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Abstract 19 

Introduction 20 

Increased and excess adiposity is associated with increased risk of endometrial cancer (EC) 21 

and both of these are associated with circulating metabolite profiles. However, how 22 

metabolites relate to the adiposity-EC relationship remains unclear.  23 

 24 

Methods 25 

We have brought together evidence from Mendelian randomization (MR) and observational 26 

analyses to evaluate the effect of i) adiposity traits on endometrial cancer, ii) adiposity traits 27 

on circulating metabolites and iii) adiposity-associated metabolites on EC. We have also 28 

evaluated the potential role of metabolites in the adiposity-EC relationship using 29 

multivariable MR. Observational analyses were conducted using individual level data from UK 30 

Biobank (N = 1,005 cases and 215,339 controls). MR analyses were performed using female-31 

specific summary statistics from genome-wide association studies of body mass index (BMI; 32 

N up to 434,794), waist-to-hip ratio (WHR; N up to 381,152), 249 metabolites and ratios from 33 

targeted nuclear magnetic resonance metabolomics (N up to 140,768) and EC risk (12,906 34 

cases and 108,979 controls).  35 

 36 

Results 37 

In observational analyses, higher BMI and WHR were associated with elevated odds of overall 38 

EC (odds ratio (OR) per standard deviation (SD) increase in BMI = 1.37; 95% confidence 39 

interval (CI) = 1.19, 1.57; OR per SD increase in WHR= 1.15; 95% CI = 1.01, 1.32). In MR 40 

analysis, higher BMI was associated with elevated odds of overall EC risk (OR per SD increase 41 

in BMI = 1.80; 95% CI = 1.56, 2.07), endometrioid cancer (OR = 1.71; 95% CI = 1.45, 2.02) and 42 

non-endometrioid cancer (OR = 2.20; 95% CI = 1.55, 3.12). There was weaker evidence for a 43 

causal relationship with WHR. BMI was associated with 165 metabolites and ratios after 44 

Bonferroni-correction in MR analyses, several of which were associated with EC and 25 of 45 

which were directionally consistent with an intermediate role in the effect of BMI on EC risk 46 

from two-step MR and observational analyses. In MVMR analyses, there was evidence 47 

suggesting that the effect of BMI on non-endometrioid EC was mediated by several lipid 48 

metabolites; for example,  the univariable MR OR for non-endometrioid EC per 1 SD increase 49 
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in BMI was 2.51 (95%CI = 1.47, 4.29), whereas on adjusting for free cholesterol to total lipids 50 

ratio in medium LDL, the MVMR OR for non-endometrioid EC per 1 SD increase in BMI was 51 

1.18 (95%CI = 0.53, 2.66). Further bioinformatic analyses highlighted a mixture of other 52 

potential shared pathways (including height, adiposity traits and blood cell traits) that could 53 

influence the risk of EC.  54 

 55 

Conclusion 56 

Evidence here suggests that higher BMI causes a higher risk of overall and all histological 57 

subtypes of EC and variation in numerous circulating metabolites. Several of these 58 

metabolites showed relationships consistent with an intermediate role between BMI and 59 

non-endometrioid EC, however, further bioinformatic analyses highlighted other potential 60 

shared mechanisms that could influence the risk of EC.   61 

 62 

 63 

 64 

 65 

 66 

 67 

  68 
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Introduction 69 

Endometrial cancer (EC; cancer of the lining of the uterus) is the most common gynaecological 70 

cancer among women with more than 380,000 new cases diagnosed globally1. Based on 71 

differences in histology and clinical outcomes, there are two main subtypes of EC: 72 

endometrioid carcinomas (type 1 tumours) with good prognosis and non-endometrioid 73 

carcinomas (type 2 tumours) with worse prognosis2. Endometrioid EC is more commonly 74 

hormonally driven compared with non-endometrioid EC3. 75 

 76 

Excess body weight is robustly associated with EC, with support from observational studies4. 77 

Mendelian randomisation5 (MR) studies, which use genetic variants as instruments (or 78 

proxies), of adiposity traits further support the evidence base for a causal relationship with 79 

EC6–8. However, whilst the relationship between adiposity and EC is well-established, 80 

understanding of the mechanisms and covariables involved in the adiposity-EC relationship 81 

remains incomplete. Furthermore, evidence of associations between body fat distribution, 82 

measured as waist-hip-ratio (WHR), has only been supported with observational studies4,6,8. 83 

 84 

Metabolic reprogramming is recognised as a hallmark of tumorigenesis9 and there is evidence 85 

that metabolic dysfunction drives the development and progression of EC10,11. Findings from 86 

a recent prospective study suggest that concentrations of glycine, serine, sphingomyelin and 87 

free carnitine may represent specific pathways involved in EC development12. Increased 88 

adiposity causes changes to an individual’s systemic metabolic profile13–15.  Observational and 89 

MR studies support an effect of adiposity (proxied using body mass index [BMI]), on raised 90 

amino acids, fatty acids and inflammatory glycoprotein acetyls15, leading to suggestions that 91 

a potential mechanism linking adiposity and EC could be adiposity-induced metabolic 92 

changes10. A recent prospective study showed that EC is positively associated with adiposity-93 

associated metabolic changes including specific amino acids and lipids16; however, whether 94 

these relationships are causal is unclear.  95 

 96 

We aimed to better understand the potential role of circulating metabolites as intermediates 97 

in the association between adiposity and EC risk by triangulating evidence from summary-98 
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level univariable two-step17 MR and multivariable MR approaches in combination with 99 

observational analyses in UK Biobank. 100 

 101 

Methods 102 

Analytical strategy  103 

This study has four main analyses that were performed sequentially (Figure 1) to estimate: 104 

(Part I) the effect of adiposity measures on EC, (Part II) the effect of adiposity measures on 105 

circulating metabolites, (Part III) the effect of adiposity-associated metabolites on EC, and 106 

(Part IV) the potential intermediate role of adiposity-associated metabolites in the 107 

relationship between adiposity and EC (identified in Part II and III). Observational analyses 108 

were performed for Parts I-III.  MR analyses were performed for Parts I-IV; Metabolite data 109 

from UK Biobank were used in both the MR and observational analyses. This study is reported 110 

as per the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) 111 

and STROBE-MR guidelines (Supplementary Table S1 and S2)18,19.  112 

 113 

Observational analyses (Part I-III) 114 

Study population 115 

UK Biobank is a nation-based health project that recruited more than 500,000 participants 116 

(aged 37-73 years, 56.3% were women) between 2006 and 202020,21. In addition to the 117 

collection of biological samples (blood, saliva and urine), health, demographic and 118 

anthropometric data were collected in 22 assessment facilities across England, Wales and 119 

Scotland22. Participants provided written informed consent. Ethical approval was obtained 120 

from the Northwest Multi-centre Research Ethics Committee (11/NW/0382). Data from UK 121 

Biobank were accessed via application number 16391 and 30418. Data for adiposity measures 122 

and endometrial cancer outcome was extracted on the 08/07/2021 and the 1H-NMR 123 

metabolite data was extracted on the 08/02/2023.  124 

 125 

Adiposity measures 126 

BMI was calculated as weight (kg)/height2 (m2) and WHR as waist circumference (cm)/hip 127 

circumference (cm). Height was measured to the nearest centimetre, using a Seca 202 128 

stadiometer, and body weight to the nearest 0.1kg, using a Tanita BC-418 body composition 129 
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analyser. Waist circumference was measured at the natural indent (the umbilicus was used if 130 

the natural indent could not be observed); hip circumference was measured at the widest 131 

part of the hips. BMI and WHR were inverse rank normal transformed prior to observational 132 

analyses and represent normalised SD units.  133 

 134 

Metabolite measures 135 

Non-fasting EDTA plasma samples were collected from approximately 275,000 participants, a 136 

random subset of the original ~500,000, who provided samples at the 2006-2010 assessment 137 

(N=275,000) or at a subsequent assessment in 2012-2013 (N=17,000) (around 15,000 of these 138 

have both baseline and repeat assessment). A total of 249 metabolic traits (168 139 

concentrations plus 81 ratios) were quantified using 1H-NMR spectroscopy (data pre-140 

processing and quality control steps conducted by Nightingale Health are described 141 

previously23,24). Inverse rank normal transformed metabolite concentrations were used in all 142 

analyses and represent normalised SD units. 143 

 144 

Endometrial cancer  145 

EC was defined as a malignant neoplasm of the endometrium. The UK Biobank database 146 

contained a record of all cancers including their subtype occurring either before or after 147 

participant enrolment using the International Classification of Diseases, 9th and 10th revision 148 

(ICD-10, ICD-9). The following ICD-10 and ICD-9 codes were used to define EC: ICD10 codes 149 

(C540, C541, C542, C543, C549 and C55) and ICD9 codes (179, 1799, 180, 182, 1820, 1821 and 150 

1828). Cases were characterised as incident or prevalent using ‘age when they attended the 151 

centre’ and ‘age when first reported EC cancer’. Participants were defined as incident cases if 152 

their ‘attending age’ was less than their ‘cancer diagnosis age’. In total, there were 1,935 EC 153 

cases with 1,005 being incident cases and 930 prevalent cases. Only incident cases (N=1,005) 154 

were included in our analyses. Controls (n=215,339) were defined as female participants who 155 

had no record of any type of cancer, in-situ carcinoma, or an undefined neoplasm.  156 

