be determinants, or common soil) of PCOS. The two other 
proteins associated with MAF, CDHR2 and CPM, may have their levels altered as a 
consequence of PCOS.  

 
Figure 4. Causal map of the associations between PCOS and E28 (ovarian dysfunction) 
associated proteins. 

Inferring causal impacts of PCOS on other co-morbidities 
The impact of PCOS on fertility, metabolic disease and mental health is well known, but few 
studies have used a genetic approach to uncover additional comorbidities43,44. Previous 
genetic causal modelling, using Mendelian Randomisation (MR) approaches, have shown 
that aspects of metabolic syndrome traits are risk factors for PCOS6. However, those MR 
studies did not determine whether PCOS had an effect on broader health status. Therefore, 
we calculated a polygenic risk score (PRS) for PCOS comprising ~1.1 million genetic 
variants to explore the likely causal effect of PCOS on a number of other outcomes. 
 
To identify phenotypes that may share genetic influences with PCOS, we performed 
polygenic risk score (PRS) based analyses in the UK Biobank study (which was independent 
of the PCOS GWAS discovery dataset). We used the PRS-CS software to calculate a 
polygenic risk score for PCOS, which is a Bayesian regression framework that weights the 
effect size of each variant by the strength of its association (p-value) in the GWAS meta-
analysis45. To facilitate interpretation, the PRS was standardised; effect sizes (beta or OR) in 
Table 1 are reported per 1 SD increase in the PCOS PRS. To validate the score, we 
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confirmed that the PCOS PRS was strongly associated with PCOS in women in the UK 
Biobank (P=9×10-27) and that the odds of PCOS increased across increasing quintiles of 
PRS (Supplementary Figure 6). As expected, there was also a strong association between 
a higher PCOS PRS and increased BMI in both women and men (Table 1).  
 
Since increased BMI is a risk factor for both PCOS and many of the expected metabolic 
comorbidities, we assessed the BMI-independent causal relationship between PCOS and 
metabolic outcomes in two additional analyses: 1) we included measured BMI as a covariate 
and 2) we generated and tested a second BMI-adjusted PRS for PCOS. The association of 
the BMI-adjusted PRS with baseline BMI in the UK Biobank was substantially attenuated in 
women and men (Table 1 and Supplementary Table 21). The PRS analyses were 
replicated using an additional polygenic risk score tool LDpred2, which provided consistent 
results (Supplementary Table 21).
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Table 1. PCOS PRS associations with traits and diseases of interest. We calculated the PCOS PRS in women and men in the UK Biobank
tested for association between PCOS PRS and phenotypes of interest. We applied Bonferroni correction for multiple testing for associat
phenotypes, and hence, associations with p-values < 0.003 are considered statistically significant. Statistically significant heterogeneity betwee
were considered when I2>80% and Cochran’s Q P-value for heterogeneity<0.004 (0.05/13 tests; BMI: Body mass index, WHR: Waist-to-hip ra
Hemoglobin A1c, HDL: High-density lipoprotein, SHBG: Sex hormone binding globulin). 

 *Controlled for Townsend deprivation index in addition to standard covariates.  
 †Controlled for smoking status (yes/no) in addition to standard covariates.
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Both in women and in men, a higher PCOS PRS was associated with increased risk of 
coronary artery disease (CAD), T2D and obesity (Table 1). It was also associated with a 
number of cardiometabolic risk factors: higher waist-to-hip ratio adjusted for BMI (WHRadjBMI), 
higher HbA1c, higher triglycerides and lower HDL cholesterol. Regarding 
hormonal/reproductive risk factors, higher PRS was associated with lower SHBG levels and 
higher free androgen index (FAI) in both sexes (Table 1). The sex-stratified BMI-adjusted 
model analyses provided support for all these observations. 
 
We then tested for the presence of sex differences in the effects of the PRS on i) 
cardiometabolic outcomes where different effects of sex were observed for BMI, WHRadjBMI, 
CAD, HbA1c and HDL cholesterol; and ii) hormonal/reproductive outcomes where differential 
sex-related effects were observed for SHBG, total testosterone and FAI (Table 1). There has 
been increasing interest in the links between reproductive diseases and mental health46,47; 
we found only a nominal association between the PCOS PRS and depression in women 
after BMI adjustment (Table 1).  
 
We used Mendelian Randomisation to provide additional evidence to determine whether 
highlighted associations were causal (Supplementary Tables 22 and 23). While MR might 
provide more robust causal inference there are a number of caveats: the available outcome 
data is often in men and women combined, and with only 29 variants this analysis is likely 
very under-powered. Most of the associations with non-reproductive phenotypes were not 
significant; including when BMI was the outcome, likely demonstrating that the method is 
underpowered. Interestingly, the MR analysis showed associations with two non-
cardiometabolic outcomes - depression and asthma, with no attenuation when controlling for 
BMI. 

Pleiotropic effects of PCOS on reproductive outcome 
Consistent with the overlap between signals for PCOS and ANM, PCOS susceptibility was 
associated with later ANM in both PRS (Table 1) and MR analyses (Supplementary Table 
23). Conversely, we also observed an apparent effect of susceptibility to later ANM on higher 
PCOS risk (Supplementary Table 23), indicating a bidirectional relationship. Given the 
importance of DNA repair as a mechanism that regulates ANM, we tested to determine 
whether the same pathways also contributed to PCOS. We performed MR analyses for 
PCOS with reported variants for ANM stratified by their likely functions on DNA repair and 
genes unrelated to DNA repair7. Both strata of ANM variants indicated an effect of later ANM 
on higher risk of PCOS (Supplementary Table 23). However, the MR estimated effect of 
ANM was larger using non-DNA repair ANM variants than when using DNA repair variants 
(P-value for the difference between estimates = 1.5×10-6, Supplementary Figure 7), which 
suggests a role for sex hormone-related pathways common to PCOS and ANM. The role of 
hormone levels as common causal factor is highlighted by the shared signal at FSHB 
associated with lower FSH levels, higher PCOS risk and later age at menopause.   
 
The DNA repair-related ANM variants that are associated likely act via various DNA-repair 
pathways, which have differing effects on PCOS. For example, ANM variants at BRCA1 and 
BRCA2, genes involved in homologous recombination repair of double strand DNA breaks, 
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are robustly associated with an earlier ANM but not with PCOS (P=0.94 and P=0.11 
respectively). On the other hand, CHEK2, known to maintain DNA integrity through 
checkpoint control48, is associated with a later ANM, greater risk of PCOS and higher serum 
AMH levels in PCOS.  
   
The PCOS PRS showed unexpected nominal associations with lower risk of childlessness, 
although these were not confirmed in the MR analysis. We therefore examined the impact of 
PCOS susceptibility on eight infertility phenotypes in a hospital-based cohort, the 
Copenhagen Hospital Biobank (CHB)49 (multiple testing threshold P<0.006; = P<0.05/8; 
Supplementary Table 24). A higher PCOS PRS was associated with increased risk of 
infertility in women (OR=1.03, P=0.02 after age adjustment; OR=1.04, P=0.00011 after age 
and BMI adjustment). The stronger association after adjustment for BMI suggests that in 
addition to affecting fertility via BMI, PCOS also affects fertility through other mechanisms, 
such as hyperandrogenism, that are independent of BMI. 
 
Interestingly, the PCOS PRS was associated with an increased number of oocytes aspirated 
during IVF treatment (Beta=0.025, P=1×10-4 after age adjustment; beta=0.027, P=2×10-5 

after age and BMI adjustment). In separate data from 892 women, two of the 29 loci, at 
ZBTB16 and SHBG, were associated with larger ovarian volume; which is both a marker of 
ovarian reserve linked to fertility, and a symptomatic presentation of PCOS. These findings 
suggest a greater available oocyte pool in PCOS. 
 
There was also support for the hypothesis that some genetic PCOS susceptibility might 
exhibit a balancing pleiotropy effect on reproductive success. We assessed the links from 
PCOS to age at first birth50, age at last birth50, childlessness51 and number of children51 using 
publicly available GWAS datasets (Supplementary Table 23). There were no apparent 
associations with childlessness or number of children. The latter result was confirmed in the 
CHB data, in which there was no association between the PCOS PRS and the completed 
family size (P=0.07) or rates of pregnancy (P=0.25; Supplementary Table 24). However, 
there was a nominally significant association with later age at last birth when data were 
controlled for age and BMI (P=0.01). We further assessed the association between PCOS 
and age at last live birth in the UK Biobank in 1,003 women with PCOS and 205,849 
controls. PCOS was associated with later age at live birth (Beta=0.46 years, P=0.04 after 
age adjustment, Beta=0.81 years, P=0.0003 after age and BMI adjustment). These age at 
last birth results could be explained by a longer reproductive window or by a shifting of the 
window, and the lack of association with childlessness would indicate that some 
compensatory mechanisms exist. 

