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Abstract 

The COVID-19 pandemic in New York City (NYC) was characterized by marked 

disparities in disease burdens across neighborhoods. Accurate neighborhood-level 

forecasts are critical for planning more equitable resource allocation; however, such 

spatially high-resolution forecasts remain scarce in operational use. Here, we analyze 

aggregated foot traffic data derived from mobile devices to measure the connectivity 

among 42 NYC neighborhoods driven by various human activities such as dining, 

shopping, and entertainment. Using real-world time-varying contact patterns in different 

place categories, we develop a parsimonious behavior-driven epidemic model that 

incorporates population mixing, indoor crowdedness, dwell time, and seasonality of virus 

transmissibility. This process-based model supports accurate modeling of neighborhood-

level SARS-CoV-2 transmission throughout 2020. In the best-fitting model, we estimate 

that the force of infection in indoor settings increases sublinearly with crowdedness and 

dwell time. Retrospective forecasting demonstrates that this behavior-driven model 

generates improved short-term forecasts in NYC neighborhoods. This model may be 

adapted for use with other respiratory pathogens sharing similar transmission routes. 
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Introduction 

In urban settings, COVID-19 has imposed differential disease and healthcare burdens 

across neighborhoods characterized by varying demographic and socioeconomic 

conditions (1–3). A case in point is New York City (NYC), where pronounced health 

disparities within the city have been reported (4–7). The stark difference in disease 

burdens requires the delivery of tailored services and support to local communities. 

Accurate forecasting of respiratory disease outbreaks at the neighborhood level can inform 

policymaking to design more equitable interventions and resource allocation in future 

epidemics. Nonetheless, generating such spatially high-resolution forecasts remain 

challenging due to the significant behavioral variability and interconnectedness among 

neighborhoods in metropolitan areas. 

The transmission dynamics of SARS-CoV-2 were collectively shaped by human behavior, 

seasonal variation in virus transmissibility (i.e., seasonality), population immunity, and 

pathogen evolution (8). Among those factors, human behaviors, both voluntary and those 

driven by governmental interventions, played a major role during the early phase of the 

pandemic (9–15). However, early studies examining the associations between human 

mobility indices (e.g., distance traveled, time spent at home, or percentage change in 

mobility) and COVID-19 spread yielded inconclusive results – strong associations during 

lockdowns (16–18) but weak or no associations during the summer of 2020 (19, 20). A 

potential explanation for this inconsistency is that the mobility indices employed did not 

accurately reflect behavioral effects on the contagion process. For instance, a person can 

drive a long distance alone without contributing to disease transmission, yet a short visit to 

a convenience store may involve multiple exposures. As a result, incorporating mobility 

indices into process-based models may not necessarily improve disease forecasting. 

Foot traffic data derived from mobile devices offer an effective means of tracking human 

mobility and behavior patterns. Unlike aggregated mobility indices, foot traffic data 

document visitation records at points of interest (POIs) with high spatial and temporal 

resolution, providing a direct measurement of population contacts in various locations. 

These privacy-preserving data have supported studies on high-resolution disease modeling 

(21–25), risk of airborne transmission (26), and human mobility changes during outbreaks 

or natural disasters (27, 28). For instance, mobility network models and agent-based 

models were used to simulate epidemic spread within small geographical units, which 

provided valuable insights on inequalities of infection risk across communities (21–25). 

However, most of these models were calibrated against aggregated disease data at the 

county or city level. It remains unclear whether they can reproduce heterogeneous SARS-

CoV-2 transmission at the neighborhood level and support forecasting with validated 

skills. In addition, the complexity of these models makes it challenging for rapid 

deployment by public health officials during an emergency. 

In this study, we aim to develop a parsimonious process-based model informed by 

aggregated foot traffic data to generate validated neighborhood-level forecasts with 

efficient simulation and calibration. We analyzed foot traffic data within various place 

categories in NYC during 2020. Densely populated metropolitan areas like NYC often 

experience earlier outbreaks, which may then propagate rapidly to other locations. During 

the COVID-19 pandemic, NYC was the first epicenter in the US. Using fine-grained foot 

traffic data, we identified distinct mobility and indoor contact patterns across five place 

categories: restaurants and bars, retail, arts and entertainment, educational settings, and 

other places. We then developed a behavior-driven epidemic model informed by category-
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specific mobility and indoor contact pattern data. Our results indicate that this model, 

capturing social drivers of contagion (i.e., human contacts in various activities) and 

transmission seasonality, can fit COVID-19 spread across the 42 NYC neighborhoods 

during 2020. Neighborhood-level model fitting suggests that the force of infection in these 

place categories increases sublinearly with crowdedness and dwell time. Furthermore, we 

demonstrated that this model, in conjunction with data assimilation techniques, produced 

more accurate short-term forecasts of COVID-19 spread at the neighborhood level during 

the first year of the pandemic. 

Results  

Mobility and contact patterns driven by human activities 

Human contacts are driven by various activities such as dining, shopping, work, and 

entertainment. We used foot traffic data shared by SafeGraph (29) to track mobility and 

contact patterns during these activities (Materials and Methods). Using the North 

American Industry Classification System (NAICS) code (30), we classified all POIs into 

five categories: (1) restaurants and bars, (2) retail, (3) arts and entertainment, (4) 

educational settings, and (5) other places (Table S1). A clustering analysis indicates that 

POIs within each category exhibit similar crowdedness, dwell time, and variance of visitor 

numbers during a week (Fig. S1). This categorical classification allows parsimonious 

representation of population mixing in different settings and aligns with the practical 

implementation of governmental interventions targeting specific high-risk sectors. 