 157 

Covariables 158 

We included potential confounders of the BMI-metabolite-EC relationships in our analyses. 159 

The potential confounders were sociodemographic factors (age at assessment, physical 160 
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activity, smoking status, alcohol consumption and educational attainment) and female-161 

specific factors (history of hormone replacement therapy (HRT) use, age at first live birth, age 162 

at last live birth, age at menarche and menopausal status). Age, smoking status, alcohol 163 

consumption, education attainment and female-specific factors were self-reported at the 164 

baseline assessment by questionnaire. Physical activity level over a typical week was self-165 

reported using the International Physical Activity Questionnaire and reported as metabolic 166 

equivalent of task (MET) per week.  167 

 168 

Statistical analyses 169 

Observational associations between: I) adiposity measures and EC (Figure 1, Part I) were 170 

assessed using multivariable logistic regression, II) adiposity measures and metabolites 171 

(Figure 1, Part II) were assessed using multivariable linear regression for cases and controls 172 

combined in one cohort and III) adiposity-associated metabolites and EC (Figure 1, Part III) 173 

were assessed using multivariable logistic regression. All analyses were initially adjusted for 174 

age at assessment and centre. Models were additionally adjusted for potential confounders 175 

(smoking status, alcohol consumption, education status, physical activity, hormone 176 

replacement therapy use, age at first live birth, age at last live birth, age at menarche and 177 

menopausal status). To account for multiple testing, we used the Bonferroni-adjusted p value 178 

threshold (0.05/249) for the association between adiposity measures and metabolites and p-179 

value < 0.05 for all other tests. Multivariable linear and logistic regression analyses were 180 

performed using the lm and glm functions, respectively, in R.  181 

 182 

Genome-wide association study results and Mendelian randomisation analyses (Part I-IV) 183 

Data sources and study populations 184 

Adiposity instruments 185 

We identified single nucleotide polymorphisms (SNPs) that were independently associated 186 

(low linkage disequilibrium (LD), R2<0.001) with BMI and WHR (unadjusted for BMI) at p<5x10-187 
9 from a recent large-scale female-specific genome-wide association study (GWAS) meta-188 

analysis of 434,794 female adults of European ancestries from the Genetic Investigation of 189 

Anthropometric Traits (GIANT) consortium and the UK Biobank25 (Supplementary Table 3). 190 

Adiposity measures were inverse rank normal transformed prior to genome-wide analysis and 191 
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units therefore represent a normalised standard deviation (SD). In total, 271 (average F-192 

statistic = 41) and 227 (average F-statistic = 45) SNPs were identified for BMI and WHR, 193 

respectively.  194 

 195 

Metabolite GWAS in UK Biobank and selection of metabolite instruments 196 

A random subset of non-fasting baseline plasma samples, consisting of 275,000 UK Biobank 197 

participants and 17,000 repeat-visit samples (around 15,500 of these have both a baseline 198 

and repeat assessment), were measured using targeted high-throughput 1H-Nuclear 199 

magnetic resonance (1H-NMR) metabolomics (Nightingale Health Ltd; biomarker 200 

quantification version 2020)24,26. Genotype data was available for 488,377 individuals, of 201 

which 49,979 were genotyped using the UK BiLEVE array and 438,398 using the UK Biobank 202 

axiom array. Pre-imputation QC, phasing and imputation have been described previously21. 203 

Genotype imputation was performed using IMPUTE2 algorithms27 to a reference set 204 

combining the UK 10K haplotype and HRC reference panels28. Post-imputation QC was 205 

performed as described in the “UK Biobank Genetic Data: MRC-IEU Quality Control” 206 

documentation29,30. We conducted a female-specific GWAS for the 249 1H-NMR-derived 207 

metabolites and ratios in UK Biobank female participants of European descent (N=140,768) 208 

using the MRC IEU UK Biobank GWAS pipeline30. We restricted the samples to individuals of 209 

European ancestry as defined by the largest cluster in an in-house k-means clustering of 210 

genetic ancestry data (K=4) after standard exclusions including withdrawn consent, mismatch 211 

between genetic and reported sex and putative sex chromosome aneuploidy29–31 212 

(Supplementary Table 3). Metabolite measures were inverse rank normal transformed prior 213 

to genome-wide analysis and units therefore represent a normalised SD. Genome-wide 214 

association analysis was conducted using a linear mixed model (LMM) as implemented in 215 

BOLT-LMM (v2.3)32.  Population structure was modelled using 143,006 directly genotyped 216 

SNPs (MAF > 0.01; genotyping rate > 0.015; Hardy-Weinberg equilibrium p-value < 0.0001 and 217 

LD pruning to an r2 threshold of 0.1 using PLINK(v2.00)). Genotype array and fasting time 218 

were adjusted for in the model. We identified 11-167 independent SNPs (r2<0.001 and 219 

p<5x10-8) for each of the 1H-NMR-derived metabolites (average F-statistics: ranged from 40.6-220 

81.6).  221 

 222 
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Endometrial Cancer GWAS data 223 

We obtained SNP estimates from the largest GWAS (as log odds ratio (OR)) for EC to date8, 224 

including up to 12,906 cases and 108,979 controls from 13 studies (Supplementary Table 3). 225 

Of the 12,906 cases and 108,979 controls, 636 cases (5%) and 62,853 controls (58%) were 226 

from UK Biobank. Summary statistics were also available for the association between genetic 227 

variation and the EC subtypes, endometrioid (8,758 cases) and non-endometrioid (1,230 228 

cases) cancer; both GWASs used the full set of controls (N = 108,979). None of the 229 

endometrial subtype cases were from UK Biobank. Histological subtypes of EC were 230 

confirmed based on pathology reports and detailed study descriptions have previously been 231 

reported8.  232 

 233 

Statistical analysis 234 

In each instance, MR estimates are interpreted as the change in outcome per SD unit change 235 

in exposure. Estimates for metabolite outcomes reflect SD unit change, and estimates for EC 236 

outcomes reflect odds ratios (OR). All analyses were performed using R version 3.5.333. 237 

Univariable MR analyses were performed using the TwoSampleMR (version 0.4.22) package26. 238 

Multivariable MR analyses were performed using the MVMR (version 0.3) package32.  239 

 240 

First, we examined the association between BMI and WHR with overall, endometrioid and 241 

non-endometrioid EC risk using summary-level data from female-specific GWAS of BMI, WHR 242 

and EC (Figure 1, Part I). Details of the SNPs included in each analysis, and proxies used (where 243 

SNPs were not available in the outcome data), are provided in Supplementary Table 4. 244 

Summary statistics were harmonised using the harmonise_data function within the 245 

TwoSampleMR R package (version 0.4.22)33. Univariable causal estimates were combined 246 

using the inverse-variance weighted (IVW) multiplicative random effects (IVW-MRE) model34. 247 

Where possible (i.e., where there were three or more instruments), the assumption of no 248 

pleiotropy among genetic instruments and outcomes were explored using MR-Egger35, 249 

weighted median36 and weighted mode37 estimators. These methods are sensitive to the 250 

effects of potential pleiotropy under different assumptions. No p-value threshold 251 

requirements were set for these methods and, instead, consistency between the IVW model 252 

and the three sensitivity MR methods (MR-Egger, weighted median and weighted mode) was 253 

assessed.  254 
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 255 

Second, adiposity traits (BMI and  WHR) that showed evidence of an effect on EC with p values 256 

< 0.05 from IVW-MRE models and with consistent associations across the three sensitivity MR 257 

methods, were taken forward and examined for associations with the 1H-NMR-measured 258 

metabolites (Figure 1, Part II). Summary-level data were obtained from a female-specific 259 

GWAS for adiposity traits and 1H-NMR metabolites, and we examined the effect of adiposity 260 

traits on 1H-NMR-measured metabolites using the four MR models described above. 261 

Metabolites that were associated with the adiposity traits with p values < 0.05/249 262 

(Bonferroni-adjusted p-value threshold) from IVW-MRE models were taken forward and 263 

examined for association with EC risk using IVW-MRE model (if ≥2) or Wald ratio (if 1 SNP) 264 

(Figure 1, Part III).  265 

 266 

Multivariable MR (MVMR) 38,39 was conducted to test the hypothesis that adiposity-associated 267 

metabolites (identified in Part II and III) may act as intermediate factors in the effect of BMI 268 

on EC (Figure 1, Part IV). Only metabolites that showed a consistent direction of effect across 269 

the adiposity-EC, adiposity-metabolite, and metabolite-EC analyses from both MR and 270 

observational analyses (identified in Part II and III) were included in the MVMR analyses. For 271 

the MVMR analyses, we fitted a model with BMI and EC and included each BMI-associated 272 

metabolite in turn to estimate the direct causal effect of BMI on EC. We used female-specific 273 

SNPs for BMI based on an earlier (lower-powered) GWAS40 for the multivariable models to 274 

avoid a relative dilution of metabolite instrument strength41 given that the number of SNPs 275 

for BMI from the latest BMI GWAS far outnumbered those for metabolites. Conditional F-276 

statistics were used to evaluate instrument strength39. Heterogeneity was quantified using an 277 

adapted version of the Q statistic  (QA; also a further modification of Cochran’s Q)39.  278 