Discussion 

This study expands the number of PCOS genome-wide significant loci from 19 to 29. The 
new PCOS locus at FTO, well-established for obesity, highlights the link between PCOS, 
metabolic syndrome and obesity. Other signals at SHBG, FSHR (associated for the first time 
in a European GWAS) and the CYP3 complex highlight hormonal regulation in the aetiology 
of PCOS. Alongside these results, we also present proteins that are associated with ovarian 
dysfunction. The protein associations confirm some top candidate genes at GWAS loci 
(ERBB3, ERBB4 and ZBTB16). 
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The identified genetic loci underscore the sex hormonal origins of PCOS. Annotation of 
these signals to consensus genes has identified signals at FSHB52 and FSHR11, highlighting 
the role of pituitary gonadotrophs (LH and FSH) in ovarian follicle stimulation. Other 
consensus genes, SHBG, INHBB, AMH and TEX41 - this last robustly associated with AMH 
levels – also point to hormones related to ovarian folliculogenesis, and feedback on the 
hypothalamic-pituitary-adrenal axis. Inhibin B is secreted by granulosa cells of the small to 
large antral follicles and inhibits FSH release, ensuring the growth of one dominant 
follicle53,54. In support, the INHBB variant was nominally, inversely associated with FSH 
levels. Circulating AMH levels reflect the number of small antral follicles and AMH reduces 
FSH sensitivity of growing follicles20. Furthermore, AMH inhibits aromatase activity at the 
level of a growing follicle, and increases LH-dependent gonadotropin-releasing hormone 
(GnRH) pulsatility at the hypothalamus55. Finally, SHBG is a binding protein for androgens, 
thereby regulating free and bioavailable androgen levels56. In men there is a corresponding 
increase in free androgen index which explains the connection between PCOS variants and 
male pattern balding6. In summary, PCOS risk is affected by a number of classical and well-
established sex hormonal pathways. 

A significant proportion of the identified PCOS loci overlap with those associated with age at 
menopause. In all cases, PCOS risk alleles confer later age at menopause. There are two 
possible mechanisms which could explain, perhaps in tandem, the links between these two 
phenotypes. First, several overlapping variants are related to genes linked to DNA repair 
mechanisms such as MSH6, CHEK2 and RAD50. The partitioned Mendelian Randomisation 
analysis suggested that both DNA damage repair and non-DNA damage repair (thought to 
be predominantly hormonal pathways) were causal for PCOS, but that the latter had a 
stronger influence. While age at menopause is thought to be impacted by a range of 
pathways linked to DNA repair, those signals shared with PCOS might be relate to more 
specific mechanisms, such as CHEK2, where the effect is to have DNA-damaged oocytes 
persist for longer 7. Thus, there may be follicles with DNA-damaged oocytes that remain in 
the ovary because the DNA checkpoint removal mechanism failed. In PCOS, this may 
reduce oocyte atresia, leading to continuous AMH expression and thereby stronger inhibition 
of primordial follicle recruitment (associated with later ANM) and reduced FSH-sensitivity 
(contributing to the polycystic ovary morphology seen in PCOS)19,20. In addition, PCOS was 
not associated with BRCA1 or BRCA2 variants, which appear to influence earlier age at 
menopause based on less functional DNA-repair mechanisms and potential loss of damaged 
oocytes7.  

Secondly, changes in hormonal levels may increase follicle numbers as demonstrated for 
increased androgen levels57 and activin, the product of two INHB subunits58. It is also 
possible that hormone levels reduce depletion of the primordial follicle pool causing a later 
end to the reproductive window, as has been demonstrated for the variants causing lower 
FSH levels59. Moreover, the variant in FSHB was also linked to less follicle selection across 
the reproductive lifespan potentially leading to a greater follicle pool consistent with PCOS. 
In addition, increased serum AMH levels, seen in PCOS patients, reduce the rate of 
primordial follicle recruitment and may thereby slow follicle pool depletion, leading to later 
menopause19,20. In addition, observational studies suggest that women with PCOS or PCOS 
symptoms have children as often as asymptomatic women and have reproductive success 
when followed over a sufficiently long term60-63. In both our PCOS PRS and epidemiological 
analysis of women with PCOS in the UK Biobank, there was a suggestion of an impact of a 
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later age of last birth in both the PRS genetic analyses and epidemiological analysis and this 
effect was also seen in the CHB data. This is consistent with a previous finding that a longer 
or shifted window of reproduction was required to achieve the same cumulative family size in 
women with PCOS63. The main cause of infertility in PCOS is irregular ovulation, and 
therefore, the relative infertility at younger ages may be balanced by improved ovulations at 
later ages64,65.  

In summary, the new loci contain a number of risk genes expected to increase the follicle 
complement in PCOS66,67. This finding supports the Rotterdam diagnostic criteria for PCOS, 
which highlight polycystic ovarian morphology (number of growing small antral follicles), 
hyperandrogenism (hormone regulation) and related irregular ovulation and menses as 
primary etiologic features of PCOS2.  

The score-based analyses stressed the link to metabolic diseases, with a number of strong 
associations between PCOS and clinical endpoints, mirroring observed associations68, and 
previous studies10,43. Unsurprisingly, a higher PCOS PRS was associated with higher BMI 
and increased risk of obesity in both women and men; thus, undoubtedly, much of the effect 
on cardio-metabolic diseases seen in the BMI unadjusted models is via the “common soil” 
impact of BMI. However, many of the associations remained significant in women (though 
substantially attenuated), and not in men after controlling for BMI. These female-specific 
effects, that were not BMI-related, suggest a shared causal factor between PCOS and 
metabolic disease. A plausible mechanism explaining this is the higher androgen levels in 
PCOS, which have been shown to be a risk factor for CAD25,69,70. Although testosterone and 
other androgens decrease to the same level as in controls after menopause, the continued 
lower SHBG in women with PCOS after menopause and the lasting impact of androgens 
during reproductive age on physiology may result in long term increased CAD risk71,72. 

In addition to this, the proteins associated with reproductive dysfunction stress the links 
between reproductive phenotypes and the metabolic syndrome. Associations were seen with 
classical adiposity and metabolic proteins including leptin and furin. Other associated 
proteins are vital to cholesterol metabolism such as PCSK9 and the LDL receptor, which are 
important for both cardiovascular risk and steroidogenesis. There were also proteins that 
contribute to the metabolic response to a high fat diet. It is important to consider that most of 
the women in whom the protein-based analysis was done were assessed after the end of 
their reproductive window. The data again implicate the lower SHBG and higher free 
androgen levels in PCOS after menopause71, and potentially the sustained effects of 

hyperandrogenism even after the reproductive years. Thus, these results and the score-
based analyses together suggest that there is an ongoing, adverse pattern of 
cardiometabolic health in women with a genetic risk for PCOS.   

Conclusions 

Here we identify genetic regions and proteins associated with PCOS. In general, the 
genomic loci appear to primarily implicate hormonal pathways as the causal factors for 
PCOS; while the proteins stress the common causal factors between PCOS and metabolic 
disease, particularly pathways related to increased BMI. Our findings highlight important 
links between PCOS and type 2 diabetes and coronary artery disease, via mechanisms that 
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are related to and also independent of adiposity. We also expand our understanding of the 
factors affecting the ovarian follicle complement on the condition, including both hormonal 
influences and specific DNA repair mechanisms, and their role in PCOS. We also 
demonstrate some evidence of balanced pleiotropy conferred by PCOS genetic susceptibility 
that maintains the high prevalence of PCOS in the population. 

Methods 

Data Collection and Quality Control 
Summary results of genome-wide association analysis (GWAS) using a case-control setting 
were provided by the studies contributing to the meta-analysis. At the study level, the 
analyses were adjusted for age, principal components and body mass index (BMI, only for 
BMI-adjusted analyses). Central quality control (QC) was performed by two independent 
analysts using the EasyQC pipeline73. Variant exclusion filters used included: (1) Minor allele 
frequency (MAF) <1%, (2) imputation quality (R2) <0.3 or info <0.4 for MACH and IMPUTE2, 
respectively73.  
 
Meta-analysis 
A fixed-effect, inverse-weighted-variance meta-analysis approach was used with the 
collected summary statistics from the individual studies. Either GWAMA74 or METAL75 were 
employed as meta-analysis tools. We performed meta-analyses for all ancestries combined 
and only European ancestry combined. These meta-analyses were carried out using two 
models; age-adjusted, and age and BMI-adjusted, given the association between obesity 
and PCOS5. Variants present in at least three strata were reported and used in further 
analyses. 
 
These meta-analysis results were then combined with the previously published genome-
wide meta-analysis summary statistics6 to increase the statistical power and discover further 
associations with PCOS status. We called this analysis the 2-strata meta-analysis. As 
previous research had found no substantial heterogeneity in variant discovery as a function 
of different diagnostic criteria6, studies with any method of case ascertainment were 
combined. Variants present in all strata were reported and used in the follow-up analyses. 
Identified variants were annotated and investigated further with regards to their biological 
function using FUMA76. Forest plots for comparing the effect sizes across the strata in the 
meta-analysis were made using the ggplot2 package in R.  
 
Furthermore, we compared the effect sizes across different phenotype definitions used; 
PCOS definitions based on i) electronic health records (EHRs), ii) clinical diagnosis and iii) 
self-reports were included in this comparison. Additional meta-analysis was performed to 
statistically test for heterogeneity across these three PCOS definitions. In addition to visually 
inspecting forest plots for the meta-analysis, Cochrane’s Q P-value and I2 were used for 
assessing heterogeneity. 
 
The summary statistics from the age-adjusted meta-analyses were further combined with the 
previously published summary statistics from 23andMe, Inc. in order to increase the 
statistical power6. We called this analysis the 3-strata meta-analysis. The resulting sample 
size was 545,541 (21,570 cases and 523,971 controls).  
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We assessed the lead GWAS variants (p<5x10-8) by examining their relationship with 20 
related metabolic, hormonal and reproductive phenotypes with available GWAS results data. 
Except for LH and FSH all other traits were publicly available (Supplementary Table 10). 
The heatmap was drawn using the “pheatmap” library in R 3.6.1. 
 