The foot traffic data recorded the overall temporal trend of mobility in NYC. The daily 

number of visitors to all place categories plummeted in March 2020 and was reduced by 

81% at its lowest point on April 12, 2020 (Fig. 1A), following strict control measures 

enforced during the initial wave. Thereafter, mobility gradually increased throughout 2020 

but did not recover to its pre-pandemic level. 

The foot traffic data provided insights on the distribution of built environments within 

NYC. The NYC Department of Health and Mental Hygiene (DOHMH) uses United 

Hospital Fund (UHF) Areas as one way to designate neighborhoods (Fig. 1B). As the 

spatial allocation of POIs can significantly influence the mobility of residents engaged in 

various activities, we examined the number of POIs located within each neighborhood. 

We observed heterogeneous geographical distributions of POIs and distinct spatial 

patterns across place categories (Fig. S2), revealing spatial disparities in urban services 

and facilities. For instance, restaurants and bars concentrated in lower Manhattan and 

drew visitors from distant neighborhoods (Fig. 1B), whereas educational facilities 

exhibited a more even distribution across neighborhoods (Fig. S2). 

The foot traffic data captured the interconnectedness between neighborhoods driven by 

different human activities. To assess population mixing between the 42 UHF 

neighborhoods, we constructed daily mobility matrices for each place category, denoted 

by {𝐶𝑖𝑗
𝑝(𝑡)}, where 𝐶𝑖𝑗

𝑝(𝑡) represents the number of visitors from home neighborhood 𝑖 to 

destination neighborhood 𝑗 in place category 𝑝 on day 𝑡. We visualized average daily 

mobility for four place categories (excluding other places that lump in different POI types) 

from January 6, 2020, to March 1, 2020 (Fig. 2), depicting mobility patterns in winter 

prior to the pandemic. Notably, regardless of place categories, most visitors went to POIs 

in their home neighborhoods, as evidenced by the diagonal elements with large daily 

visitor counts. A clear cross-neighborhood mobility structure emerged within four 
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boroughs (the Bronx, Brooklyn, Queens, and Staten Island), indicating that residents in 

these boroughs frequently visited local POIs close to their residence. In contrast, 

Manhattan, the primary employment borough with high living costs (31), drew large 

numbers of visitors from other boroughs. Cross-neighborhood mobility was most 

pronounced for restaurants and bars and least notable for educational facilities. We 

compiled daily mobility matrices for 2020 to track the temporal evolution of cross-

neighborhood population mixing. 

The foot traffic data also revealed contact patterns within POIs that may modulate 

infection risk in indoor environments. Particularly, we focused on the crowdedness 

(measured by daily number of visitors per square meter) (32) and average dwell time of 

visitors (Materials and Methods) (21). Among the five examined place categories, 

restaurants and bars had on average the highest crowdedness (Fig. 1C). The crowdedness 

in all place categories decreased by up to 82% (arts and entertainment) following the 

lockdown in March 2020 and then moderately increased in the latter half of 2020. In 

contrast, dwell time in all place categories remained relatively stable (Fig. 1D), except for 

a temporary increase during the lockdown and an increase in educational facilities after 

the start of the fall semester in September. Variations in crowdedness and dwell time may 

lead to differential infection risk in POIs. 

A behavior-driven epidemic model 

To model contagion processes driven by human activities, we developed a behavior-

driven epidemic model informed by real-world mobility matrices for different place 

categories, time-varying crowdedness and dwell time, and seasonality of virus 

transmissibility (Materials and Methods). Denote 𝜆𝑗
𝑝(𝑡) as the force of infection (FOI) in 

place category 𝑝 in neighborhood 𝑗 on day 𝑡. We linked FOI to crowdedness and dwell 

time through: 

𝜆𝑗
𝑝(𝑡) =

𝑣𝑝 (𝑑𝑗
𝑝(𝑡))

𝑎
(𝜏𝑗

𝑝(𝑡))
𝑏

𝐼𝑗
𝑝(𝑡)

𝑁𝑗
𝑝(𝑡)

,    [1] 

where 𝑑𝑗
𝑝(𝑡) and 𝜏𝑗

𝑝(𝑡) are the crowdedness and average dwell time in place category 𝑝 in 

neighborhood 𝑗 on day 𝑡. 𝐼𝑗
𝑝(𝑡) and 𝑁𝑗

𝑝(𝑡) denote the infectious and total population 

present in place category 𝑝 in neighborhood 𝑗 on day 𝑡. The parameters 𝑎 and 𝑏 determine 

the nonlinear relationship between virus transmissibility and crowdedness and dwell time, 

respectively. Note, 𝑎 and 𝑏 are shared by all place categories, representing the universal 

functional form linking crowdedness and dwell time to FOI that applies in all POIs. In 

practice, this functional form links real-world intervention criteria such as occupancy limit 

and operation hours, which are straightforward to measure and control, to the transmission 

risk of infectious diseases. We further introduced a multiplier, 𝑣𝑝, for each place category 

representing the compound effects of potential sampling bias across different place 

categories, category-specific interventions, relative contribution to infection risk in 

different place categories, and other unaccounted factors. 