 279 

Sensitivity analyses 280 

Sample overlap between exposure and outcome GWAS can bias MR estimates towards the 281 

confounded observational estimate (inflated type 1 error) in the presence of weak instrument 282 

bias in a manner proportional to the degree of overlap42. This bias can be inflated by ”Winner’s 283 

curse”, in which weights for genetic instruments are derived from discovery samples that 284 

overlap with outcome samples. There was sample overlap across our MR analyses as the 285 

adiposity, 1H-NMR metabolite and EC GWAS all included participants from UK Biobank. Given 286 
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the random selection of samples for metabolomics analysis and the inclusion of almost all 287 

samples within the adiposity GWAS it is not possible to precisely quantify the degree of 288 

sample overlap but we make the assumption of 100% sample overlap between the adiposity 289 

and 1H-NMR metabolite GWAS. There was also approximately 5% overlap for both the 290 

adiposity and 1H-NMR metabolite GWAS with the overall EC GWAS. Given this, we conducted 291 

sensitivity analyses to evaluate the influence of sample overlap in our MR analyses. First, for 292 

analyses examining the association between adiposity traits with endometrial cancer risk 293 

(Figure 1, Part I), we re-performed MR analyses using alternative GWAS data for BMI 294 

(n=171,977) and WHR (N=118,004) where there was no sample overlap40,43 with either the EC 295 

GWAS conducted by ECAC8 or an alternative EC GWAS conducted by ECAC which excluded UK 296 

Biobank participants (personal correspondence) (N for overall EC=12,270 cases and 46,126 297 

controls; N for endometrioid EC=8,758 cases and 46,126 controls and N for non-endometrioid 298 

EC = 1,230 cases and 35,447 controls)8. Second, for analyses examining the association 299 

between adiposity traits with 1H-NMR metabolites (Figure 1, Part II), we re-performed MR 300 

analyses using alternative GWAS data for BMI where there was no sample overlap40,43. Third, 301 

for analyses examining the association between 1H-NMR metabolites and endometrial cancer 302 

risk (Figure 1, Part III), we re-performed MR analyses using the alternative GWAS for EC which 303 

had excluded UK Biobank participants8 (Supplementary Table 3). 304 

 305 

Examining off-target effects using PhenoScanner (Part V) 306 

Due to the shared genetic architecture and pleiotropic nature of instruments for 307 

metabolites44–46, it is possible for variants acting as proxies for metabolites to exert off-target 308 

or pleiotropic effects on EC through other biological mechanisms. This presents the possibility 309 

that intermediate associations are reflecting common, but unmeasured, biological 310 

underpinnings rather than more obvious hypothesised pathway effects. To investigate this, 311 

we assessed whether genetic instruments for adiposity- and EC-associated, (and apparently 312 

intermediate) metabolites were associated with other traits (p<1E-10) in a manner different 313 

to that expected by chance given documented genotype/metabolite/trait associations. Using 314 

PhenoScanner47,48, we assessed the co-association of adiposity- and EC-associated 315 

metabolites with other phenotypes and outcomes before performing the same procedure 316 

over 100 iterations, but for randomly selected metabolites taken from the 244 metabolites 317 

not found to underlie the association between adiposity and EC risk. The overall profile of 318 
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these redraws were compared with that from the adiposity- and EC-associated instruments, 319 

i.e. counts of detectable associations with trait domains for adiposity- and EC-associated 320 

instruments versus SNPs associated with random metabolites. 321 

 322 

Results 323 

Population and data overview 324 

The observational analyses within UK Biobank included up to 1,005 female participants who 325 

had a diagnosis of incident EC and up to 215,339 controls (Table 1). The cases and controls 326 

had a mean (SD) age of 59.63 (6.43) years and 55.83 (8.02) years, respectively. Mean BMI was 327 

higher among cases than controls (at 30.33kg/m2 (7.07) and 27.06kg/m2 (5.17), respectively). 328 

Mean WHR was higher among cases than controls (at 0.84 (0.07) and 0.82 (0.07), 329 

respectively). 3.66% reported having a diagnosis of diabetes, and this was more common 330 

among cases than controls (8.99% and 2.64%, respectively).  331 

 332 

Association between adiposity measures and endometrial cancer (Part I) 333 

For BMI,  observational analyses showed evidence that higher BMI (per SD) was associated 334 

with 1.61 (95% CI = 1.49, 1.75) times higher odds of overall EC; these results were consistent 335 

when adjusting for all covariables (OR = 1.37; 95% CI = 1.19, 1.57) (Figure 2; Table 2). This was 336 

supported by univariable MR analysis, which found that higher BMI (per SD) was associated 337 

with 1.80 (95% confidence interval (CI) = 1.56, 2.07) times higher odds of overall EC using the 338 

IVW-MRE model (Figure 2; Supplementary Table 5). Similar results were found for 339 

endometroid cancer (OR = 1.71; 95% CI = 1.45, 2.02) and non-endometrioid cancer (OR = 2.20; 340 

95% CI = 1.55, 3.12) (Supplementary Table 5). This finding was consistent across sensitivity 341 

analyses using methods that consider potential genetic pleiotropy and when using 342 

instruments from non-overlapping samples (Supplementary Table 5).  343 

 344 

For WHR, observational analyses showed evidence that higher WHR (per SD) was associated 345 

with 1.23 (95% CI = 1.13, 1.34) times higher odds of overall EC; these results were consistent 346 

when adjusting for all covariables (OR = 1.15; 95% CI = 1.01, 1.32) (Figure 2; Table 2). Evidence 347 

of association between WHR (per SD) and overall EC (OR = 1.10; 95% CI = 0.93, 1.29), 348 

endometroid EC (OR = 1.09; 95% CI = 0.91, 1.30) and non-endometrioid EC (OR = 1.43; 95% CI 349 
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= 0.96, 2.12) in univariable MR was weaker (Figure 2; Supplementary Table 5). Sensitivity 350 

analyses were broadly consistent for overall and endometrioid EC. However, findings were 351 

less consistent for non-endometrioid EC in sensitivity analyses where the MR-Egger estimate 352 

(OR = 3.99; 95% CI = 1.14; 13.95) was greater in magnitude compared to the IVW estimates 353 

(Supplementary Table 5) and when using instruments from non-overlapping samples (IVW 354 

OR= 1.93; 95% CI = 1.17, 3.18) (Supplementary Table 5).  355 

 356 

Association between adiposity measures and metabolites (Part II) 357 

Higher BMI (per SD) was associated with 175 metabolites after correcting for multiple testing 358 

and using the IVW-MRE model (Figure 3; Supplementary Table 6). Of these metabolites, 165 359 

had consistent directions of effect in all four MR models and the fully-adjusted observational 360 

analyses (Supplementary Figure 1 and 2; Supplementary Table 7) and were taken forward 361 

for subsequent analysis with EC. These findings were broadly consistent across sensitivity 362 

analyses using instruments from non-overlapping samples (r=0.94) (Supplementary Table 6).  363 

 364 

BMI had a broad effect on the metabolomic profile, with associations across many metabolite 365 

classes including numerous lipid metabolites and their ratios such as total cholesterol, total 366 

lipids, triglycerides and cholesteryl esters in high density lipoprotein (HDL) and very low-367 

density lipoprotein (VLDL). For example, higher BMI led to 0.40 SD (95% CI = 0.34, 0.46) and 368 

0.39 SD (95% CI = 0.38, 0.39) lower levels of total cholesterol in very large HDL in MR and 369 

observational analyses, respectively. There was also evidence that higher BMI increased levels 370 

of several amino acids including valine, isoleucine, leucine, tyrosine, and phenylalanine 371 

(Supplementary Table 6). For example, higher BMI led to 0.23 SD (95% CI = 0.19, 0.27) and 372 

0.26 SD (95% CI = 0.25, 0.27) higher levels of valine in MR and observational analyses, 373 

respectively.  374 

 375 

Association between BMI-associated metabolites and endometrial cancer (Part III) 376 

Of the 165 BMI-associated metabolites, 25 metabolites (representing 27 adiposity-377 

metabolite-EC associations) were directionally consistent with an intermediate role in the 378 

association between BMI and overall EC (2 associations), endometrioid EC (1 association) and 379 

non-endometrioid EC (24 associations) from MR analyses (Figure 4 and Supplementary Figure 380 
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3; Supplementary Table 8). Observational analyses were only possible for overall EC. The two 381 

BMI-associated metabolites (phospholipid to total lipids ratio in medium VLDL and cholesteryl 382 

esters to total lipids ratio in medium HDL) had directions of effects consistent with MR 383 

analyses in the fully adjusted observational analysis (Supplementary Table 9). 384 

 385 

Of the 25 BMI-associated metabolites, 2 were associated with two EC outcomes in the MR 386 

analyses: phospholipids to total lipids ratio in medium VLDL was associated with overall (OR 387 

= 0.87; 95% CI = 0.75, 1.00) and endometrioid EC (OR = 0.85, 95% CI = 0.72, 0.99) and 388 

cholesteryl esters to total lipids ratio in medium HDL was associated with overall (OR = 0.86, 389 

95% CI = 0.75, 0.98) and non-endometrioid EC (OR = 0.61, 95% CI = 0.44, 0.85). The remaining 390 