Fine-mapping 
To identify a credible set of variants containing the most likely causal variant underlying our 
association signals, we conducted fine-mapping using the shotgun stochastic search method 
as performed in FINEMAP77. We used summary statistics from our two-stage summary 
GWAS meta-analysis results without the data from 23andMe, Inc., and considered all 
variants within 1 MB +/- from our tag variants. We used two different contributing studies as 
LD references to perform fine-mapping. First, we used unrelated (up to 2nd degree), 
European ancestry women from the MyCode Community Health Initiative Study 
(DiscovEHR) (N=47,061) with genetic data imputed to the 1000 Genomes Phase III global 
reference panel. European ancestry was inferred using genetic data as described 
elsewhere78. Second, we used an unrelated dataset of European ancestry females 
(N=36,890) in the EHR-linked biobank at Vanderbilt University Medical Center (BioVU). 
Genetic data were imputed to the Haplotype Reference Consortium and European ancestry 
was defined by principal components79. We assumed a single causal variant for all loci, and 
for four loci with evidence of a secondary signal, we also performed fine-mapping assuming 
two causal variants. 
 
Functional Mapping and Annotation of GWAS 
Functional mapping and annotation of GWAS was performed with FUMA, and further 
annotation of the association results with PhenoScanner (date accessed 25 March 
2022)80,81. FUMA analyses were performed using the summary statistics for: i) the top 29 
PCOS-associated variants in the 3-strata meta-analysis; and ii) the genome-wide 2-strata 
meta-analysis. Unless specified otherwise, the default settings were used in the FUMA 
analyses for both SNP2GENE and GENE2FUNC76. 
 
Proteomic Analysis 
Proteomic analysis using logistic regression for the association of normalised protein levels 
with disease was run in the ~22,000 women with data from the Olink panel of plasma 
proteins, aged 56.5±8.1 yrs82. Here the outcome was the first occurrence data, and to 
maximise sample size we used a diagnosis of any of ICD10 category E28, the supra-group 
that includes PCOS. Proteins were considered significantly associated if they passed a 
Bonferroni corrected p-value threshold of 3.4×10-5. The generation of the protein data is 
described elsewhere83. 
 
Separately, we performed a protein Phewas for each of the variants that we identified in the 
GWAS meta-analysis using the total sample of ~44,000 (men and women) with Olink data to 
identify proteins linked to our PCOS signals. Again, we used a Bonferroni corrected p-value 
threshold of 3.4×10-5. Once this panel of proteins had been identified we then considered if 
these were also associated with the diagnosis of ICD10 E28. Finally, once we had 
established our variant-protein pairs, we attempted to establish the position in the causal 
pathways by considering the relative R2, with those variants that had a higher R2 with PCOS 
suggesting that the protein was downstream of PCOS, and vice-versa. 
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GWAS-to-Gene pipeline 
The GWAS-to-Genes pipeline leverages a range of annotation methods to highlight likely 
causal genes at each of the identified signals, as described elsewhere18. Briefly, tissue 
enrichment for GWAS associations was performed using LD score regression to identify key 
tissues for annotations with tissue specific datasets. Then a gene score is generated from 
the following panel of annotations: a) The closest gene to the signal with these scored 1.5 
points. b) eQTL colocalisation from both SMR-HEIDI and coloc were scored 1.5 points, or 1 
if only from one of these. An additional point was given to genes with eQTLs at secondary 
signals. c) pQTL colocalisation scored the same as for eQTLs. d) Coding variants, with 
variants of deleterious or damaging predicted consequence in LD with GWAS PCOS signals 
were scored 1.0 point, or only 0.5 points if the coding variants were predicted to be benign or 
tolerated. e) Genes targeted by enhancers which overlapped with or were correlated with 
GWAS PCOS signals were scored 1.0 point. f) PoPs prioritised genes at each locus were 
scored 1.5 points84. 
 
Gene-set Enrichment Analysis 
To perform gene-set enrichment analysis that leveraged information across both the 
proteomics and the implicated genes we used GProfiler selecting either the consensus gene 
or the associated protein from the proteomics analysis. Clustering of the pathways was done 
using an index of dissimilarity based on the shared genes across the enriched intersections 
of each pathway18. 
 
Polygenic Risk Score Analyses in the UK Biobank 
We used the PRS-CS software to calculate a polygenic risk score (PRS) for PCOS, which is 
a Bayesian regression framework that applies continuous shrinkage parameters to estimate 
posterior effect sizes45. This work was performed in the UK Biobank, a population-based 
cohort of ~500,000 individuals in the United Kingdom85, which was independent of the 
discovery GWAS sample. The tuning or global shrinkage parameter phi=1×10-4 that 
optimised the association of the PRS for PCOS in the UK Biobank as previously reported 
was used10. Using this method, our PCOS polygenic risk score included 1,119,009 genetic 
variants. In the same UK Biobank sample, we replicated these analyses using another PRS 
tool, LDpred-2, which employs Bayesian shrinkage model86. 
 
To identify women with PCOS in the UK Biobank study, data from self-report, primary-care 
clinical events, and/or ICD 9 and ICD 10, as previously reported10 was used. We binned 
women with and without a diagnosis of PCOS by their quintile of PRS and used logistic 
regression to determine the odds of PCOS for each quintile using the lowest quintile as a 
reference. Women with a PCOS PRS in the highest quintile had an increased odds of PCOS 
(OR 2.41, 95% CI 1.96-2.98; P=2×10-16). Thus, our PCOS PRS is able to represent the 
genetic risk for PCOS in women in the UK Biobank.  
 
Ascertainment of cardiometabolic and androgenic phenotypes have been previously 
reported10. All other phenotypes, including measures of fertility and longevity, asthma, and 
mental health disorders were based on a composite of self-reported measures, diagnosis 
codes from hospitalisation records, and age at diagnosis (Supplementary Information). We 
used linear and logistic regression to analyse the associations between continuous and 
dichotomous phenotypes and the PCOS PRS, respectively. We adjusted all analyses for 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


24 

age, age squared, genotyping array, the UK Biobank assessment centre, and the first ten 
genetic principal components; for asthma and psychological outcomes, we additionally 
controlled for the Townsend Deprivation Index, and for asthma, we further controlled for 
smoking status. Adjustment for BMI was performed in two ways, first a measured BMI was 
included in the model as a covariate; second we constructed a score based on the GWAS 
meta-analysis where the genetic associations were adjusted for BMI. 
 
Polygenic Risk Score Analysis in Copenhagen Hospital Biobank based on the Danish 
Registries 
Polygenic Risk Scores (PRS) for PCOS were calculated using LDPred287. These genome-
wide scores were calculated using the meta-analysis excluding data from 23andMe Inc. 
Autosomal genotype data from 138,669 individuals in the Copenhagen Hospital Biobank 
(CHB) were filtered to only include variants present in a set of 1,054,330 reference variants 
recommended by LDPred2 developers. Missing genotype information was imputed to be the 
reference allele for the affected locus. GWAS summary statistics were pre-processed with 
MungeSumStats. 
 
The completed family size was determined by counting the number of live births from the 
Medical Birth Registry (MBR)88. This study was initiated in 1973, and data is considered 
complete. Only women born in the years 1957-1973 were included in this analysis, thus the 
youngest would be 45 years old, and 61 years old when data collection ended (31st 
December 2018). Data were treated as count data, and we tested to determine whether 
there was equi-, under-, or over-dispersion using the AER R package (v1.2.10). We found 
significant underdispersion (dispersion=0.60, p<2.2×10-16). Consequently, data were 
analysed using a Conway-Maxwell Poisson distribution.  
  
From the MBR, we also identified the age at first birth and last birth (expressed in days). 
Data were analysed using a linear regression, and model fit was inspected from residuals. 
There were no signs of deviation from a Gaussian error. 
  
The Danish IVF registry was initiated in 1994, and contains all treatments and procedures 
related to medically assisted reproduction. Reporting is mandatory for both private and 
public clinics. Furthermore, there is information on any treatment related to the procedure, 
and treatment duration. Female infertility was defined using the 628 (ICD8) and N97 (ICD10; 
excluding N97.4) in the National Patient Registry (public hospitals only89) and "female cause" 
in the IVF Register. Male infertility was defined using the 606 (ICD8) and N46 (ICD10) in the 
National Patient Registry and "male cause" (excluding male infertility due to sterilization) in 
the IVF Register. For number of oocytes, we extracted all aspirations performed in the period 
from 18th January 1994 - 31st December 2018. The mandatory reported data were changed 
in 2005, and thus, we analysed the two time periods (1994-2005 and 2006-2018) separately 
and meta-analysed. We additionally extracted information on treatment (Klomifen, HMG-
FSH, GNRH-A, Oestrogen, Progesterone, HCG) and the number of treatment days prior to 
the aspiration. Both time periods were over dispersed and were analysed using a negative 
binomial distribution. To take into account multiple aspirations for a single woman, we 
included an individual random term. 
  
Lastly, we investigated the number of cycles before a woman got pregnant or ceased 
treatment. Each woman was only included until the first pregnancy. All transfer or 
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insemination attempts were summarised, and analysed using a Conway-Maxwell Poisson 
distribution, as data were under dispersed. Furthermore, a term for zero-inflated was also 
tested as only 81% of the population achieved a pregnancy. A model that included a zero-
inflation term was found to fit significantly better (p<2.2×10-16, likelihood-ratio test). This was 
also substantiated by lower AIC and BIC scores. 
  
All models were fit using glmmTMB, and no rate models, except the number of cycles until 
pregnant, had indications of zero-inflation. 
 
GWAS Catalog Accessions for calculated bioavailable testosterone, total testosterone and 
SHBG: GCST90012102, GCST90012106 and GCST90012112. 
 
Mendelian Randomisation Analysis 
Mendelian Randomisation analysis was performed using two sample inverse weighted 
methods (IVW)90. In addition, the intercept from the MR-EGGER91 was calculated to provide 
a test of directional pleiotropy and the I2 metric to assess general heterogeneity of the 
variants. Data for the outcomes was taken from the most recent genome-wide study for each 
of the outcomes (thus in most cases this data were not sex-specific). To correct for any 
impact of the role of BMI on analyses multivariate IVW92 was implemented. The betas for 
these variants to BMI was taken from the most recent GIANT consortium study which 
combined GWAS meta-analysis data with that from UK Biobank93. For the analysis of 
association between menopause variants and PCOS split by evidence for a DNA damage 
effect, the variants were classified based on the proximity to a known DNA damage repair 
gene as per Ruth et al.7. 