In addition to population mixing, the transmissibility of SARS-CoV-2 exhibits strong 

seasonality modulated by meteorological factors, with humidity playing the major role in 

the northern US (33). We imposed a seasonality term, 𝜔(𝑡), forced by absolute humidity 
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(AH), inspired by the modeling of influenza seasonality (34, 35). We further modeled the 

time-varying ascertainment rate (36) (Fig. S3) and delay from infection to case 

confirmation (Materials and Methods). 

Estimating the dependency of FOIs on crowdedness and dwell time 

We first used grid search and model selection to estimate the parameters 𝑎 and 𝑏 that 

control the impacts of crowdedness and dwell time on FOIs. We tested 21 × 21 parameter 

combinations: 𝑎 ∈ [0,2] and 𝑏 ∈ [0,2] with a step of 0.1 for both parameters (including 

𝑎 = 0 and 𝑏 = 0). For each parameter combination, we fixed 𝑎 and 𝑏 in the model and 

calibrated the model against real-world weekly COVID-19 cases in 42 neighborhoods 

from March 1, 2020 to June 7, 2020, a period with substantial variation in crowdedness 

and dwell time (Fig. 1). Model calibration was performed using Markov Chain Monte 

Carlo (MCMC) (Materials and Methods) (37). The goodness-of-fit for each parameter 

combination was measured using loglikelihood, averaged over 100 samples in the MCMC 

chain (selected every 10 steps from the last 1,000 samples) (Materials and Methods). The 

landscape of loglikelihood indicates that the best-fitting model was roughly in the region 

of 𝑎 ∈ [0,1] and 𝑏 ∈ [0,1.5] (Fig. 3A). 

To more accurately estimate the parameters 𝑎 and 𝑏 in the best-fitting model, we 

examined the profile loglikelihood for both parameters. Profile likelihood method is 

widely used to estimate confidence intervals (CIs) of parameters in epidemic models (38, 

39). We fit the loglikelihood surface using a cubic spline interpolation and identified the 

maximum loglikelihood at 𝑎 = 0.338 and 𝑏 = 0.270 on the surface. To further quantify 

the uncertainty of 𝑎, we plotted the profile loglikelihood curve by setting 𝑏 = 0.270 in the 

surface function (Fig. 3B). The 95% CI of 𝑎 was estimated to be [0.285, 0.464] (Materials 

and Methods). Similarly, we estimated the 95% CI of 𝑏 to be [0.156, 0.342] (Fig. 3C). 

This model selection result suggests that the best-fitting model supports that FOIs 

increases sublinearly with crowdedness and dwell time. In other words, disease 

transmission risk increases rapidly when crowdedness and dwell time rise from lower 

values; however, the increase rate declines for larger crowdedness and longer dwell time, 

showing a diminishing-return effect. In following analyses, we fixed 𝑎 = 0.338 and 𝑏 =
0.270 in the behavior-driven epidemic model. The posterior model parameters estimated 

using this setting are reported in Table S3. 

Modeling neighborhood-level COVID-19 spread 

We fit the behavior-driven epidemic model to weekly COVID-19 cases in 42 

neighborhoods from March 1, 2020 to December 13, 2020, before the availability of 

COVID-19 vaccines in NYC. In model fitting, we fixed epidemiological and seasonality 

parameters and estimated 𝑣𝑝 for five place categories and 𝛽ℎ for baseline transmission. As 

model parameters likely changed over the course of 2020 due to shifting interventions and 

behaviors, we estimated the parameters separately for five distinct periods, defined by the 

dates with major policy changes in NYC (Fig. 4A, Supplementary Materials, Table S2). 

We estimated posterior parameters using MCMC and confirmed that MCMC chains 

converged using diagnostic statistics (Table S4). We then ran model simulations using 

estimated parameters and compared the simulated COVID-19 case counts with reported 

numbers from the 42 neighborhoods. 
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At the city level, the behavior-driven epidemic model reproduced the trend of COVID-19 

cases throughout 2020 (Fig. 4A). In addition, model simulations agreed with observations 

in most neighborhoods (Fig. S4), suggesting that aggregated foot traffic data combined 

with seasonality can support neighborhood-level modeling of SARS-CoV-2 transmission. 

Model fitting in several neighborhoods such as Greenwich Village-SoHo had larger 

discrepancy, possibly due to model misspecification or issues in the mobility data. 

Examples in four neighborhoods in the Bronx, Brooklyn, Manhattan, and Queens are 

provided in Fig. 4B. 

Retrospective forecasts of neighborhood-level COVID-19 cases 

While the behavior-driven epidemic model can reproduce real-world neighborhood-level 

SARS-CoV-2 transmission, it is unknown if this model can generate more accurate short-

term forecasts of COVID-19 cases. We coupled the behavior-driven epidemic model with 

an efficient data assimilation algorithm, the ensemble adjustment Kalman filter (EAKF) 

(40), to generate retrospective forecasts at the neighborhood level (Material and Methods, 

Supplementary Materials). During the forecasting process, model parameters and variables 

were updated weekly once real-world COVID-19 surveillance data became available. We 

then integrated the optimized model into the future to generate forecasts. Within the 

forecasting horizon, mobility matrices, indoor contact patterns, and reporting rates were 

fixed using the information available when the forecasts were generated. 