23 metabolites - mainly of the lipoprotein subclasses - were associated with just one EC 391 

outcome, which was predominantly non-endometrioid cancer. For example, the largest 392 

positive and negative effects were observed for the association between cholesteryl esters to 393 

total lipids ratio in medium LDL (OR = 1.85; 95% CI = 1.15, 2.98) and total esterified cholesterol 394 

(OR = 0.57; 95% CI = 0.36, 0.90) and non-endometrioid cancer using the IVW-MRE model 395 

(Figure 4).  396 

 397 

Examining the intermediate role of metabolites in the effect of adiposity on EC: Multivariable MR 398 

analyses (Part IV) 399 

We used MVMR to investigate whether the 25 BMI-associated metabolites were potential 400 

intermediates of the effect of BMI on EC risk. In MVMR, there was little evidence that the 401 

association of BMI with overall and endometrioid EC was strongly attenuated following 402 

adjustment for most metabolites (Figure 5). For non-endometrioid EC, the association of BMI 403 

with non-endometrial cancer was attenuated following adjustment for various metabolites 404 

(Figure 5); for example, the univariable MR OR for non-endometrioid EC per 1 SD higher BMI 405 

was 2.51 (95%CI = 1.47, 4.29), whereas the MVMR OR for non-endometrioid EC per 1 SD 406 

increase in BMI was 1.18 (95%CI = 0.53, 2.66) after adjusting for free cholesterol to total lipids 407 

ratio in medium LDL. The conditional F statistics for BMI and metabolites instruments are 408 

presented in Supplementary Table 10. 409 
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 410 

Examining off-target effects  411 

Given the highly pleiotropic nature of the metabolite instruments, it is possible that the 412 

instruments might be proxying other common, but unmeasured, biological pathways rather 413 

than having a direct effect through the metabolites. Using a commonly used catalogue of 414 

genetic association results (PhenoScanner47,48), we conducted a phenome scan for the genetic 415 

instruments proxying metabolites potentially underlying the adiposity-EC relationship and 416 

compared the traits association profiles with those of randomly selected metabolites. We 417 

identified a larger than expected proportion of instruments associated with several lipid traits 418 

including HDL, LDL, triglycerides and total cholesterol, as well as anthropometric (height and 419 

adiposity) and blood cell traits for the metabolites underlying the adiposity-EC relationship 420 

compared to the randomly selected metabolites. This suggests that the metabolite 421 

instruments could be proxying for or are a response read-out of other potentially shared 422 

biological pathways (Figure 6).   423 

 424 

Discussion 425 

This study aimed to identify potential metabolic intermediates of the effects of adiposity on 426 

EC risk using MR and observational analyses. Higher BMI increased risk of overall EC and EC 427 

stratified by histological subtypes. BMI was associated with numerous metabolites; 25 of 428 

which were also found to increase EC risk.  There was  evidence from both two-step and 429 

multivariable MR analyses that the effect of BMI on EC was mediated strongly by several lipid 430 

metabolites; however, further bioinformatic analysis highlighted numerous potential 431 

pleiotropic and shared mechanisms that could potentially explain associations and patterns 432 

of intermediate effect.  433 

 434 

Adiposity is a well-recognised risk factor for EC49–51. Our analyses found that higher BMI and 435 

WHR were positively associated with EC. In contrast, in MR analyses, we only found strong 436 

evidence that higher BMI increased EC risk. This is consistent with findings from recent MR 437 

studies where genetically elevated BMI, but not WHR, was found to be causally linked to 438 

EC6,8,52,53. It is well-established in the literature that obesity is associated with both 439 

endometrioid and non-endometrioid EC, with stronger associations of an effect on 440 
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endometrioid EC, as compared to non-endometrioid EC6,8,52,54–60. Interestingly, the effect of 441 

BMI on non-endometrioid EC was slightly greater than endometrioid EC in our study. 442 

Although rarer, non-endometrioid tumours are more aggressive and have a poorer prognosis. 443 

Little is known about the etiology of non-endometrioid EC and the association with obesity 444 

warrants further investigation. WHR is widely used as a proxy measure of central adiposity 445 

and, notwithstanding variation in the statistical performance of analyses here and the impact 446 

of measurement error and the genetic architecture of these traits on the nature of MR 447 

analyses, these findings may suggest that central adiposity may be less relevant for EC risk 448 

than overall adiposity. This is supported by a recent MR study which found little evidence for 449 

a causal link between trunk fat ratio (proxy for abdominal adiposity) and EC but found strong 450 

evidence that BMI and arm fat ratio (proxy for overall body fat) had a strong positive effect 451 

on EC53. 452 

 453 

Adiposity leads to perturbations in systemic metabolism which may have an impact on EC16,61. 454 

In both MR and observational analyses, BMI was associated with a wide array of metabolites; 455 

the effect estimates for a majority of metabolites (including HDL, VLDL, triglycerides, 456 

apolipoproteins A and B, glycolysis-related metabolites and amino acids) were generally 457 

consistent in terms of direction and magnitude with previous studies15,41,62,63; however, the 458 

associations of BMI with several metabolites including LDL cholesterol, total cholesterol, 459 

sphingomyelin and fatty acids were inconsistent with patterns previously observed in an MR 460 

study conducted in young adults15. For example, our study found evidence of an inverse effect 461 

of BMI on LDL cholesterol which is in contrast to the previous MR study15 which supported a 462 

positive effect of BMI. It has been suggested that the inconsistencies could be partly 463 

attributable to higher prevalence of statin use in UK Biobank (22% of men and 12% of 464 

women)62. 465 

 466 

Of the BMI-associated metabolites,  25 metabolites were also associated with either overall, 467 

endometrioid or non-endometrioid EC. Our two-step and multivariable MR suggested that 468 

several lipid metabolites - the majority of which were metabolite ratios - could be potential 469 

intermediates between BMI and non-endometrioid EC risk. Cholesterol is an essential 470 

structural component of cell membranes and altered cholesterol metabolism can drive the 471 

onset and progression of cancer64. In the circulation and within cells, free cholesterol is 472 
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converted to cholesteryl esters (CE) by acylCoA-cholesteryl-acyl-transferase (ACAT). 473 

Numerous studies have shown that increased expression and activity of ACAT and subsequent 474 

accumulation of cholesteryl esters in cancer cells is linked to the development and 475 

progression of cancers, including endometrial cancer65,66. We did not find strong evidence 476 

that total cholesterol esters attenuated the effect of BMI on non-endometrioid EC risk in our 477 

MVMR analyses. Interestingly, we found evidence that cholesteryl esters to total lipids ratio 478 

in small and medium LDL were positively associated with both BMI and non-endometrioid EC 479 

risk while free cholesterol to total lipids ratio in medium and large LDL were inversely 480 

associated with BMI and in turn associated with reduced risk of non-endometrioid EC. These 481 

metabolite ratios could represent flux through a biochemical pathway67 and further studies 482 

could be conducted to investigate their role in the development of EC.  483 

 484 

Triglycerides, a major component of adipose tissues, are often elevated in adiposity and have 485 

been suggested to drive EC development either directly or indirectly through deregulation of 486 

peroxisome proliferator-activated receptors (PPARs)68. We observed that triglycerides in LDL 487 

and triglycerides to total lipids ratio in VLDL, LDL and LDL particles were positively associated 488 

with both BMI and non-endometrioid endometrial cancer risk. The positive relationship 489 

between triglycerides and endometrial cancer risk is consistent with several observational 490 

studies68–71; however, a recent Mendelian randomization analysis study found little evidence 491 

of a causal link between the role of triglycerides in the development of both endometrioid 492 

and non-endometrioid EC72. To this end, further research is required to clarify the role of 493 

triglycerides in non-endometrioid EC development. 494 

 495 

Understanding how metabolites may be potential intermediates between risk factors and 496 

disease outcomes is a compelling research topic. However, major challenges persist for 497 

identifying instruments to proxy circulating metabolites due to the complex genetic 498 

architecture of blood metabolites 44–46. First, owing to the high correlational structure of many 499 

metabolites, instruments for metabolites are often associated with other metabolites46,73. 500 

Second, due to the high degree of pleiotropy (or basic biological overlap) for metabolite 501 

instruments with other modifiable risk factors and disease endpoints, it is often not 502 

straightforward to determine the exact molecular mechanism by which they impact the 503 

outcome. Indeed, when considering whether we are reliably instrumenting the effect of BMI-504 
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associated metabolites on EC, we identified other shared pathways including height and 505 

several adiposity and blood cell traits that could influence associations with EC. This suggests 506 

that when compared with a (hypothetically null) set of randomly selected metabolites, 507 

instruments for implicated metabolites could be flagging biological pathways that may be 508 

driving causal associations; however, importantly, it is difficult to distinguish whether the 509 

biological pathways highlighted are due to vertical pleiotropy (i.e., the mechanism by which 510 

the SNP influences the outcome is via metabolites) or horizontal pleiotropy (i.e., the SNP 511 

could influence the outcome through a pathway independent of metabolites). Our approach 512 

to the examination and characterisation of signal metabolites is conceptually similar to a cis-513 

versus-trans MR analysis of proteins that looks to clarify inference from MR methods through 514 

prior information available on the instruments in question. Using this approach, a recent 515 

study74 demonstrated that the observed relationship between small HDL particle count and 516 

sepsis were - in part - driven by potential confounding between interleukin 6 (IL-6) and HDL, 517 

where IL-6 signalling is the true mechanism. 518 

 519 

This work adds to the body of evidence suggesting a causal relationship between adiposity 520 

and adiposity-associated metabolites with overall, endometrioid, and non-endometrioid EC 521 

risk. In our study, we focussed predominantly on lipid-based metabolites identified via 1H-522 