Acknowledgements 

This work was conducted using UK Biobank, application numbers 9905, and 31823. We 
would like to thank the research participants and employees of 23andMe Inc. for making this 
work possible. Tugce Karaderi is supported by the Novo Nordisk Foundation Data Science 
Investigator grant (NNF20OC0062294). Further Acknowledgements can be found in the 
Supplement. 
  

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 

References 

1. Knochenhauer ES, Key TJ, Kahsar-Miller M, Waggoner W, Boots LR, Azziz R. 
Prevalence of the polycystic ovary syndrome in unselected black and white women of the 
southeastern United States: a prospective study. J Clin Endocrinol Metab 1998;83:3078-82. 
2. Rotterdam ESHRE/ASRM-Sponsored PCOS consensus workshop group. Revised 
2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary 
syndrome (PCOS). Hum Reprod 2004;19:41-7. 
3. Ehrmann DA, Barnes RB, Rosenfield RL, Cavaghan MK, Imperial J. Prevalence of 
impaired glucose tolerance and diabetes in women with polycystic ovary syndrome. 
Diabetes Care 1999;22:141-6. 
4. Legro RS, Kunselman AR, Dodson WC, Dunaif A. Prevalence and predictors of risk 
for type 2 diabetes mellitus and impaired glucose tolerance in polycystic ovary syndrome: a 
prospective, controlled study in 254 affected women. J Clin Endocrinol Metab 1999;84:165-
9. 
5. Day FR, Hinds DA, Tung JY, Stolk L, Styrkarsdottir U, Saxena R, Bjonnes A, Broer L, 
Dunger DB, Halldorsson BV, Lawlor DA, Laval G, Mathieson I, McCardle WL, Louwers Y, 
Meun C, Ring S, Scott RA, Sulem P, Uitterlinden AG, Wareham NJ, Thorsteinsdottir U, Welt 
C, Stefansson K, Laven JS, Ong KK, Perry JR. Causal mechanisms and balancing selection 
inferred from genetic associations with polycystic ovary syndrome. Nat Commun 
2015;6:8464.  
6. Day F, Karaderi T, Jones MR, Meun C, He C, Drong A, Kraft P, Lin N, Huang H, 
Broer L, Magi R, Saxena R, Laisk T, Urbanek M, Hayes MG, Thorleifsson G, Fernandez-
Tajes J, Mahajan A, Mullin BH, Stuckey BGA, Spector TD, Wilson SG, Goodarzi MO, Davis 
L, Obermayer-Pietsch B, Uitterlinden AG, Anttila V, Neale BM, Jarvelin MR, Fauser B, 
Kowalska I, Visser JA, Andersen M, Ong K, Stener-Victorin E, Ehrmann D, Legro RS, 
Salumets A, McCarthy MI, Morin-Papunen L, Thorsteinsdottir U, Stefansson K, andMe 
Research T, Styrkarsdottir U, Perry JRB, Dunaif A, Laven J, Franks S, Lindgren CM, Welt 
CK. Large-scale genome-wide meta-analysis of polycystic ovary syndrome suggests shared 
genetic architecture for different diagnosis criteria. PLoS Genet 2018;14:e1007813.  
7. Ruth KS, Day FR, Hussain J, Martinez-Marchal A, Aiken CE, Azad A, Thompson DJ, 
Knoblochova L, Abe H, Tarry-Adkins JL, Gonzalez JM, Fontanillas P, Claringbould A, Bakker 
OB, Sulem P, Walters RG, Terao C, Turon S, Horikoshi M, Lin K, Onland-Moret NC, Sankar 
A, Hertz EPT, Timshel PN, Shukla V, Borup R, Olsen KW, Aguilera P, Ferrer-Roda M, 
Huang Y, Stankovic S, Timmers P, Ahearn TU, Alizadeh BZ, Naderi E, Andrulis IL, Arnold 
AM, Aronson KJ, Augustinsson A, Bandinelli S, Barbieri CM, Beaumont RN, Becher H, 
Beckmann MW, Benonisdottir S, Bergmann S, Bochud M, Boerwinkle E, Bojesen SE, Bolla 
MK, Boomsma DI, Bowker N, Brody JA, Broer L, Buring JE, Campbell A, Campbell H, 
Castelao JE, Catamo E, Chanock SJ, Chenevix-Trench G, Ciullo M, Corre T, Couch FJ, Cox 
A, Crisponi L, Cross SS, Cucca F, Czene K, Smith GD, de Geus E, de Mutsert R, De Vivo I, 
Demerath EW, Dennis J, Dunning AM, Dwek M, Eriksson M, Esko T, Fasching PA, Faul JD, 
Ferrucci L, Franceschini N, Frayling TM, Gago-Dominguez M, Mezzavilla M, Garcia-Closas 
M, Gieger C, Giles GG, Grallert H, Gudbjartsson DF, Gudnason V, Guenel P, Haiman CA, 
Hakansson N, Hall P, Hayward C, He C, He W, Heiss G, Hoffding MK, Hopper JL, Hottenga 
JJ, Hu F, Hunter D, Ikram MA, Jackson RD, Joaquim MDR, John EM, Joshi PK, Karasik D, 
Kardia SLR, Kartsonaki C, Karlsson R, Kitahara CM, Kolcic I, Kooperberg C, Kraft P, Kurian 
AW, Kutalik Z, La Bianca M, LaChance G, Langenberg C, Launer LJ, Laven JSE, Lawlor 
DA, Le Marchand L, Li J, Lindblom A, Lindstrom S, Lindstrom T, Linet M, Liu Y, Liu S, Luan 
J, Magi R, Magnusson PKE, Mangino M, Mannermaa A, Marco B, Marten J, Martin NG, 
Mbarek H, McKnight B, Medland SE, Meisinger C, Meitinger T, Menni C, Metspalu A, Milani 
L, Milne RL, Montgomery GW, Mook-Kanamori DO, Mulas A, Mulligan AM, Murray A, Nalls 
MA, Newman A, Noordam R, Nutile T, Nyholt DR, Olshan AF, Olsson H, Painter JN, Patel 
AV, Pedersen NL, Perjakova N, Peters A, Peters U, Pharoah PDP, Polasek O, Porcu E, 
Psaty BM, Rahman I, Rennert G, Rennert HS, Ridker PM, Ring SM, Robino A, Rose LM, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


27 

Rosendaal FR, Rossouw J, Rudan I, Rueedi R, Ruggiero D, Sala CF, Saloustros E, Sandler 
DP, Sanna S, Sawyer EJ, Sarnowski C, Schlessinger D, Schmidt MK, Schoemaker MJ, 
Schraut KE, Scott C, Shekari S, Shrikhande A, Smith AV, Smith BH, Smith JA, Sorice R, 
Southey MC, Spector TD, Spinelli JJ, Stampfer M, Stockl D, van Meurs JBJ, Strauch K, 
Styrkarsdottir U, Swerdlow AJ, Tanaka T, Teras LR, Teumer A, Thornorsteinsdottir U, 
Timpson NJ, Toniolo D, Traglia M, Troester MA, Truong T, Tyrrell J, Uitterlinden AG, Ulivi S, 
Vachon CM, Vitart V, Volker U, Vollenweider P, Volzke H, Wang Q, Wareham NJ, Weinberg 
CR, Weir DR, Wilcox AN, van Dijk KW, Willemsen G, Wilson JF, Wolffenbuttel BHR, Wolk A, 
Wood AR, Zhao W, Zygmunt M, Biobank-based Integrative Omics Study C, e QC, Biobank 
Japan P, China Kadoorie Biobank Collaborative G, kConFab I, LifeLines Cohort S, InterAct 
c, andMe Research T, Chen Z, Li L, Franke L, Burgess S, Deelen P, Pers TH, Grondahl ML, 
Andersen CY, Pujol A, Lopez-Contreras AJ, Daniel JA, Stefansson K, Chang-Claude J, van 
der Schouw YT, Lunetta KL, Chasman DI, Easton DF, Visser JA, Ozanne SE, Namekawa 
SH, Solc P, Murabito JM, Ong KK, Hoffmann ER, Murray A, Roig I, Perry JRB. Genetic 
insights into biological mechanisms governing human ovarian ageing. Nature 2021;596:393-
7. 
8. Vink JM, Sadrzadeh S, Lambalk CB, Boomsma DI. Heritability of polycystic ovary 
syndrome in a Dutch twin-family study. J Clin Endocrinol Metab 2006;91:2100-4. 
9. Zhu T, Goodarzi MO. Causes and Consequences of Polycystic Ovary Syndrome: 
Insights From Mendelian Randomization. J Clin Endocrinol Metab 2022;107:e899-e911.  
10. Zhu J, Pujol-Gualdo N, Wittemans LBL, Lindgren CM, Laisk T, Hirschhorn JN, Chan 
YM. Evidence From Men for Ovary-independent Effects of Genetic Risk Factors for 
Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2022;107:e1577-e87.  
11. Shi Y, Zhao H, Shi Y, Cao Y, Yang D, Li Z, Zhang B, Liang X, Li T, Chen J, Shen J, 
Zhao J, You L, Gao X, Zhu D, Zhao X, Yan Y, Qin Y, Li W, Yan J, Wang Q, Zhao J, Geng L, 
Ma J, Zhao Y, He G, Zhang A, Zou S, Yang A, Liu J, Li W, Li B, Wan C, Qin Y, Shi J, Yang 
J, Jiang H, Xu JE, Qi X, Sun Y, Zhang Y, Hao C, Ju X, Zhao D, Ren CE, Li X, Zhang W, 
Zhang Y, Zhang J, Wu D, Zhang C, He L, Chen ZJ. Genome-wide association study 
identifies eight new risk loci for polycystic ovary syndrome. Nat Genet 2012;44:1020-5. 
12. Hayes MG, Urbanek M, Ehrmann DA, Armstrong LL, Lee JY, Sisk R, Karaderi T, 
Barber TM, McCarthy MI, Franks S, Lindgren CM, Welt CK, Diamanti-Kandarakis E, Panidis 
D, Goodarzi MO, Azziz R, Zhang Y, James RG, Olivier M, Kissebah AH, Reproductive 
Medicine N, Stener-Victorin E, Legro RS, Dunaif A. Genome-wide association of polycystic 
ovary syndrome implicates alterations in gonadotropin secretion in European ancestry 
populations. Nat Commun 2015;6:7502. 
13. Tyrmi JS, Arffman RK, Pujol-Gualdo N, Kurra V, Morin-Papunen L, Sliz E, FinnGen 
Consortium, Estonian Biobank Research Team, Piltonen TT, Laisk T, Kettunen J, Laivuori H. 
Leveraging Northern European population history: novel low-frequency variants for 
polycystic ovary syndrome. Hum Reprod 2022;37:352-65. 
14. Barber TM, Bennett AJ, Groves CJ, Sovio U, Ruokonen A, Martikainen H, Pouta A, 
Hartikainen AL, Elliott P, Lindgren CM, Freathy RM, Koch K, Ouwehand WH, Karpe F, 
Conway GS, Wass JA, Jarvelin MR, Franks S, McCarthy MI. Association of variants in the 
fat mass and obesity associated (FTO) gene with polycystic ovary syndrome. Diabetologia 
2008;51:1153-8. 
15. Brower MA, Hai Y, Jones MR, Guo X, Chen YI, Rotter JI, Krauss RM, Legro RS, 
Azziz R, Goodarzi MO. Bidirectional Mendelian randomization to explore the causal 
relationships between body mass index and polycystic ovary syndrome. Hum Reprod 
2019;34:127-36.  
16. Semple RK, Savage DB, Cochran EK, Gorden P, O'Rahilly S. Genetic syndromes of 
severe insulin resistance. Endo Rev 2011;32:498-514. 
17. Urbanek M, Legro RS, Driscoll DA, Azziz R, Ehrmann DA, Norman RJ, Strauss JF, 
3rd, Spielman RS, Dunaif A. Thirty-seven candidate genes for polycystic ovary syndrome: 
strongest evidence for linkage is with follistatin. Proc Natl Acad Sci USA 1999;96:8573-8. 
18. Kentistou KA, Kaisinger LR, Stankovic S, Vaudel M, de Oliveira EM, Messina A, 
Walters RG, Liu X, Busch AS, Helgason H, Thompson DJ, Santon F, Petricek KM, Zouaghi 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