The one-week ahead forecasts of COVID-19 cases generally agreed with observations at 

the neighborhood level (Fig. S5), capturing the large variation in disease burdens. We 

compared the forecast skill of the behavior-driven epidemic model with a baseline 

metapopulation model without the place category-specific mobility and FOIs informed by 

crowdedness and dwell time (Materials and Methods). The baseline model used the same 

model-data assimilation framework and incorporated mobility data across neighborhoods 

obtained from the same foot traffic data. A similar framework has been used to model 

COVID-19 spread at the US county level (41, 42). The baseline model configurations 

were tuned to ensure decent forecasting performance at the neighborhood level (Fig. S6). 

The behavior-driven epidemic model outperformed the baseline model in most 

neighborhoods and weeks. We compared the one-week ahead forecasts generated for each 

neighborhood at each week using three metrics: (1) mean absolute percentage error 

(MAPE) for point predictions, and (2) log score and (3) weighted interval score (WIS) 

(43) for probabilistic predictions (Materials and Methods). Log score and WIS measure 

the uncertainty of predictive distributions and have been used as the standard metrics to 

evaluate real-time forecasts for influenza (44) and COVID-19 (45). Specifically, lower 

MAPEs, higher log scores, and lower WIS scores indicate better forecasts. In general, the 

proposed model generated more accurate forecasts in most neighborhoods and forecast 

weeks (Fig. 5). The comparison with the baseline model suggests that the inclusion of 

place category-specific FOIs linked to crowdedness and dwell time likely improved 

forecasts. The behavior-driven epidemic model also generated improved two-week ahead 

forecasts (Figs. S7-S9). 

Discussion  

Population contacts driven by human activities can facilitate the transmission of SARS-

CoV-2. In this study, we analyzed aggregated foot traffic data in different place categories 
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in NYC. Our study resulted in several findings that can inform improved neighborhood-

level forecasting of disease outbreaks. 

First, we identified differential mobility and indoor contact patterns in different place 

categories, likely influenced by the geographical distribution of POIs, the nature of human 

activities (e.g., dining versus shopping), and socioeconomic factors (e.g., working from 

home versus in an essential business) (46, 47). These differences explained heterogeneous 

disease burdens across NYC neighborhoods in our process-based model. 

Second, aggregated foot traffic data for typical human activities are sufficient to support 

neighborhood-level infectious disease modeling without privacy concerns. A fundamental 

question in infectious disease modeling is whether the inclusion of more detailed 

processes results in more precise epidemic simulation, and to what extent system 

granularity is needed to inform real-world application of model outcomes. High-

granularity epidemic models informed by human contact data are increasingly used in 

real-time forecasting. However, fine-grained contact data impose strong structural 

constraints on model dynamics, creating challenges in calibrating high-dimensional 

models to high-resolution real-world data (48). The behavior-driven epidemic model, 

working at the neighborhood scale, provides a tradeoff between model realism, privacy 

protection, and computational efficiency. 

Third, the inclusion of place category-specific FOIs in the behavior-driven epidemic 

model improved short-term forecasting at the neighborhood level. The more precise 

representation of infection risk in different place categories enhanced the forecast skills of 

the model. However, the proposed forecasting system, which assumes constant mobility 

and contact patterns in the forecast horizon, may not improve longer-term forecasts. This 

limitation underscores the necessity of predicting behavior changes in response to disease 

outbreaks and modeling the feedback loop between behaviors and epidemics. While 

theoretical work exists on this topic (49–56), empirical evidence of the impacts of policies 

and behaviors on epidemic spread needs to be quantified more precisely (57). Currently, 

data-driven modeling applications and validations in real-world settings remain scarce.  

While the behavior-driven epidemic model reproduced COVID-19 spread across NYC 

neighborhoods in 2020, process-based modeling beyond 2020 must additionally consider 

population immunity and virus evolution. Cumulative infections, vaccination, and 

immunity waning collectively shaped the immunological landscape upon which SARS-

CoV-2 circulated after 2020 (58). The continuous evolution of SARS-CoV-2 led to the 

emergence of new variants with varying transmissibility, immune escape capability, and 

disease severity (59, 60). Modeling these complex processes poses a significant challenge, 

especially at local scales that hold direct relevance to policymaking. 

The behavior-driven epidemic model, formulated in a metapopulation structure, can be 

deployed in real time to support outbreak response. As mobility and indoor contact 

patterns can concomitantly modulate the transmission of a range of respiratory pathogens, 

this model may be generalized to work for other respiratory pathogens sharing similar 

transmission routes with proper modifications. 

Materials and Methods 

Data 
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Real-world weekly COVID-19 confirmed cases aggregated in 42 UHF neighborhoods 

were provided by the NYC DOHMH to support model fitting and retrospective 

forecasting. Case data in congregated settings were excluded to represent community 

transmission of SARS-CoV-2. We tracked mobility and contact patterns of NYC residents 

using aggregated foot traffic data covering 90,164 POIs. For each POI, the hourly number 

of visitors and home locations of visitors down to the census block groups level were 

recorded. To enhance privacy, SafeGraph excludes census block group information if 

fewer than five devices visited an establishment in a month from a given census block 

group. Other relevant metadata of POIs include the type of place (NAICS code), physical 

area (square meters), and daily average dwell time of visitors (minutes). We constructed 

the daily mobility matrices for each place category across the 42 neighborhoods by 

aggregating visitors to relevant POIs at the neighborhood level. For visitors without home 

information, we assigned their home neighborhoods using the distribution of visitors with 

home information in the same POI. Crowdedness for each POI was measured by dividing 

the daily visitor count by its physical area. Daily crowdedness and dwell time for each 

place category were averaged across all POIs within that category. Daily absolute 

humidity for NYC was derived from North American Land Data Assimilation System data 

(61). 