NMR metabolomics rather than mass spectrometry, which is not yet available at sufficient 523 

scale. Mass spectrometry-based metabolomic analyses offers a broader representation of 524 

metabolites beyond lipid subclasses and there is a growing body of evidence that metabolites 525 

detected by mass spectrometry are altered in EC patients12,75. Future metabolomic studies 526 

using mass spectrometry should be conducted to comprehensively evaluate the role of 527 

metabolites as intermediates between adiposity and EC. 528 

 529 

Given the common shared genetic architecture, high correlation structure, and shared biology 530 

of metabolites, it is likely that a perturbation in any one metabolite does not happen in 531 

isolation. This is exemplified in recent work which has shown that the variance explained by 532 

a metabolite’s instrument is often greater for another45,73,76. Here, we use a naïve approach 533 

to instrumentation in a hypothesis generating analysis; however, given many metabolite 534 

instruments include only a handful of SNPs, statistical methods aiming to measure the 535 

potential effects of pleiotropy (e.g., MR-Egger) do not always lead to meaningful results. This 536 
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also applies to techniques designed to evaluate the effect of multiple correlated exposures 537 

(e.g., MVMR).  538 

 539 

In two-sample univariable MR analyses, sample overlap can bias estimates towards the 540 

confounded observational estimate (inflated type 1 error) in the presence of weak 541 

instruments in a manner proportional to the degree of overlap42. For our main analyses, we 542 

likely have 100% overlap between the adiposity and metabolites GWAS and up to a maximum 543 

5% overlap for both of these with the overall EC GWAS. However, given bias due to sample 544 

overlap is negligible in the presence of strong instruments77 and that the results across 545 

sensitivity analyses using non-overlapping samples were generally consistent with the main 546 

analyses, it is unlikely that estimates from our analyses are meaningfully impacted by such 547 

bias.  548 

 549 

Another limitation is the unrepresentative nature of UK Biobank (initial response rate ~5%)78 550 

and the potential for selection bias. Given the age of the UK Biobank participants, the 551 

prevalence of statin use is high (~16% in UK Biobank vs ~11% in the general UK adult 552 

population in 201479). For our MR analyses, we used summary-level data from the 1H-NMR 553 

metabolite GWAS conducted using data from UK Biobank. This approach limits the capacity 554 

to fully explore the effects of other factors such as age and medication use (including statin 555 

use and HRT), which may influence the association between adiposity traits, metabolites and 556 

EC.  Our analyses were limited to women of European ancestries; thus, these findings may 557 

not apply to individuals of other ancestries. Furthermore, given that we used the same 1H-558 

NMR data from UK Biobank for both our MR and observational analyses examining the 559 

associations between adiposity traits and metabolites, these analyses cannot be considered 560 

independent.  Replication of this study in other large cohort studies and in other ethnicities 561 

will allow a more robust characterisation of the metabolic profile associated with adiposity 562 

and the subsequent impact on EC.  563 

 564 

Conclusions 565 

Our study suggests that higher BMI causes a higher risk of overall and all histological subtypes 566 

of EC and variation in numerous circulating metabolites. Several of these metabolites showed 567 

relationships consistent with an intermediate role in the effect of BMI on non-endometrioid 568 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


EC from two-step and MVMR MR analyses; however, further bioinformatic analyses 569 

highlighted other potential shared mechanisms that could influence the risk of EC.   570 

  571 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Declarations 572 

DP receives consulting fees from Johnson & Johnson and Novo Nordisk and payments for 573 

lectures, presentations, and educational events from Johnson & Johnson, Medtronic, and 574 

Novo Nordisk. 575 

Ethics approval 576 

 577 

Author contributions 578 

MAL: conceptualization, data curation, formal analysis, investigation, methodology, project 579 

administration, validation, visualization, writing (original draft preparation), writing (review & 580 

editing) 581 

 582 

VT: conceptualization, data curation, formal analysis, investigation, methodology, project 583 

administration, validation, visualization, writing (original draft preparation), writing (review & 584 

editing) 585 

 586 

DP: resources, supervision, writing (review & editing) 587 

 588 

SW: writing (review & editing) 589 

 590 

LD: writing (review & editing) 591 

 592 

MJG: writing (review & editing) 593 

 594 

LJC: resources, supervision, writing (review & editing) 595 

 596 

KHW: resources, supervision, writing (review & editing) 597 

 598 

NJT: conceptualization, resources, supervision, writing (review & editing) 599 

 600 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Acknowledgments 601 

We would like to express our appreciation to UK Biobank participants and staff for providing 602 

the research community with this valuable source of data. This work used data from 603 

application number 16391.  604 

 605 

Code and data availability 606 

Univariable MR analyses were performed using TwoSampleMR33(version 0.4.22).;  607 

multivariable MR analyses were performed using MVMR)39 (version 0.3) R package; forest 608 

plots were created using ggforestplot (version 0.1)80 R package; circos plots were created 609 

using EpiViz81–83 (version 0.1) R package. All publicly available data, code, and results used in 610 

this work are available on GitHub: 611 

https://github.com/mattlee821/adiposity_metabolites_endometrial_cancer. This includes 612 

all exposure data used in all MR analyses. The full summary statistics for BMI and WHR are 613 

available from the GIANT consortium 614 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium_data_615 

files) and Zenodo (https://zenodo.org/record/1251813#.Yk7O25PMIUE), data files 4, 5, 7, and 616 

8. The full summary statistics for the endometrial cancer GWAS are available from the 617 

OpenGWAS database (https://gwas.mrcieu.ac.uk/datasets/); IDs for endometrial cancer 618 

GWAS: ebi-a-GCST006464, ebi-a-GCST006465, and ebi-a-GCST006466; This can be accessed 619 

via the TwoSampleMR (https://mrcieu.github.io/TwoSampleMR/) and ieugwasr 620 

(http://gwas-api.mrcieu.ac.uk/) R packages or directly from OpenGWAS in GWAS-VCF 621 

format50. The full summary statistics for the 1H-NMR metabolites will be made available at 622 

the University of Bristol data repository. The individual level data used in this work is not 623 

publicly available and can only be obtained from UK Biobank with an approved application. 624 

 625 

Funding 626 

This work was supported by the Wellcome Trust through a Wellcome Trust Investigator award 627 

to NJT (202802/Z/16/Z, 2016-2023). MAL is funded by a Medical Research Council GW4 628 

studentship (grant number: MR/R502340/1). NJT was a Wellcome Trust Investigator 629 

(202802/Z/16/Z, 2016-2023), is the PI of the Avon Longitudinal Study of Parents and Children 630 

(MRC & WT 217065/Z/19/Z), is supported by the University of Bristol NIHR Biomedical 631 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Research Centre (BRC-1215-2001), the MRC Integrative Epidemiology Unit (MC_UU_00011/1) 632 

and works within the CRUK Integrative Cancer Epidemiology Programme (C18281/A29019). 633 

VT, NJT, SW, LD and MG are supported by the Cancer Research UK (grant number: PRCPJT-634 

May22\100028). L.J.C. was supported by N.J.T.’s Wellcome Investigator Award 635 

(202802/Z/16/Z) 2016-2023, and by MC_UU_00032/1 since 2023. All authors work in the 636 

MRC Integrative Epidemiology Unit at the University of Bristol, which is supported by the 637 

Medical Research Council (grant numbers: MC_UU_00011/1-7) and the University of Bristol. 638 

KHW is supported by the University of Bristol and Cancer Research UK [grant number 639 

RCCPDF\100007].  DJP has been funded by the Royal College of Surgeons of England. He 640 

receives consulting fees from Johnson & Johnson and Novo Nordisk and payments for 641 

lectures, presentations, and educational events from Johnson & Johnson, Medtronic, 642 

and Novo Nordisk. This research was funded in whole, or in part, by the Wellcome Trust 643 

[202802/Z/16/Z, 217065/Z/19/Z]. For the purpose of Open Access, the author has applied a 644 

CC BY public copyright licence to any Author Accepted Manuscript version arising from this 645 

submission. 646 

 647 

Disclaimer 648 

Where authors are identified as personnel of the International Agency for Research on 649 

Cancer/World Health Organization, the authors alone are responsible for the views expressed 650 

in this article and they do not necessarily represent the decisions, policy or views of the 651 

International Agency for Research on Cancer/World Health Organization. 652 

 653 

Conflict of interest 654 

None declared 655 

  656 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


References 657 

1. Bray, F. et al. Global cancer statistics 2018: GLOBOCAN. CA Cancer J Clin (2018) 658 
doi:10.3322/caac.21492. 659 

2. Tavassoli, F. a & Devilee, P. Classification of Tumours. Pathology and Genetics of 660 
Tumours of the Breast and Female Genital Organs. World Health Organization (2003). 661 