28 

Y, Huang-Doran I, Gudbjartsson DF, Bratland E, Lin K, Gardner EJ, Zhao Y, Jia R, Terao C, 
Riggan M, Bolla MK, Yazdanpanah M, Yazdanpanah N, Bradfield JP, Broer L, Campbell A, 
Chasman DI, Cousminer DL, Franceschini N, Franke LH, Girotto G, He C, Jarvelin MR, 
Joshi PK, Kamatani Y, Karlsson R, Luan J, Lunetta KL, Magi R, Mangino M, Medland SE, 
Meisinger C, Noordam R, Nutile T, Concas MP, Polasek O, Porcu E, Ring SM, Sala C, 
Smith AV, Tanaka T, van der Most PJ, Vitart V, Wang CA, Willemsen G, Zygmunt M, Ahearn 
TU, Andrulis IL, Anton-Culver H, Antoniou AC, Auer PL, Barnes CL, Beckmann MW, 
Berrington A, Bogdanova NV, Bojesen SE, Brenner H, Buring JE, Canzian F, Chang-Claude 
J, Couch FJ, Cox A, Crisponi L, Czene K, Daly MB, Demerath EW, Dennis J, Devilee P, De 
Vivo I, Dork T, Dunning AM, Dwek M, Eriksson JG, Fasching PA, Fernandez-Rhodes L, 
Ferreli L, Fletcher O, Gago-Dominguez M, Garcia-Closas M, Garcia-Saenz JA, Gonzalez-
Neira A, Grallert H, Guenel P, Haiman CA, Hall P, Hamann U, Hakonarson H, Hart RJ, 
Hickey M, Hooning MJ, Hoppe R, Hopper JL, Hottenga JJ, Hu FB, Hubner H, Hunter DJ, 
Investigators A, Jernstrom H, John EM, Karasik D, Khusnutdinova EK, Kristensen VN, Lacey 
JV, Lambrechts D, Launer LJ, Lind PA, Lindblom A, Magnusson PK, Mannermaa A, 
McCarthy MI, Meitinger T, Menni C, Michailidou K, Millwood IY, Milne RL, Montgomery GW, 
Nevanlinna H, Nolte IM, Nyholt DR, Obi N, O'Brien KM, Offit K, Oldehinkel AJ, Ostrowski 
SR, Palotie A, Pedersen OB, Peters A, Pianigiani G, Plaseska-Karanfilska D, Pouta A, 
Pozarickij A, Radice P, Rennert G, Rosendaal FR, Ruggiero D, Saloustros E, Sandler DP, 
Schipf S, Schmidt CO, Schmidt MK, Small K, Spedicati B, Stampfer M, Stone J, Tamimi RM, 
Teras LR, Tikkanen E, Turman C, Vachon CM, Wang Q, Winqvist R, Wolk A, Zemel BS, 
Zheng W, van Dijk KW, Alizadeh BZ, Bandinelli S, Boerwinkle E, Boomsma DI, Ciullo M, 
Chenevix-Trench G, Cucca F, Esko T, Gieger C, Grant SF, Gudnason V, Hayward C, Kolcic 
I, Kraft P, Lawlor DA, Martin NG, Nohr EA, Pedersen NL, Pennell CE, Ridker PM, Robino A, 
Snieder H, Sovio U, Spector TD, Stockl D, Sudlow C, Timpson NJ, Toniolo D, Uitterlinden A, 
Ulivi S, Volzke H, Wareham NJ, Widen E, Wilson JF, Lifelines Cohort S, Danish Blood Donor 
s, Ovarian Cancer Association C, Breast Cancer Association C, Biobank Japan P, China 
Kadoorie Biobank Collaborative G, Pharoah PD, Li L, Easton DF, Njolstad P, Sulem P, 
Murabito JM, Murray A, Manousaki D, Juul A, Erikstrup C, Stefansson K, Horikoshi M, Chen 
Z, Farooqi IS, Pitteloud N, Johansson S, Day FR, Perry JR, Ong KK. Understanding the 
genetic complexity of puberty timing across the allele frequency spectrum. medRxiv 2023.  
19. Silva MSB, Giacobini P. New insights into anti-Mullerian hormone role in the 
hypothalamic-pituitary-gonadal axis and neuroendocrine development. Cell Mol Life Sci 
2021;78:1-16. 
20. Visser JA, Themmen AP. Anti-Mullerian hormone and folliculogenesis. Molec Cell 
Endocrinol 2005;234:81-6. 
21. Verdiesen RMG, van der Schouw YT, van Gils CH, Verschuren WMM, Broekmans 
FJM, Borges MC, Goncalves Soares AL, Lawlor DA, Eliassen AH, Kraft P, Sandler DP, 
Harlow SD, Smith JA, Santoro N, Schoemaker MJ, Swerdlow AJ, Murray A, Ruth KS, 
Onland-Moret NC. Genome-wide association study meta-analysis identifies three novel loci 
for circulating anti-Mullerian hormone levels in women. Hum Reprod 2022;37:1069-82.  
22. Kristensen SG, Kumar A, Kalra B, Pors SE, Botkjaer JA, Mamsen LS, Colmorn LB, 
Fedder J, Ernst E, Owens LA, Hardy K, Franks S, Andersen CY. Quantitative Differences in 
TGF-beta Family Members Measured in Small Antral Follicle Fluids From Women With or 
Without PCO. J Clin Endocrinol Metab 2019;104:6371-84. 
23. Day FR, Thompson DJ, Helgason H, Chasman DI, Finucane H, Sulem P, Ruth KS, 
Whalen S, Sarkar AK, Albrecht E, Altmaier E, Amini M, Barbieri CM, Boutin T, Campbell A, 
Demerath E, Giri A, He C, Hottenga JJ, Karlsson R, Kolcic I, Loh PR, Lunetta KL, Mangino 
M, Marco B, McMahon G, Medland SE, Nolte IM, Noordam R, Nutile T, Paternoster L, 
Perjakova N, Porcu E, Rose LM, Schraut KE, Segre AV, Smith AV, Stolk L, Teumer A, 
Andrulis IL, Bandinelli S, Beckmann MW, Benitez J, Bergmann S, Bochud M, Boerwinkle E, 
Bojesen SE, Bolla MK, Brand JS, Brauch H, Brenner H, Broer L, Bruning T, Buring JE, 
Campbell H, Catamo E, Chanock S, Chenevix-Trench G, Corre T, Couch FJ, Cousminer DL, 
Cox A, Crisponi L, Czene K, Davey Smith G, de Geus E, de Mutsert R, De Vivo I, Dennis J, 
Devilee P, Dos-Santos-Silva I, Dunning AM, Eriksson JG, Fasching PA, Fernandez-Rhodes 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