The behavior-driven epidemic model 

The transmission dynamics are described by the following equations. 

𝑑𝑆𝑖

𝑑𝑡
= −𝑆𝑖 ∑ 𝑀𝑖𝑗

𝑝 (𝑡)𝜆𝑗
𝑝(𝑡)𝜔(𝑡)

𝑗,𝑝
−

𝛽ℎ𝜔(𝑡)𝑆𝑖𝐼𝑖

𝑁𝑖
,     [2] 

𝑑𝐸𝑖

𝑑𝑡
= 𝑆𝑖 ∑ 𝑀𝑖𝑗

𝑝 (𝑡)𝜆𝑗
𝑝

(𝑡)𝜔(𝑡)
𝑗,𝑝

+
𝛽ℎ𝜔(𝑡)𝑆𝑖𝐼𝑖

𝑁𝑖
−

𝐸𝑖

𝑍
,     [3] 

𝑑𝐼𝑖

𝑑𝑡
=

𝐸𝑖

𝑍
−

𝐼𝑖

𝐷
.     [4] 

Here 𝑁𝑖, 𝑆𝑖, 𝐸𝑖, and 𝐼𝑖 are the total, susceptible, exposed, and infectious population in 

neighborhood 𝑖; 𝑍 and 𝐷 are the latency and infectious duration; 𝛽ℎ is the baseline 

transmission rate in places not captured by the foot traffic data; 𝑀𝑖𝑗
𝑝 (𝑡) represents the 

fraction of population living in neighborhood 𝑖 visiting place category 𝑝 in neighborhood 𝑗 

on day 𝑡; 𝜆𝑗
𝑝(𝑡) is the force of infection (FOI) in place category 𝑝 in neighborhood 𝑗 on 

day 𝑡, parameterized using crowdedness and dwell time; and 𝜔(𝑡) imposes seasonality on 

the transmissibility of SARS-CoV-2. FOIs are defined in Eq. [1]. We define 𝜔(𝑡) ∝
𝑤𝑚𝑖𝑛 + exp(−180 × 𝑞(𝑡) + log(𝑤𝑚𝑎𝑥 − 𝑤𝑚𝑖𝑛)), where 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 are the 

parameters controlling the intensity of seasonality, and 𝑞(𝑡) is the time-varying specific 

humidity, a measure of absolute humidity. This functional form was inspired by the 

seasonality of influenza, which has been validated by influenza modeling and forecasting 

(34, 35). We normalized 𝜔(𝑡) so that the average value over a year is one. For the first 

year of the pandemic, we did not consider immunity loss as studies showed re-infections 

were rare (62). Note that an individual may be counted as a visitor to multiple place 

categories on the same day; however, the relative infection risk in multiple place 

categories on the same day (e.g., modulated by the time spending in different place 

categories) can be factored in the parameter 𝑣𝑝 in FOIs and estimated through model 
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fitting. As a result, this model structure addresses the issue of double-counting susceptible 

population in each neighborhood. The model was integrated daily using the Euler stepping 

scheme. To introduce stochasticity, we generated new infections using a Poisson 

distribution with mean values computed in Eqs. [2-3]. 

Model configuration and observation model 

The behavior-driven epidemic model was initiated on February 26, 2020, prior to the 

reporting of the first COVID-19 case in NYC on March 1, 2020. Initial infections on the 

first day of simulation were informed by estimated infections that accounted for the severe 

underreporting during the early phase of the pandemic (63). Specifically, we randomly 

drew initial infection numbers in NYC from a uniform distribution 𝑈[1000,2000] and 

distributed them to the 42 neighborhoods as infectious population (𝐼) in the model 

according to the distribution of cumulative cases reported within three weeks after March 

1, 2020. The exposed population (𝐸) in each neighborhood was set as 𝐸 = 5𝐼, 

representing rapid increase of infections before the detection of local cases. The remainder 

of the population was set as susceptible (𝑆). Epidemiological parameters (𝑍 and 𝐷) were 

fixed as 𝑍 = 3.59 days and 𝐷 = 3.56 days. The incubation and infectious periods were 

estimated using early infection data from the US (64). The seasonality parameters were set 

as 𝑤𝑚𝑎𝑥 = 2.6 and 𝑤𝑚𝑖𝑛 = 1.4, informed by the rough estimate of the basic reproductive 

number of SARS-CoV-2 in winter and summer. The seasonality of virus transmissibility 

was modulated by the daily absolute humidity data in NYC. Sensitivity analysis was 

performed for other values of 𝑤𝑚𝑎𝑥 and 𝑤𝑚𝑖𝑛 (𝑤𝑚𝑎𝑥 ∈ {2.5, 2.6,2.7,2.8,2.9} and 𝑤𝑚𝑖𝑛 ∈
{1.1,1.2,1.3,1.4,1.5}) and the performance of fitting was robust. 