3. Amant, F. et al. Endometrial cancer. The Lancet 366, 491–505 (2005). 662 
4. Aune, D. et al. Anthropometric factors and endometrial cancer risk: A systematic 663 

review and dose-response meta-analysis of prospective studies. Annals of Oncology 664 
vol. 26 Preprint at https://doi.org/10.1093/annonc/mdv142 (2015). 665 

5. Smith, G. D. & Ebrahim, S. ‘Mendelian randomization’: Can genetic epidemiology 666 
contribute to understanding environmental determinants of disease? International 667 
Journal of Epidemiology vol. 32 Preprint at https://doi.org/10.1093/ije/dyg070 (2003). 668 

6. Painter, J. N. et al. Genetic risk score mendelian randomization shows that obesity 669 
measured as body mass index, but not waist:hip ratio, is causal for endometrial cancer. 670 
Cancer Epidemiology Biomarkers and Prevention 25, (2016). 671 

7. Lee, M. A. et al. Systematic review and meta-analyses: What has the application of 672 
Mendelian randomization told us about the causal effect of adiposity on health 673 
outcomes? Wellcome Open Res 7, (2022). 674 

8. O’Mara, T. A. et al. Identification of nine new susceptibility loci for endometrial 675 
cancer. Nat Commun 9, 3166 (2018). 676 

9. Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: The next generation1. Hanahan, 677 
D. & Weinberg, R. A. Hallmarks of cancer: The next generation. Cell 144, 646–674 678 
(2011). Cell 144, (2011). 679 

10. Njoku, K. et al. Metabolomic Biomarkers for the Detection of Obesity-Driven 680 
Endometrial Cancer. Cancers vol. 13 Preprint at 681 
https://doi.org/10.3390/cancers13040718 (2021). 682 

11. Yang, X. & Wang, J. L. The role of metabolic syndrome in endometrial cancer: A 683 
review. Frontiers in Oncology vol. 9 Preprint at 684 
https://doi.org/10.3389/fonc.2019.00744 (2019). 685 

12. Dossus, L. et al. Prospective analysis of circulating metabolites and endometrial cancer 686 
risk. Gynecol Oncol 162, 475–481 (2021). 687 

13. Kahn, S. E., Hull, R. L. & Utzschneider, K. M. Mechanisms linking obesity to insulin 688 
resistance and type 2 diabetes. Nature vol. 444 Preprint at 689 
https://doi.org/10.1038/nature05482 (2006). 690 

14. Rosen, E. D. & Spiegelman, B. M. What we talk about when we talk about fat. Cell 691 
vol. 156 Preprint at https://doi.org/10.1016/j.cell.2013.12.012 (2014). 692 

15. Würtz, P. et al. Metabolic Signatures of Adiposity in Young Adults: Mendelian 693 
Randomization Analysis and Effects of Weight Change. PLoS Med 11, (2014). 694 

16. Kliemann, N. et al. Metabolic signatures of greater body size and their associations 695 
with risk of colorectal and endometrial cancers in the European Prospective 696 
Investigation into Cancer and Nutrition. BMC Med 19, (2021). 697 

17. Relton, C. L. & Davey Smith, G. Two-step epigenetic mendelian randomization: A 698 
strategy for establishing the causal role of epigenetic processes in pathways to disease. 699 
Int J Epidemiol 41, (2012). 700 

18. Davey Smith, G. et al. STROBE-MR: Guidelines for strengthening the reporting of 701 
Mendelian randomization studies. PeerJ Prepr 7, (2019). 702 

19. von Elm, E. et al. The strengthening the reporting of observational studies in 703 
epidemiology (STROBE) statement: Guidelines for reporting observational studies. 704 
International Journal of Surgery 12, (2014). 705 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


20. Sudlow, C. et al. UK Biobank: An Open Access Resource for Identifying the Causes 706 
of a Wide Range of Complex Diseases of Middle and Old Age. PLoS Med 12, (2015). 707 

21. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. 708 
Nature 562, (2018). 709 

22. Collins, R. What makes UK Biobank special? The Lancet 379, 1173–1174 (2012). 710 
23. Julkunen, H., Cichońska, A., Slagboom, P. E., Würtz, P. & Initiative, N. H. U. K. B. 711 

Metabolic biomarker profiling for identification of susceptibility to severe pneumonia 712 
and COVID-19 in the general population. Elife 10, e63033 (2021). 713 

24. Würtz, P. et al. Quantitative serum nuclear magnetic resonance metabolomics in large-714 
scale epidemiology: a primer on-omic technologies. Am J Epidemiol 186, 1084–1096 715 
(2017). 716 

25. Pulit, S. L. et al. Meta-analysis of genome-wide association studies for body fat 717 
distribution in 694 649 individuals of European ancestry. Hum Mol Genet 28, 166–174 718 
(2019). 719 

26. Soininen, P. et al. High-throughput serum NMR metabonomics for cost-effective 720 
holistic studies on systemic metabolism. Analyst (2009) doi:10.1039/b910205a. 721 

27. Howie, B., Marchini, J. & Stephens, M. Genotype Imputation with Thousands of 722 
Genomes. G3&amp;#58; Genes|Genomes|Genetics 1, 457–470 (2011). 723 

28. Huang, J. et al. Improved imputation of low-frequency and rare variants using the 724 
UK10K haplotype reference panel. Nat Commun 6, 8111 (2015). 725 

29. Mitchell, R, Hemani, G, Dudding, T, Paternoster, L. UK Biobank Genetic Data: MRC-726 
IEU Quality Control, Version 1. (2017) 727 
doi:https://doi.org/10.5523/bris.3074krb6t2frj29yh2b03x3wxj. 728 

30. Mitchell R, Hemani G, Dudding T, Corbin L, Harrison S, P. L. UK Biobank Genetic 729 
Data: MRC-IEU Quality Control, version 2. 730 
https://doi.org/10.5523/bris.1ovaau5sxunp2cv8rcy88688v (2019). 731 

31. Anderson, C. A. et al. Data quality control in genetic case-control association studies. 732 
Nat Protoc (2010) doi:10.1038/nprot.2010.116. 733 

32. Loh, P. R. et al. Efficient Bayesian mixed-model analysis increases association power 734 
in large cohorts. Nat Genet (2015) doi:10.1038/ng.3190. 735 

33. Hemani, G. et al. The MR-Base platform supports systematic causal inference across 736 
the human phenome. Elife 7, e34408 (2018). 737 

34. Hemani, G., Tilling, K. & Davey Smith, G. Orienting the causal relationship between 738 
imprecisely measured traits using GWAS summary data. PLoS Genet 13, e1007081 739 
(2017). 740 

35. Bowden, J., Davey Smith, G. & Burgess, S. Mendelian randomization with invalid 741 
instruments: effect estimation and bias detection through Egger regression. Int J 742 
Epidemiol 44, 512–525 (2015). 743 

36. Burgess, S. et al. Dissecting Causal Pathways Using Mendelian Randomization with 744 
Summarized Genetic Data: Application to Age at Menarche and Risk of Breast 745 
Cancer. Genetics 207, 481–487 (2017). 746 

37. Hartwig, F. P., Davey Smith, G. & Bowden, J. Robust inference in summary data 747 
Mendelian randomization via the zero modal pleiotropy assumption. Int J Epidemiol 748 
(2017) doi:10.1093/ije/dyx102. 749 

38. Sanderson, E., Davey Smith, G., Windmeijer, F. & Bowden, J. An examination of 750 
multivariable Mendelian randomization in the single-sample and two-sample summary 751 
data settings. Int J Epidemiol 48, 713–727 (2018). 752 

39. Sanderson, E., Spiller, W. & Bowden, J. Testing and correcting for weak and 753 
pleiotropic instruments in two-sample multivariable Mendelian randomization. Stat 754 
Med n/a, (2021). 755 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


40. Locke, A. E. et al. Genetic studies of body mass index yield new insights for obesity 756 
biology. Nature 518, 197–206 (2015). 757 

41. Bull, C. J. et al. Adiposity, metabolites, and colorectal cancer risk: Mendelian 758 
randomization study. BMC Med 18, (2020). 759 

42. Burgess, S., Davies, N. M. & Thompson, S. G. Bias due to participant overlap in two-760 
sample Mendelian randomization. Genet Epidemiol 40, (2016). 761 

43. Shungin, D. et al. New genetic loci link adipose and insulin biology to body fat 762 
distribution. Nature 518, 187–196 (2015). 763 

44. Gallois, A. et al. A comprehensive study of metabolite genetics reveals strong 764 
pleiotropy and heterogeneity across time and context. Nat Commun 10, (2019). 765 

45. Smith, C. J. et al. Integrative analysis of metabolite GWAS illuminates the molecular 766 
basis of pleiotropy and genetic correlation. Elife 11, (2022). 767 

46. Lotta, L. A. et al. Cross-platform genetic discovery of small molecule products of 768 
metabolism and application to clinical outcomes. Nat Genet 53, (2021). 769 

47. Kamat, M. A. et al. PhenoScanner V2: An expanded tool for searching human 770 
genotype-phenotype associations. Bioinformatics 35, (2019). 771 

48. Staley, J. R. et al. PhenoScanner: A database of human genotype-phenotype 772 
associations. Bioinformatics 32, (2016). 773 

49. Raglan, O. et al. Risk factors for endometrial cancer: An umbrella review of the 774 
literature. International Journal of Cancer vol. 145 Preprint at 775 
https://doi.org/10.1002/ijc.31961 (2019). 776 