29 

L, Ferrucci L, Flesch-Janys D, Franke L, Gabrielson M, Gandin I, Giles GG, Grallert H, 
Gudbjartsson DF, Guenel P, Hall P, Hallberg E, Hamann U, Harris TB, Hartman CA, Heiss 
G, Hooning MJ, Hopper JL, Hu F, Hunter DJ, Ikram MA, Im HK, Jarvelin MR, Joshi PK, 
Karasik D, Kellis M, Kutalik Z, LaChance G, Lambrechts D, Langenberg C, Launer LJ, Laven 
JSE, Lenarduzzi S, Li J, Lind PA, Lindstrom S, Liu Y, Luan J, Magi R, Mannermaa A, 
Mbarek H, McCarthy MI, Meisinger C, Meitinger T, Menni C, Metspalu A, Michailidou K, 
Milani L, Milne RL, Montgomery GW, Mulligan AM, Nalls MA, Navarro P, Nevanlinna H, 
Nyholt DR, Oldehinkel AJ, O'Mara TA, Padmanabhan S, Palotie A, Pedersen N, Peters A, 
Peto J, Pharoah PDP, Pouta A, Radice P, Rahman I, Ring SM, Robino A, Rosendaal FR, 
Rudan I, Rueedi R, Ruggiero D, Sala CF, Schmidt MK, Scott RA, Shah M, Sorice R, 
Southey MC, Sovio U, Stampfer M, Steri M, Strauch K, Tanaka T, Tikkanen E, Timpson NJ, 
Traglia M, Truong T, Tyrer JP, Uitterlinden AG, Edwards DRV, Vitart V, Volker U, 
Vollenweider P, Wang Q, Widen E, van Dijk KW, Willemsen G, Winqvist R, Wolffenbuttel 
BHR, Zhao JH, Zoledziewska M, Zygmunt M, Alizadeh BZ, Boomsma DI, Ciullo M, Cucca F, 
Esko T, Franceschini N, Gieger C, Gudnason V, Hayward C, Kraft P, Lawlor DA, Magnusson 
PKE, Martin NG, Mook-Kanamori DO, Nohr EA, Polasek O, Porteous D, Price AL, Ridker 
PM, Snieder H, Spector TD, Stockl D, Toniolo D, Ulivi S, Visser JA, Volzke H, Wareham NJ, 
Wilson JF, LifeLines Cohort S, InterAct C, kConFab AI, Endometrial Cancer Association C, 
Ovarian Cancer Association C, consortium P, Spurdle AB, Thorsteindottir U, Pollard KS, 
Easton DF, Tung JY, Chang-Claude J, Hinds D, Murray A, Murabito JM, Stefansson K, Ong 
KK, Perry JRB. Genomic analyses identify hundreds of variants associated with age at 
menarche and support a role for puberty timing in cancer risk. Nat Genet 2017;49:834-41. 
24. Mbarek H, Steinberg S, Nyholt DR, Gordon SD, Miller MB, McRae AF, Hottenga JJ, 
Day FR, Willemsen G, de Geus EJ, Davies GE, Martin HC, Penninx BW, Jansen R, 
McAloney K, Vink JM, Kaprio J, Plomin R, Spector TD, Magnusson PK, Reversade B, Harris 
RA, Aagaard K, Kristjansson RP, Olafsson I, Eyjolfsson GI, Sigurdardottir O, Iacono WG, 
Lambalk CB, Montgomery GW, McGue M, Ong KK, Perry JRB, Martin NG, Stefansson H, 
Stefansson K, Boomsma DI. Identification of Common Genetic Variants Influencing 
Spontaneous Dizygotic Twinning and Female Fertility. Am J Hum Genet 2016;98:898-908. 
25. Ruth KS, Day FR, Tyrrell J, Thompson DJ, Wood AR, Mahajan A, Beaumont RN, 
Wittemans L, Martin S, Busch AS, Erzurumluoglu AM, Hollis B, O'Mara TA, Endometrial 
Cancer Association C, McCarthy MI, Langenberg C, Easton DF, Wareham NJ, Burgess S, 
Murray A, Ong KK, Frayling TM, Perry JRB. Using human genetics to understand the 
disease impacts of testosterone in men and women. Nat Med 2020;26:252-8. 
26. Cooper LA, Page ST, Amory JK, Anawalt BD, Matsumoto AM. The association of 
obesity with sex hormone-binding globulin is stronger than the association with ageing--
implications for the interpretation of total testosterone measurements. Clin Endocrinol 
2015;83:828-33.. 
27. Aoyama T, Yamano S, Waxman DJ, Lapenson DP, Meyer UA, Fischer V, Tyndale R, 
Inaba T, Kalow W, Gelboin HV, et al. Cytochrome P-450 hPCN3, a novel cytochrome P-450 
IIIA gene product that is differentially expressed in adult human liver. cDNA and deduced 
amino acid sequence and distinct specificities of cDNA-expressed hPCN1 and hPCN3 for 
the metabolism of steroid hormones and cyclosporine. J Biol Chem 1989;264:10388-95. 
28. Hashimoto M, Kobayashi K, Yamazaki M, Kazuki Y, Takehara S, Oshimura M, Chiba 
K. Cyp3a deficiency enhances androgen receptor activity and cholesterol synthesis in the 
mouse prostate. J Steroid Biochem Mol Biol 2016;163:121-8. 
29. Magoffin DA, Weitsman SR. Differentiation of ovarian theca-interstitial cells in vitro: 
regulation of 17 alpha-hydroxylase messenger ribonucleic acid expression by luteinizing 
hormone and insulin-like growth factor-I. Endocrinol 1993;132:1945-51. 
30. Ruth KS, Campbell PJ, Chew S, Lim EM, Hadlow N, Stuckey BG, Brown SJ, 
Feenstra B, Joseph J, Surdulescu GL, Zheng HF, Richards JB, Murray A, Spector TD, 
Wilson SG, Perry JR. Genome-wide association study with 1000 genomes imputation 
identifies signals for nine sex hormone-related phenotypes. Eur J Hum Genet 2015;24:284-
90.  
31. Saxena R, Georgopoulos NA, Braaten TJ, Bjonnes AC, Koika V, Panidis D, Welt CK. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

Han Chinese polycystic ovary syndrome risk variants in women of European ancestry: 
relationship to FSH levels and glucose tolerance. Hum Reprod 2015;30:1454-9. 
32. Koppaka V, Thompson DC, Chen Y, Ellermann M, Nicolaou KC, Juvonen RO, 
Petersen D, Deitrich RA, Hurley TD, Vasiliou V. Aldehyde dehydrogenase inhibitors: a 
comprehensive review of the pharmacology, mechanism of action, substrate specificity, and 
clinical application. Pharmacol Rev 2012;64:520-39.  
33. Pares X, Farres J, Kedishvili N, Duester G. Medium- and short-chain 
dehydrogenase/reductase gene and protein families : Medium-chain and short-chain 
dehydrogenases/reductases in retinoid metabolism. Cell Mol Life Sci 2008;65:3936-49.  
34. Kunutsor SK, Abbasi A, Adler AI. Gamma-glutamyl transferase and risk of type II 
diabetes: an updated systematic review and dose-response meta-analysis. Ann Epidemiol 
2014;24:809-16. 
35. Cortese A, Zhu Y, Rebelo AP, Negri S, Courel S, Abreu L, Bacon CJ, Bai Y, Bis-
Brewer DM, Bugiardini E, Buglo E, Danzi MC, Feely SME, Athanasiou-Fragkouli A, Haridy 
NA, Inherited Neuropathy C, Isasi R, Khan A, Laura M, Magri S, Pipis M, Pisciotta C, Powell 
E, Rossor AM, Saveri P, Sowden JE, Tozza S, Vandrovcova J, Dallman J, Grignani E, 
Marchioni E, Scherer SS, Tang B, Lin Z, Al-Ajmi A, Schule R, Synofzik M, Maisonobe T, 
Stojkovic T, Auer-Grumbach M, Abdelhamed MA, Hamed SA, Zhang R, Manganelli F, 
Santoro L, Taroni F, Pareyson D, Houlden H, Herrmann DN, Reilly MM, Shy ME, Zhai RG, 
Zuchner S. Biallelic mutations in SORD cause a common and potentially treatable hereditary 
neuropathy with implications for diabetes. Nat Genet 2020;52:473-81. 
36. Johansson AS, Mannervik B. Human glutathione transferase A3-3, a highly efficient 
catalyst of double-bond isomerization in the biosynthetic pathway of steroid hormones. J Biol 
Chem 2001;276:33061-5. 
37. Sawyer L. beta-Lactoglobulin and Glycodelin: Two Sides of the Same Coin? Front 
Physiol 2021;12:678080. 
38. Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, 
Legeay M, Fang T, Bork P, Jensen LJ, von Mering C. The STRING database in 2021: 
customizable protein-protein networks, and functional characterization of user-uploaded 
gene/measurement sets. Nucleic Acids Res 2021;49:D605-D12.  
39. Wild RA, Rizzo M, Clifton S, Carmina E. Lipid levels in polycystic ovary syndrome: 
systematic review and meta-analysis. Fertil Steril 2011;95:1073-9 e1-11. 
40. Guo F, Gong Z, Fernando T, Zhang L, Zhu X, Shi Y. The Lipid Profiles in Different 
Characteristics of Women with PCOS and the Interaction Between Dyslipidemia and 
Metabolic Disorder States: A Retrospective Study in Chinese Population. Front Endocrinol 
(Lausanne) 2022;13:892125.  
41. Mikhaylova IV, Kuulasmaa T, Jaaskelainen J, Voutilainen R. Tumor necrosis factor-
alpha regulates steroidogenesis, apoptosis, and cell viability in the human adrenocortical cell 
line NCI-H295R. Endocrinol 2007;148:386-92. 
42. Oh HS, Rutledge J, Nachun D, Palovics R, Abiose O, Moran-Losada P, Channappa 
D, Urey DY, Kim K, Sung YJ, Wang L, Timsina J, Western D, Liu M, Kohlfeld P, Budde J, 
Wilson EN, Guen Y, Maurer TM, Haney M, Yang AC, He Z, Greicius MD, Andreasson KI, 
Sathyan S, Weiss EF, Milman S, Barzilai N, Cruchaga C, Wagner AD, Mormino E, Lehallier 
B, Henderson VW, Longo FM, Montgomery SB, Wyss-Coray T. Organ aging signatures in 
the plasma proteome track health and disease. Nature 2023;624:164-72.  
43. Joo YY, Actkins K, Pacheco JA, Basile AO, Carroll R, Crosslin DR, Day F, Denny JC, 
Velez Edwards DR, Hakonarson H, Harley JB, Hebbring SJ, Ho K, Jarvik GP, Jones M, 
Karaderi T, Mentch FD, Meun C, Namjou B, Pendergrass S, Ritchie MD, Stanaway IB, 
Urbanek M, Walunas TL, Smith M, Chisholm RL, Kho AN, Davis L, Hayes MG, International 
PCOS consortium. A Polygenic and Phenotypic Risk Prediction for Polycystic Ovary 
Syndrome Evaluated by Phenome-Wide Association Studies. J Clin Endocrinol Metab 
2020;105:1918-36. 
44. Teede HJ, Tay CT, Laven JJE, Dokras A, Moran LJ, Piltonen TT, Costello MF, Boivin 
J, Redman LM, Boyle JA, Norman RJ, Mousa A, Joham AE. Recommendations From the 
2023 International Evidence-based Guideline for the Assessment and Management of 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