Daily confirmed cases were computed using an observation model. To account for varying 

surveillance efforts across communities and over time, we used the weekly ascertainment 

rates estimated by Yang et al. (36) for each neighborhood validated by case, 

hospitalization, death, serological, and wastewater data (Fig. S3). We further introduced a 

gamma distribution Γ(1.85,7.57) to model the delay from infection to case conformation, 

similar to our prior works (9, 41, 42). Among the newly exposed population 𝐸𝑛𝑒𝑤(𝑡) on a 

given day 𝑡, 𝛼 fraction will be reported. These new infections will be confirmed on day 

𝑡 + 𝑡𝑑, where 𝑡𝑑 is drawn from the gamma distribution.  

Markov Chain Monte Carlo and model fitting 

We fit the model to weekly confirmed cases in 42 neighborhoods using Metropolis-

Hastings MCMC. For each combination of parameters 𝑎 and 𝑏, we performed MCMC 

independently. Within each MCMC fitting, 𝑣𝑝 for five place categories and 𝛽ℎ for 

baseline transmission were estimated and other epidemiological and seasonality 

parameters were fixed as described in model configuration. The goal of MCMC is to 

estimate the distributions of model parameters 𝒙 = (𝑣1, 𝑣2, 𝑣3, 𝑣4, 𝑣5, 𝛽ℎ)𝑇 given observed 

case data 𝑶: 𝑃(𝒙|𝑶) ∝ 𝑃(𝒙)𝑃(𝑶|𝒙), where 𝑃(𝒙) is the prior distribution and 𝑃(𝑶|𝒙) is 

the likelihood of observing 𝑶 given model parameters 𝒙. The Metropolis-Hasting 

algorithm proceeds as follows: 

1. Initialization. Select initial states of unknown parameters 𝒙𝟎 = {𝑥𝑖
0} from prior 

distributions, where 𝑥𝑖
0 is the initial value of the 𝑖th parameter. 

2. Iteration. For each parameter 𝑥𝑖
𝑡 at iteration 𝑡, sequentially perform the following 

procedures while fixing other parameters at their current states. 
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a. Generate a random candidate state 𝑥𝑖
′ according to a proposal distribution 

𝑔(𝑥𝑖
′|𝑥𝑖

𝑡). 

b. Calculate the acceptance probability 𝐴(𝑥𝑖
′, 𝑥𝑖

𝑡) = min (1,
𝑃(𝒙′

|𝑶)

𝑃(𝒙𝒕|𝑶)

𝑔(𝑥𝑖
𝑡

|𝑥𝑜
′

)

𝑔(𝑥𝑖
′
|𝑥𝑖

𝑡
)
), where 

𝒙𝒕 is the current model parameter vector and 𝒙′ is the perturbed vector with 𝑥𝑖
𝑡 

replaced by 𝑥𝑖
′. 

c. Accept or reject the candidate state 𝑥𝑖
′. Draw a uniform random number 𝑢 ∈

𝑈[0,1]. If 𝑢 ≤ 𝐴(𝑥𝑖
′, 𝑥𝑖

𝑡), update 𝑥𝑖
𝑡 to 𝑥𝑖

′; otherwise, keep 𝑥𝑖
𝑡 unchanged. 

d. After looping through all parameters, move to the next iteration 𝑡 = 𝑡 + 1. 

 

In MCMC, the prior distributions of parameters were set broadly as 𝑣𝑝 ∈ 𝑈[0,100] and 

𝛽ℎ ∈ 𝑈[0,1]. The ranges of these parameters were explored and selected to ensure that the 

model can produce outbreaks with a similar scale as in the real-world data. The proposal 

distributions were selected as symmetric. For 𝑣𝑝, we perturbed the current parameter value 

by adding a Gaussian random noise with a standard deviation of 0.5: 𝑔(𝑥𝑖
′|𝑥𝑖

𝑡) = 𝒩(𝜇 =
𝑥𝑖

𝑡 , 𝜎 = 0.5); for 𝛽ℎ, we used a Gaussian random noise with a standard deviation of 0.01: 

𝑔(𝑥𝑖
′|𝑥𝑖

𝑡) = 𝒩(𝜇 = 𝑥𝑖
𝑡 , 𝜎 = 0.01). We next compute the acceptance probability 𝐴(𝑥𝑖

′, 𝑥𝑖
𝑡). 

As the proposal distributions are symmetric, the term 
𝑔(𝑥𝑖

𝑡
|𝑥𝑜

′
)

𝑔(𝑥𝑖
′
|𝑥𝑖

𝑡
)
 equals 1.  We further have 

𝑃(𝒙′
|𝑶)

𝑃(𝒙𝒕|𝑶)
=

𝑃(𝑶|𝒙′
)

𝑃(𝑶|𝒙𝒕)
, which is the ratio of the two likelihoods. Denote 𝑃(𝑶|𝒙) as 

exp(ℓ(𝒙)), where ℓ(𝒙) = log 𝑃(𝑶|𝒙) is the loglikelihood given the parameter vector 𝒙. 

The acceptance rate can be written as 𝐴(𝑥𝑖
′, 𝑥𝑖

𝑡) = exp(Δℓ), where Δℓ = ℓ(𝒙′) − ℓ(𝒙𝒕) is 

the change of loglikelihood after parameter update. Intuitively, if the parameter update 

does not decrease the loglikelihood (i.e., Δℓ ≥ 0), the candidate parameter is accepted; 

otherwise (i.e., Δℓ < 0), the candidate parameter is only accepted with a probability that 

decreases exponentially with the change of loglikelihood. 