50. Kyrgiou, M. et al. Adiposity and cancer at major anatomical sites: Umbrella review of 777 
the literature. BMJ (Online) vol. 356 Preprint at https://doi.org/10.1136/bmj.j477 778 
(2017). 779 

51. Kalliala, I. et al. Obesity and gynaecological and obstetric conditions: umbrella review 780 
of the literature. BMJ 359, (2017). 781 

52. Nead, K. T. et al. Evidence of a Causal Association between Insulinemia and 782 
Endometrial Cancer: A Mendelian Randomization Analysis. J Natl Cancer Inst 107, 783 
(2015). 784 

53. Freuer, D. et al. Body fat distribution and risk of breast, endometrial, and ovarian 785 
cancer: A two-sample mendelian randomization study. Cancers (Basel) 13, (2021). 786 

54. Hazelwood, E. et al. Identifying molecular mediators of the relationship between body 787 
mass index and endometrial cancer risk: a Mendelian randomization analysis. BMC 788 
Med 20, (2022). 789 

55. Renehan, A. G. et al. Incident cancer burden attributable to excess body mass index in 790 
30 European countries. Int J Cancer 126, (2010). 791 

56. Bhaskaran, K. et al. Body-mass index and risk of 22 specific cancers: a population-792 
based cohort study of 5·24 million UK adults. The Lancet 384, (2014). 793 

57. Sollberger, T. L., Gavrilyuk, O. & Rylander, C. Excess body weight and incidence of 794 
type 1 and type 2 endometrial cancer: The norwegian women and cancer study. Clin 795 
Epidemiol 12, (2020). 796 

58. Setiawan, V. W. et al. Type i and II endometrial cancers: Have they different risk 797 
factors? Journal of Clinical Oncology 31, (2013). 798 

59. Yang, H. P. et al. Endometrial cancer risk factors by 2 main histologic subtypes. Am J 799 
Epidemiol 177, (2013). 800 

60. Lauby-Secretan, B. et al. Body Fatness and Cancer — Viewpoint of the IARC 801 
Working Group. New England Journal of Medicine 375, (2016). 802 

61. O’Flanagan, C. H., Bowers, L. W. & Hursting, S. D. A weighty problem: Metabolic 803 
perturbations and the obesity-cancer link. Hormone Molecular Biology and Clinical 804 
Investigation vol. 23 Preprint at https://doi.org/10.1515/hmbci-2015-0022 (2015). 805 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


62. Bell, J. A. et al. Effects of general and central adiposity on circulating lipoprotein, 806 
lipid, and metabolite levels in UK Biobank: A multivariable Mendelian randomization 807 
study. The Lancet Regional Health - Europe 21, (2022). 808 

63. Wulaningsih, W., Proitsi, P., Wong, A., Kuh, D. & Hardy, R. Metabolomic correlates 809 
of central adiposity and earlier-life body mass index. J Lipid Res 60, (2019). 810 

64. Riscal, R., Skuli, N. & Simon, M. C. Even Cancer Cells Watch Their Cholesterol! 811 
Molecular Cell vol. 76 Preprint at https://doi.org/10.1016/j.molcel.2019.09.008 (2019). 812 

65. Omsjø, I. H. & Norum, K. R. CHOLESTEROL ESTERIFICATION IN HUMAN 813 
SECRETORY ENDOMETRIUM AND IN ENDOMETRIAL CANCER TISSUE: 814 
Demonstration of Microsomal ACYL‐COA‐Cholesterol ACYL‐transferase (ACAT) 815 
Activity. Acta Obstet Gynecol Scand 64, (1985). 816 

66. Ayyagari, V. N. et al. Evaluation of sterol-o-acyl transferase 1 and cholesterol ester 817 
levels in plasma, peritoneal fluid and tumor tissue of patients with endometrial cancer: 818 
A pilot study. Oncol Lett 25, (2023). 819 

67. Petersen, A. K. et al. On the hypothesis-free testing of metabolite ratios in genome-820 
wide and metabolome-wide association studies. BMC Bioinformatics 13, (2012). 821 

68. Lindemann, K., Vatten, L. J., Ellstrøm-Engh, M. & Eskild, A. Serum lipids and 822 
endometrial cancer risk: Results from the HUNT-II study. Int J Cancer 124, (2009). 823 

69. Trabert, B. et al. Metabolic syndrome and risk of endometrial cancer in the United 824 
States: A study in the SEER-medicare linked database. Cancer Epidemiology 825 
Biomarkers and Prevention 24, (2015). 826 

70. Bjørge, T. et al. Metabolic syndrome and endometrial carcinoma. Am J Epidemiol 171, 827 
(2010). 828 

71. Seth, D. et al. Lipid profiles and the risk of endometrial cancer in the Swedish amoris 829 
study. Int J Mol Epidemiol Genet 3, (2012). 830 

72. Kho, P. F. et al. Mendelian randomization analyses suggest a role for cholesterol in the 831 
development of endometrial cancer. Int J Cancer 148, (2021). 832 

73. Guida, F. et al. The blood metabolome of incident kidney cancer: A case-control study 833 
nested within the MetKid consortium. PLoS Med 18, (2021). 834 

74. Hamilton, F., Pedersen, K. M., Ghazal, P., Nordestgaard, B. G. & Smith, G. D. Low 835 
levels of small HDL particles predict but do not influence risk of sepsis. Crit Care 27, 836 
(2023). 837 

75. Audet-Delage, Y., Villeneuve, L., Grégoire, J., Plante, M. & Guillemette, C. 838 
Identification of metabolomic biomarkers for endometrial cancer and its recurrence 839 
after surgery in postmenopausal women. Front Endocrinol (Lausanne) 9, (2018). 840 

76. Surendran, P. et al. Rare and common genetic determinants of metabolic individuality 841 
and their effects on human health. Nat Med 28, (2022). 842 

77. Sadreev, I. I. et al. Navigating sample overlap, winner’s curse and weak instrument 843 
bias in Mendelian randomization studies using the UK Biobank. medRxiv (2021). 844 

78. Munafò, M. R., Tilling, K., Taylor, A. E., Evans, D. M. & Smith, G. D. Collider scope: 845 
When selection bias can substantially influence observed associations. Int J Epidemiol 846 
47, (2018). 847 

79. Curtis, H. J., Walker, A. J., MacKenna, B., Croker, R. & Goldacre, B. Prescription of 848 
suboptimal statin treatment regimens: A retrospective cohort study of trends and 849 
variation in English primary care. British Journal of General Practice 70, (2020). 850 

80. Scheinin, I. , et al. ggforestplot: Forestplots of  Measures of Effects and Their 851 
Confidence Intervals. 852 
https://nightingalehealth.github.io/ggforestplot/index.html,  https://github.com/nighting853 
alehealth/ggforestplot. (2023). 854 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


81. Lee M. A. et al. Epiviz: an implementation of Circos plots for epidemiologists. 855 
https://github.com/mattlee821/EpiViz (2020). 856 

82. Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. circlize implements and enhances 857 
circular visualization in R . Bioinformatics 30, 2811–2812 (2014). 858 

83. Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in 859 
multidimensional genomic data. Bioinformatics 32, 2847–2849 (2016). 860 

  861 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.18.24305987doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.18.24305987
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table 1. Baseline characteristics of UK Biobank participants included in our study  
 N 

(Cases/Control) 
 

Endometrial cancer 
Cases 

(N=1,005) 

Controls 
(N=215,339) 

Continuous variables    
Age at assessment (year) 1,005/215,339 59.63 (6.43) 55.83 (8.02) 
Body mass index (kg/m2), mean (SD) 979/211,756 30.33 (7.07) 27.06 (5.17) 
Waist to Hip Ratio, mean (SD) 1,000/214,835 0.84 (0.07) 0.82 (0.07) 
Age at first birth (year) 632/145,456 24.54 (4.23) 25.38 (4.64) 
Age at last birth (year) 632/145,149 29.32 (4.55) 30.35 (4.90) 
Menarche age (year) 971/208,424 12.64 (1.55) 12.98 (1.62) 
Categorical variables    
Smoking 997/214,285   
    Never  643 (64.49%) 129,857 (60.60%) 
    Previous  303 (30.39%) 65,775 (30.70%) 
    Current  51 (5%) 18,653 (8.70%) 
Alcohol intake 1,002/214,865   
    Daily or almost daily  143 (14.27%) 34,152 (15.89%) 
    3-4 times a week  160 (15.97%) 44,464 (20.69%) 
    Once or twice a week  252 (25.15%) 55,476 (25.82%) 
    1-3 times a month  139 (13.87%) 28,241 (13.14%) 
    Special occasions only  193 (19.26%) 32,134 (14.96%) 
    Never  115 (11.48%) 20,398 (9.49%) 
Diabetes 1,001/214,512   
    Yes  90 (8.99%) 7,807 (2.64%) 
    No  911 (91%) 206,705 (96.36%) 
Education 774/177,857   
    College/University degree  304 (39.28%) 68,385 (38.45%) 
    A levels/AS levels or equivalent  106 (13.70%) 25,756 (14.48%) 
    O levels/GCSEs or equivalent  215 (27.78%) 49,943 (28.08%) 
    CSEs or equivalent  49 (6.33%) 11,924 (6.70%) 
    NVQ or HND or HNC or equivalent  33 (4.26%) 9,676 (5.44%) 
    Other professional qualifications  67 (8.66%) 12,173 (6.84%) 
Physical activity (No. of days/week of 
vigorous physical activity) 

923/202,664   

    0 days  394 (42.69%) 80,448 (39.70%) 
    1 days  156 (16.90%) 29,567 (14.59%) 
    2 days  148 (16.03%) 32,675 (16.12%) 
    3 days  106 (11.48%) 28,260 (13.94%) 
    4 days  46 (4.98%) 12,212 (6.02%) 
    5 days  36 (3.9%) 10,652 (5.26%) 
    6 days  12 (1.3%) 2,676 (1.32%) 
    7 days  25 (2.71%) 6,714 (3.31%) 
Had Menopause 1,002/214,649   
    Yes  822 (82.04%) 126,379 (58.88%) 
    No  180 (17.96%) 88,270 (41.12%) 
Ever used HRT 999/214,185   
    Yes  382 (38.24%) 78,769 (36.78%) 
    No  617 (61.76%) 135,416 (63.22%) 

kg, kilograms; m2, meters squared; SD, standard deviation; p, p value; HRT, hormone replacement therapy; N, sample size 
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Table 2. Observational estimates of the association between adiposity measures and endometrial cancer.   
 