31 

Polycystic Ovary Syndrome. J Clin Endocrinol Metab 2023;108:2447-69.  
45. Ge T, Chen CY, Ni Y, Feng YA, Smoller JW. Polygenic prediction via Bayesian 
regression and continuous shrinkage priors. Nat Commun 2019;10:1776.  
46. Dokras A, Stener-Victorin E, Yildiz BO, Li R, Ottey S, Shah D, Epperson N, Teede H. 
Androgen Excess- Polycystic Ovary Syndrome Society: position statement on depression, 
anxiety, quality of life, and eating disorders in polycystic ovary syndrome. Fertil Steril 
2018;109:888-99. 
47. Teede HJ, Misso ML, Costello MF, Dokras A, Laven J, Moran L, Piltonen T, Norman 
RJ, International PN. Recommendations from the international evidence-based guideline for 
the assessment and management of polycystic ovary syndrome. Hum Reprod 
2018;33:1602-18.  
48. Bolcun-Filas E, Rinaldi VD, White ME, Schimenti JC. Reversal of female infertility by 
Chk2 ablation reveals the oocyte DNA damage checkpoint pathway. Science 2014;343:533-
6.  
49. Sorensen E, Christiansen L, Wilkowski B, Larsen MH, Burgdorf KS, Thorner LW, 
Nissen J, Pedersen OB, Banasik K, Brunak S, Bundgaard H, Stefansson H, Stefansson K, 
Melbye M, Ullum H. Data Resource Profile: The Copenhagen Hospital Biobank (CHB). Int J 
Epidemiol 2021;50:719-20e. 
50. Mills MC, Tropf FC, Brazel DM, van Zuydam N, Vaez A, e QC, Consortium B, Human 
Reproductive Behaviour C, Pers TH, Snieder H, Perry JRB, Ong KK, den Hoed M, Barban 
N, Day FR. Identification of 371 genetic variants for age at first sex and birth linked to 
externalising behaviour. Nat Hum Behav 2021;5:1717-30.  
51. Mathieson I, Day FR, Barban N, Tropf FC, Brazel DM, e QC, Consortium B, Vaez A, 
van Zuydam N, Bitarello BD, Gardner EJ, Akimova ET, Azad A, Bergmann S, Bielak LF, 
Boomsma DI, Bosak K, Brumat M, Buring JE, Cesarini D, Chasman DI, Chavarro JE, Cocca 
M, Concas MP, Davey Smith G, Davies G, Deary IJ, Esko T, Faul JD, FinnGen S, Franco O, 
Ganna A, Gaskins AJ, Gelemanovic A, de Geus EJC, Gieger C, Girotto G, Gopinath B, 
Grabe HJ, Gunderson EP, Hayward C, He C, van Heemst D, Hill WD, Hoffmann ER, 
Homuth G, Hottenga JJ, Huang H, Hypp�nen E, Ikram MA, Jansen R, Johannesson M, 
Kamali Z, Kardia SLR, Kavousi M, Kifley A, Kiiskinen T, Kraft P, Kuhnel B, Langenberg C, 
Liew G, Lifelines Cohort S, Lind PA, Luan J, Magi R, Magnusson PKE, Mahajan A, Martin 
NG, Mbarek H, McCarthy MI, McMahon G, Medland SE, Meitinger T, Metspalu A, Mihailov 
E, Milani L, Missmer SA, Mitchell P, Mollegaard S, Mook-Kanamori DO, Morgan A, van der 
Most PJ, de Mutsert R, Nauck M, Nolte IM, Noordam R, Penninx B, Peters A, Peyser PA, 
Polasek O, Power C, Pribisalic A, Redmond P, Rich-Edwards JW, Ridker PM, Rietveld CA, 
Ring SM, Rose LM, Rueedi R, Shukla V, Smith JA, Stankovic S, Stefansson K, Stockl D, 
Strauch K, Swertz MA, Teumer A, Thorleifsson G, Thorsteinsdottir U, Thurik AR, Timpson 
NJ, Turman C, Uitterlinden AG, Waldenberger M, Wareham NJ, Weir DR, Willemsen G, 
Zhao JH, Zhao W, Zhao Y, Snieder H, den Hoed M, Ong KK, Mills MC, Perry JRB. Genome-
wide analysis identifies genetic effects on reproductive success and ongoing natural 
selection at the FADS locus. Nat Hum Behav 2023;7:790-801. 
52. Censin JC, Bovijn J, Holmes MV, Lindgren CM. Colocalization analysis of polycystic 
ovary syndrome to identify potential disease-mediating genes and proteins. Eur J Hum 
Genet 2021;29:1446-54.  
53. Welt CK, Pagan YL, Smith PC, Rado KB, Hall JE. Control of follicle-stimulating 
hormone by estradiol and the inhibins: critical role of estradiol at the hypothalamus during 
the luteal-follicular transition. J Clin Endocrinol Metab 2003;88:1766-71. 
54. Yding Andersen C. Inhibin-B secretion and FSH isoform distribution may play an 
integral part of follicular selection in the natural menstrual cycle. Molecular Hum Reprod 
2017;23:16-24. 
55. Dewailly D, Barbotin AL, Dumont A, Catteau-Jonard S, Robin G. Role of Anti-
Mullerian Hormone in the Pathogenesis of Polycystic Ovary Syndrome. Front Endocrinol 
(Lausanne) 2020;11:641.  
56. Laurent MR, Hammond GL, Blokland M, Jardi F, Antonio L, Dubois V, Khalil R, Sterk 
SS, Gielen E, Decallonne B, Carmeliet G, Kaufman JM, Fiers T, Huhtaniemi IT, 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