To compute the loglikelihood, we assumed Gaussian observation errors in the model. For 

each set of parameters, we ran the epidemic model throughout the fitting period to 

generate weekly new reported cases in all neighborhoods. The loglikelihood of observing 

real-world weekly case data was approximated as ℓ = ∑ ∑ log 𝑝(𝑦𝑙𝑡
𝑜 , �̂�𝑙𝑡)𝑡ℓ , where 

𝑝(𝑦𝑙𝑡
𝑜 , �̂�𝑙𝑡) is the probability of the observation 𝑦𝑙𝑡

𝑜  for a Gaussian distribution 𝒩(𝜇 =
�̂�𝑙𝑡 , 𝜎 = 0.2�̂�𝑙𝑡), in which �̂�𝑙𝑡 is the simulated weekly cases in location 𝑙 at week 𝑡. The 

summation ran over all neighborhoods and weeks. Other standard deviations of the 

Gaussian observation errors were tested, and the fitting performance remained similar. 

We fit the model to weekly neighborhood-level COVID-19 cases from March 1, 2020 to 

December 13, 2020 in five phases sequentially. Due to policy changes, model parameters 

may change over the course of 2020. We therefore split the fitting period into five 

intervals using dates with major policy changes (Table S2). For each MCMC fitting, we 

ran 50,000 MCMC steps (i.e., each parameter was updated 50,000 times) and discarded 

the first 20,000 steps as burn-in. The posterior parameter distributions were estimated 

using 3,000 samples taken every 10 steps from the last 30,000 steps. The posterior mean 

obtained from one fitting period was used to initiate the MCMC in the next period. The 

convergence of MCMC chains were confirmed using the Geweke diagnostic (65) (Table 

S3). 
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Model selection 

To determine the parameters 𝑎 and 𝑏 in FOIs, we performed a grid search and model 

selection. We tested 441 combinations of parameters choosing from 𝑎 = {0,0.1,0.2, ⋯ ,2} 

and 𝑏 = {0,0.1,0.2, ⋯ ,2}. For each parameter combination, we independently ran MCMC 

for the period from March 1, 2020 to June 6, 2020. We focused on this period covering the 

first wave in NYC because the large variation in crowdedness and dwell time may better 

differentiate the impacts of these factors on FOIs. The goodness-of-fit was measured using 

the average loglikelihood in 100 MCMC samples, selected every 10 steps from the last 

1,000 updates. 

We quantified the uncertainty of parameters using Monte Carlo profile confidence 

intervals (38). We fit the loglikelihood landscape using a cubic spline interpolation and 

identified the maximum loglikelihood ℓ∗ at 𝑎∗ and 𝑏∗. To compute the CI of each 

parameter, we examined the profile loglikelihood (i.e., the loglikelihood curve when the 

other parameter was fixed at the maximum-likelihood estimate). The 95% CI was 

constructed as the set of parameter values with profile loglikelihood higher than ℓ∗ − 1.92 

(38). 

Retrospective forecasts and evaluation metrics 

We used the model-data assimilation (M/D/A) framework to generate retrospective 

forecasts. This framework has been widely used in numerical weather forecasting and 

infectious disease forecasting (35, 66, 67). Specifically, we coupled the behavior-driven 

epidemic model with an efficient data assimilation algorithm, the ensemble adjustment 

Kalman filter (EAKF) (40). In the EAKF, an ensemble of model states was used to 

represent distributions of model variables and parameters. In our implementation, 500 

ensemble members were used. Each week, parameters 𝑣𝑝 for five place categories and 𝛽ℎ 

for baseline transmission were updated so that the model can better fit the most recent 

observation. The observed model states (weekly confirmed cases) were updated using the 

Bayes’ rule and unobserved model states were updated using their cross-ensemble 

covariability with observed model states. Forecasts were generated using posterior 

parameters and variables. We assumed a constant mobility and contact patterns during the 

short-term forecast horizon. More implementation details and the pseudo-code of the 

EAKF are provided in Supplementary Materials. 

The forecast system generates probabilistic predictions. We evaluated the forecast skills 

using three metrics: (1) mean absolute percentage error (MAPE), (2) log score, and (3) 

weighted interval score (WIS) (43). For a weekly forecast in a neighborhood, MAPE is 

defined as |�̅�𝑝 − 𝑦𝑜|/𝑦𝑜, where �̅�𝑝 is the mean prediction of weekly case and 𝑦𝑜 is the 

observed value. The log score is defined as the logarithmic value (base 𝑒) of the fraction 

of ensemble members that fall within ±25% of the observed value, with a minimal width 

of ±50. WIS is a proper scoring rule for quantile forecasts, which was recently used in 

evaluating probabilistic predictions of infectious diseases (45). It converges to the CRPS 

(continuous ranked probability score) for an increasing number of intervals. We followed 

the configurations used by the CDC COVID-19 forecast hub and the FluSight challenge, 

using 23 quantiles (0.01, 0.025, 0.05, 0.1, …, 0.95, 0.975, 0.99) estimated from the 500 

ensemble members. The WIS scores were computed using the R function provided at 

https://github.com/cmu-delphi/covidcast. 
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The baseline forecast model 

We used a metapopulation model to generate forecasts as a baseline. The model dynamics 

is described by the following equations. 