Exposure Outcome Adjusted for age and centre Fully adjusted 
  OR 

(95%CI) 
p OR 

(95%CI) 
p 

BMI Incident EC 1.61 
(1.49, 1.75) 

7.63x10-30 1.37 
(1.19, 1.57) 

1.07x10-5 

WHR Incident EC 1.23 
(1.14, 1.34) 

4.30x10-07 1.15 
(1.01, 1.32) 

0.03 

BMI, Body mass index; WHR, waist hip ratio; EC, endometrial cancer; OR, odds ratio; CI, confidence interval; p, p value 
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Figure 1. Study overview.  
This study has four main analyses that were performed sequentially to estimate: (Part I) the effect of adiposity measures on EC, (Part II) the effect of 
adiposity measures on metabolites, (Part III) the effect of adiposity-associated metabolites and EC, and (Part IV) the potential intermediate role of 
adiposity-associated metabolites in the relationship between adiposity and EC (identified in Part II and III).  Conventional observational analyses were 
performed for Part I-III; Mendelian randomization analyses were performed for Parts I-IV.  

(IV) 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2. Mendelian randomization and observational estimates of the effect of BMI and WHR 
on endometrial cancer 
The forest plot shows the estimates of the association between BMI and WHR with overall, 
endometrioid and non-endometrioid endometrial cancer from MR analyses (IVW method) using 
summary data from the Endometrial Cancer Association Consortium (ECAC) (n=12,906 
endometrial cancer cases and 108,979 controls) and conventional observational analyses using 
individual level data from UK Biobank. Symbols represent point estimates from individual 
analyses. Horizontal lines represent 95% confidence intervals. Close circles represent p<0.05.     
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Figure 3. Mendelian randomization estimates of the effect of BMI on metabolites 
The volcano plot shows the estimates of the effect of BMI on circulating metabolites from 
Mendelian randomization analyses. Metabolites associated with BMI at p<0.05 after correcting 
for multiple testing using Bonferroni correction are labelled.   
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Figure 4. Estimates of the causal effect of the BMI-associated metabolites on endometrial cancer 
risk 
The forest plot shows the estimate of the causal effect of the BMI-associated metabolites and overall, 
endometrioid and non-endometrioid endometrial cancer based on two-sample MR (IVW method) 
from female-specific analyses. Only metabolites associated with endometrial cancer with a p<0.05 are 
shown in this figure. Symbols represent point estimates from individual analyses. Horizontal lines 
represent 95% confidence intervals. Squares represent metabolites that are positively associated with 
BMI and circles represent metabolites that are negatively associated with BMI.  
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Figure 5. Multivariable mendelian randomization estimates of the direct effect of BMI on endometrial cancer after adjustment for various BMI-
associated metabolites 
The forest plot shows the estimate of the direct causal effect of BMI on overall, endometrioid and non-endometrioid endometrial cancer based on 
multivariable MR analyses after adjustment for various metabolites that were associated with A) increased association with both BMI and 
endometrial cancer or B) decreased association with both BMI and endometrial cancer. Symbols represent point estimates of the direct effect of BMI 
on endometrial cancer after adjustment for various BMI-associated metabolites separately from multivariable MR analyses. Dotted red line 
represents the estimates of the indirect effect of BMI on endometrial cancer obtained from univariable IVW analyses.  
 
 
 
 

mhdltgpct 
xxlvldlce 
xsvldltgpct 
mldltgpct 
mldlcepct 
sldlcepct 
ldltg 
xlvldlfc 
xlvldll 
svldltgpct 

lldlfc 
totalc 
totalce 
svldlfcpct 
mhdlcepct 
sphingomyelins 
idlc 
xsvldlcpct 
idlcpl 
mvldlfcpct 
mhdlcpct 
sldlplpct 
lldlfcpct 
mldlfcpct 

Metabolites adjusted  
for in MVMR models 

Metabolites adjusted  
for in MVMR models 

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.5 1.0 2.0 3.0 5.0

BMI

BMI

BMI

Endometrial cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.5 1.0 2.0 3.0 5.0

Endometrioid cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.5 1.0 2.0 3.0 5.0

Non−endometrioid cancer

lldlfc
totalc
totalce
svldlfcpct
mhdlcepct
sphingomyelins
idlc
xsvldlcpct
idlpl
mvldlfcpct
mhdlcpct
sldlplpct
lldlfcpct

mldlfcpct
mhdltgpct
xxlvldlce
xsvldltgpct
mldltgpct
mldlcepct
sldlcepct
ldltg
xlvldlfc
xlvldll
svldltgpct
BMI

Metabolites adjusted  
for in MVMR models 

mvldlplpct 

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.5 1.0 2.0 3.0 5.0

BMI

BMI

BMI

Endometrial cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.5 1.0 2.0 3.0 5.0

Endometrioid cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.5 1.0 2.0 3.0 5.0

Non−endometrioid cancer

lldlfc
totalc
totalce
svldlfcpct
mhdlcepct
sphingomyelins
idlc
xsvldlcpct
idlpl
mvldlfcpct
mhdlcpct
sldlplpct
lldlfcpct

mldlfcpct
mhdltgpct
xxlvldlce
xsvldltgpct
mldltgpct
mldlcepct
sldlcepct
ldltg
xlvldlfc
xlvldll
svldltgpct
BMI

Metabolites adjusted  
for in MVMR models 

mvldlplpct 

mhdlcepct 

OR 
(95%CI) 

OR 
(95%CI) 

OR 
(95%CI) 

A) 

B) 

Medium HDL ratios 

Small VLDL ratios 

Very large VLDL 

Triglycerides 

Very small VLDL ratios 

Chylomicrons and extremely large VLDL 

Medium VLDL ratios 

IDL 

Other lipids 

Cholesterol 

Cholesteryl esters 

Small LDL ratios 

Medium LDL ratios 

Large LDL ratios 

Large LDL 

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.51.02.03.05.0

BMI

BMI

BMI

Endometrial cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.51.02.03.05.0

Endometrioid cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.51.02.03.05.0

Non−endometrioid cancer

lldlfc
totalc
totalce
svldlfcpct
mhdlcepct
sphingomyelins
idlc
xsvldlcpct
idlpl
mvldlfcpct
mhdlcpct
sldlplpct
lldlfcpct

mldlfcpct
mhdltgpct
xxlvldlce
xsvldltgpct
mldltgpct
mldlcepct
sldlcepct
ldltg
xlvldlfc
xlvldll
svldltgpct
BMI

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.51.02.03.05.0

BMI

BMI

BMI

Endometrial cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.51.02.03.05.0

Endometrioid cancer

Multivariable MR−negative

Multivariable MR−positive

Two Sample MR

0.51.02.03.05.0

Non−endometrioid cancer

lldlfc
totalc
totalce
svldlfcpct
mhdlcepct
sphingomyelins
idlc
xsvldlcpct
idlpl
mvldlfcpct
mhdlcpct
sldlplpct
lldlfcpct

mldlfcpct
mhdltgpct
xxlvldlce
xsvldltgpct
mldltgpct
mldlcepct
sldlcepct
ldltg
xlvldlfc
xlvldll
svldltgpct
BMI

Metabolite classes 



 
A) B) 
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Figure 6. Traits associated with genetic instruments for metabolites underlying effect of BMI on endometrial cancer 
A) The blue bars represent the proportion of genetic instruments associated with the top 30 traits identified in PhenoScanner for 
metabolites underlying the effect of BMI on endometrial cancer relative to the negative control (grey bars). The negative control was 
obtained by iteratively (N=100) looking up traits associated with instruments for 25 randomly selected metabolites not underlying the 
association between BMI and endometrial cancer; B) the histograms represent the frequency of the number of SNPs associated with 
trait from the negative control analysis. The red line represents the mean of the number of SNPs associated with each trait for the 
negative control and the blue line represents the number of SNPs associated with the metabolites underlying the effect of BMI on 
endometrial cancer risk associated with each trait.   
 
 
 