32 

Vanderschueren D, Claessens F. Sex hormone-binding globulin regulation of androgen 
bioactivity in vivo: validation of the free hormone hypothesis. Sci Rep 2016;6:35539.  
57. Drummond AE. The role of steroids in follicular growth. Reprod Biol Endocrinol: 
RB&E 2006;4:16.  
58. Bristol-Gould SK, Kreeger PK, Selkirk CG, Kilen SM, Cook RW, Kipp JL, Shea LD, 
Mayo KE, Woodruff TK. Postnatal regulation of germ cells by activin: the establishment of 
the initial follicle pool. Dev Biol 2006;298:132-48. 
59. Ruth KS, Beaumont RN, Tyrrell J, Jones SE, Tuke MA, Yaghootkar H, Wood AR, 
Freathy RM, Weedon MN, Frayling TM, Murray A. Genetic evidence that lower circulating 
FSH levels lengthen menstrual cycle, increase age at menopause and impact female 
reproductive health. Hum Reprod 2016;31:473-81.  
60. Hudecova M, Holte J, Olovsson M, Sundstrom Poromaa I. Long-term follow-up of 
patients with polycystic ovary syndrome: reproductive outcome and ovarian reserve. Hum 
Reprod 2009;24:1176-83. 
61. Koivunen R, Pouta A, Franks S, Martikainen H, Sovio U, Hartikainen AL, McCarthy 
MI, Ruokonen A, Bloigu A, Jarvelin MR, Morin-Papunen L, Northern Finland Birth Cohort S. 
Fecundability and spontaneous abortions in women with self-reported oligo-amenorrhea 
and/or hirsutism: Northern Finland Birth Cohort 1966 Study. Hum Reprod 2008;23:2134-9. 
62. West S, Vahasarja M, Bloigu A, Pouta A, Franks S, Hartikainen AL, Jarvelin MR, 
Corbett S, Vaarasmaki M, Morin-Papunen L. The impact of self-reported oligo-amenorrhea 
and hirsutism on fertility and lifetime reproductive success: results from the Northern Finland 
Birth Cohort 1966. Hum Reprod 2014;29:628-33. 
63. Persson S, Elenis E, Turkmen S, Kramer MS, Yong EL, Sundstrom-Poromaa I. 
Fecundity among women with polycystic ovary syndrome (PCOS)-a population-based study. 
Hum Reprod 2019;34:2052-60. 
64. Elting MW, Korsen TJ, Rekers-Mombarg LT, Schoemaker J. Women with polycystic 
ovary syndrome gain regular menstrual cycles when ageing. Hum Reprod 2000;15:24-8. 
65. Carmina E, Campagna AM, Lobo RA. A 20-year follow-up of young women with 
polycystic ovary syndrome. Obstet Gynecol 2012;119:263-9. 
66. Pigny P, Merlen E, Robert Y, Cortet-Rudelli C, Decanter C, Jonard S, Dewailly D. 
Elevated serum level of anti-mullerian hormone in patients with polycystic ovary syndrome: 
relationship to the ovarian follicle excess and to the follicular arrest. J Clin Endocrinol Metab 
2003;88:5957-62. 
67. Webber LJ, Stubbs S, Stark J, Trew GH, Margara R, Hardy K, Franks S. Formation 
and early development of follicles in the polycystic ovary. Lancet 2003;362:1017-21. 
68. Emerging Risk Factors C, Erqou S, Kaptoge S, Perry PL, Di Angelantonio E, 
Thompson A, White IR, Marcovina SM, Collins R, Thompson SG, Danesh J. Lipoprotein(a) 
concentration and the risk of coronary heart disease, stroke, and nonvascular mortality. 
JAMA 2009;302:412-23.  
69. Bots SH, Peters SAE, Woodward M. Sex differences in coronary heart disease and 
stroke mortality: a global assessment of the effect of ageing between 1980 and 2010. BMJ 
Glob Health 2017;2:e000298.  
70. Vitale C, Fini M, Speziale G, Chierchia S. Gender differences in the cardiovascular 
effects of sex hormones. Fundam Clin Pharmacol 2010;24:675-85. 
71. Schmidt J, Brannstrom M, Landin-Wilhelmsen K, Dahlgren E. Reproductive hormone 
levels and anthropometry in postmenopausal women with polycystic ovary syndrome 
(PCOS): a 21-year follow-up study of women diagnosed with PCOS around 50 years ago 
and their age-matched controls. J Clin Endocrinol Metab 2011;96:2178-85. 
72. Puurunen J, Piltonen T, Morin-Papunen L, Perheentupa A, Jarvela I, Ruokonen A, 
Tapanainen JS. Unfavorable hormonal, metabolic, and inflammatory alterations persist after 
menopause in women with PCOS. J Clin Endocrinol Metab 2011;96:1827-34. 
73. Winkler TW, Day FR, Croteau-Chonka DC, Wood AR, Locke AE, Magi R, Ferreira T, 
Fall T, Graff M, Justice AE, Luan J, Gustafsson S, Randall JC, Vedantam S, Workalemahu 
T, Kilpelainen TO, Scherag A, Esko T, Kutalik Z, Heid IM, Loos RJ, Genetic Investigation of 
Anthropometric Traits C. Quality control and conduct of genome-wide association meta-

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


33 

analyses. Nat Protoc 2014;9:1192-212.  
74. Magi R, Morris AP. GWAMA: software for genome-wide association meta-analysis. 
BMC Bioinformatics 2010;11:288.  
75. Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of 
genomewide association scans. Bioinformatics 2010;26:2190-1.  
76. Watanabe K, Taskesen E, van Bochoven A, Posthuma D. Functional mapping and 
annotation of genetic associations with FUMA. Nat Commun 2017;8:1826.  
77. Benner C, Spencer CC, Havulinna AS, Salomaa V, Ripatti S, Pirinen M. FINEMAP: 
efficient variable selection using summary data from genome-wide association studies. 
Bioinformatics 2016;32:1493-501.. 
78. Dewey FE, Murray MF, Overton JD, Habegger L, Leader JB, Fetterolf SN, 
O'Dushlaine C, Van Hout CV, Staples J, Gonzaga-Jauregui C, Metpally R, Pendergrass SA, 
Giovanni MA, Kirchner HL, Balasubramanian S, Abul-Husn NS, Hartzel DN, Lavage DR, 
Kost KA, Packer JS, Lopez AE, Penn J, Mukherjee S, Gosalia N, Kanagaraj M, Li AH, 
Mitnaul LJ, Adams LJ, Person TN, Praveen K, Marcketta A, Lebo MS, Austin-Tse CA, 
Mason-Suares HM, Bruse S, Mellis S, Phillips R, Stahl N, Murphy A, Economides A, 
Skelding KA, Still CD, Elmore JR, Borecki IB, Yancopoulos GD, Davis FD, Faucett WA, 
Gottesman O, Ritchie MD, Shuldiner AR, Reid JG, Ledbetter DH, Baras A, Carey DJ. 
Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from 
the DiscovEHR study. Science 2016;354. 
79. Dennis JK, Sealock JM, Straub P, Lee YH, Hucks D, Actkins K, Faucon A, Feng YA, 
Ge T, Goleva SB, Niarchou M, Singh K, Morley T, Smoller JW, Ruderfer DM, Mosley JD, 
Chen G, Davis LK. Clinical laboratory test-wide association scan of polygenic scores 
identifies biomarkers of complex disease. Genome Med 2021;13:6.  
80. Staley JR, Blackshaw J, Kamat MA, Ellis S, Surendran P, Sun BB, Paul DS, Freitag 
D, Burgess S, Danesh J, Young R, Butterworth AS. PhenoScanner: a database of human 
genotype-phenotype associations. Bioinformatics 2016;32:3207-9.  
81. Kamat MA, Blackshaw JA, Young R, Surendran P, Burgess S, Danesh J, Butterworth 
AS, Staley JR. PhenoScanner V2: an expanded tool for searching human genotype-
phenotype associations. Bioinformatics 2019;35:4851-3. 
82. Sun BB, Chiou J, Traylor M, Benner C, Hsu YH, Richardson TG, Surendran P, 
Mahajan A, Robins C, Vasquez-Grinnell SG, Hou L, Kvikstad EM, Burren OS, Davitte J, 
Ferber KL, Gillies CE, Hedman AK, Hu S, Lin T, Mikkilineni R, Pendergrass RK, Pickering C, 
Prins B, Baird D, Chen CY, Ward LD, Deaton AM, Welsh S, Willis CM, Lehner N, Arnold M, 
Worheide MA, Suhre K, Kastenmuller G, Sethi A, Cule M, Raj A, Alnylam Human G, 
AstraZeneca Genomics I, Biogen Biobank T, Bristol Myers S, Genentech Human G, 
GlaxoSmithKline Genomic S, Pfizer Integrative B, Population Analytics of Janssen Data S, 
Regeneron Genetics C, Burkitt-Gray L, Melamud E, Black MH, Fauman EB, Howson JMM, 
Kang HM, McCarthy MI, Nioi P, Petrovski S, Scott RA, Smith EN, Szalma S, Waterworth 
DM, Mitnaul LJ, Szustakowski JD, Gibson BW, Miller MR, Whelan CD. Plasma proteomic 
associations with genetics and health in the UK Biobank. Nature 2023;622:329-38.  
83. Sun BB, Kurki MI, Foley CN, Mechakra A, Chen CY, Marshall E, Wilk JB, Biogen 
Biobank T, Chahine M, Chevalier P, Christe G, FinnGen, Palotie A, Daly MJ, Runz H. 
Genetic associations of protein-coding variants in human disease. Nature 2022;603:95-102.  
84. Weeks EM, Ulirsch JC, Cheng NY, Trippe BL, Fine RS, Miao J, Patwardhan TA, 
Kanai M, Nasser J, Fulco CP, Tashman KC, Aguet F, Li T, Ordovas-Montanes J, Smillie CS, 
Biton M, Shalek AK, Ananthakrishnan AN, Xavier RJ, Regev A, Gupta RM, Lage K, Ardlie 
KG, Hirschhorn JN, Lander ES, Engreitz JM, Finucane HK. Leveraging polygenic 
enrichments of gene features to predict genes underlying complex traits and diseases. Nat 
Genet 2023;55:1267-76. 
85. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, 
Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, 
Peakman T, Collins R. UK biobank: an open access resource for identifying the causes of a 
wide range of complex diseases of middle and old age. PLoS Med 2015;12:e1001779.  
86. Choi SW, Mak TS, O'Reilly PF. Tutorial: a guide to performing polygenic risk score 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/


34 

analyses. Nat Protoc 2020;15:2759-72.  
87. Prive F, Arbel J, Vilhjalmsson BJ. LDpred2: better, faster, stronger. Bioinformatics 
2020;36:5424-31.  
88. Bliddal M, Broe A, Pottegard A, Olsen J, Langhoff-Roos J. The Danish Medical Birth 
Register. Eur J Epidemiol 2018;33:27-36. 
89. Schmidt M, Schmidt SA, Sandegaard JL, Ehrenstein V, Pedersen L, Sorensen HT. 
The Danish National Patient Registry: a review of content, data quality, and research 
potential. Clin Epidemiol 2015;7:449-90.  
90. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with 
multiple genetic variants using summarized data. Genet Epidemiol 2013;37:658-65.  
91. Burgess S, Thompson SG. Interpreting findings from Mendelian randomization using 
the MR-Egger method. Eur J Epidemiol 2017;32:377-89.  
92. Burgess S, Thompson SG. Multivariable Mendelian randomization: the use of 
pleiotropic genetic variants to estimate causal effects. Am J Epidemiol 2015;181:251-60.  
93. Yengo L, Sidorenko J, Kemper KE, Zheng Z, Wood AR, Weedon MN, Frayling TM, 
Hirschhorn J, Yang J, Visscher PM, Consortium G. Meta-analysis of genome-wide 
association studies for height and body mass index in approximately 700000 individuals of 
European ancestry. Hum Molec Genet 2018;27:3641-9.  
 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24306020doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24306020
http://creativecommons.org/licenses/by-nc-nd/4.0/