𝑑𝑆𝑖

𝑑𝑡
= −𝑆𝑖 ∑

𝛽𝜔(𝑡)𝑀𝑖𝑗(𝑡)𝐼𝑗
𝑁𝑗𝑗

−
𝛽ℎ𝜔(𝑡)𝑆𝑖𝐼𝑖

𝑁𝑖
, [4] 

𝑑𝐸𝑖

𝑑𝑡
= 𝑆𝑖 ∑

𝛽𝜔(𝑡)𝑀𝑖𝑗(𝑡)𝐼𝑗
𝑁𝑗𝑗

+
𝛽ℎ𝜔(𝑡)𝑆𝑖𝐼𝑖

𝑁𝑖
−

𝐸𝑖

𝑍
, [5] 

𝑑𝐼𝑖

𝑑𝑡
=

𝐸𝑖

𝑍
−

𝐼𝑖

𝐷
. [6] 

Here 𝑁𝑖, 𝑆𝑖, 𝐸𝑖, and 𝐼𝑖 are the total, susceptible, exposed, and infectious population in 

neighborhood 𝑖; 𝑍 and 𝐷 are the latency and infectious duration; 𝛽 is the transmission rate 

in POIs captured by the foot traffic data; 𝛽ℎ is the baseline transmission rate in other 

uncaptured places; 𝜔(𝑡) is seasonality term forced by absolute humidity; and 𝑀𝑖𝑗(𝑡) 

represents the fraction of population living in neighborhood 𝑖 visiting neighborhood 𝑗 on 

day 𝑡, computed using the same foot traffic data. Note, the baseline model incorporated 

time-varying cross-neighborhood mobility but did not include the place category-specific 

FOIs informed by crowdedness and dwell time. This baseline model was coupled with the 

EAKF to generate retrospective forecasts. 
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Figures and Tables 

 
Fig. 1. Mobility and contact patterns in different place categories. (A), Daily visitor 

counts to five place categories (restaurants & bars, retail, arts & entertainment, 

educational settings, and others) in NYC during 2020, as recorded in the foot 

traffic data. (B), Geographical distribution of restaurants & bars across NYC 

neighborhoods (color). Stars and arrows highlight mobility links with over 1000 

visitors per day from January 6, 2020 to March 1, 2020. Stars indicate self-links 

where residents visited restaurants & bars within their own neighborhoods. (C), 

Daily average crowdedness (daily visitor counts per square meter) at POIs for five 

place categories. (D), Daily average dwell time (minutes) at POIs for five place 

categories. 
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Fig. 2. Mobility patterns across 42 NYC neighborhoods in four place categories. 

Daily average visitor counts (in log scale) from home neighborhoods (y-axis) to 

destination neighborhoods (x-axis) in restaurants & bars (A), retail (B), arts & 

entertainment (C), and educational settings (D). The five boroughs of NYC (the 

Bronx, Brooklyn, Manhattan, Queens, and Staten Island) are indicated on top of 

each heatmap. Foot traffic data from January 6, 2020 to March 1, 2020 were used, 

representing the period before the implementation of governmental interventions. 
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Fig. 3. Estimating the impacts of crowdedness and dwell time on force of infection. 

(A), The loglikelihood landscape for different combinations of parameters 𝑎 (the 

power exponent for crowdedness) and 𝑏 (the power exponent for average dwell 

time). The loglikelihood for each parameter combination was obtained by 

averaging the loglikelihood values over the last 100 MCMC samples (selected 

every 10 steps from the last 1,000 samples in the MCMC chain). (B), The profile 

loglikelihood for parameter 𝑎 near the maximum of the loglikelihood surface. The 

95% CI is constructed as the set of parameter values with profile loglikelihood 

higher than ℓ∗ − 1.92, where ℓ∗ is the maximum loglikelihood. The vertical red 

dash line shows the estimate of 𝑎 and the vertical black dash lines show the 

estimated 95% CI. (C), The profile loglikelihood for parameter 𝑏 near the 

maximum of the loglikelihood surface. 
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Fig. 4. Model fitting to neighborhood-level COVID-19 case data. (A), Simulations 

using model parameters estimated for five separate periods, as indicated by the 

yellow vertical lines corresponding to dates with major policy changes (Table S2). 

Simulated cases were aggregated to the city level and are compared with the daily 

confirmed cases in NYC (red line). The shaded blue area represents the 95% 

confidence interval, obtained from 500 independent simulations. (B), Simulations 

in four representative neighborhoods in the Bronx (upper left), Brooklyn (upper 

right), Manhattan (lower left), and Queens (lower right). Maps display the 

geographical locations of these neighborhoods. 
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Fig. 5. One-week ahead retrospective forecasts for neighborhood-level COVID-19 

cases. The behavior-driven forecasts are compared with a baseline model that does 

not distinguish mobility and contact patterns in different place categories. From 

left to right, we present (A) the relative mean absolute percentage error (MAPE) 

(MAPEs of the behavior-driven model minus those of the baseline, with blue 

indicating better forecasts), (B) relative log score (log scores of the behavior-

driven model minus those of the baseline, with red indicating better forecasts), and  

(C) relative weighted interval score (WIS) (the ratio of the WIS scores of the 

behavior-driven model to those of the baseline, with blue indicating better 

forecasts) for all 42 neighborhoods from March 8, 2020 to December 13, 2020. 
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