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Abstract 
 
The passage of the US Food and Drug Administration (FDA) Omnibus Reform Act of 2022 
underscores a national commitment to enhancing diversity in clinical trials. This commitment 
recognizes not only the ethical imperative of inclusivity but also the practical necessity to ensure 
the safety and efficacy of medications across all demographic groups. Particularly for Phase 3 
and pivotal clinical trials, the FDA has issued draft guidance that recommends sponsors to 
develop diversity plans with race and ethnicity (R/E) enrollment targets informed by the 
epidemiological landscape of the disease in the therapy's target population. For biomarker-driven 
oncology trials, real-world data (RWD), especially when enriched with multimodal clinico-
genomic information, holds immense promise for informing these R/E enrollment goals. 
 
However, leveraging RWD comes with hurdles, including the overrepresentation of insured 
patients, significant non-random missingness in R/E data, and disparities between R/E 
distributions in RWD and disease incidence databases—often attributed to healthcare access and 
socioeconomic disparities. Here, we propose a robust methodology to harness clinico-genomic 
RWD, addressing these challenges through strategies that include accurate R/E imputation and 
incidence adjustment factors. Our approach then utilizes clinical data and biomarker prevalence 
in RWD to derive a data-driven R/E distribution for clinical trial enrollment targets. 
 
Through a case study on a hypothetical biomarker-driven clinical trial targeting prostate 
adenocarcinoma and leveraging a cohort from the Tempus clinco-genomic database, we 
demonstrate the application of our methodology. This example illustrates the potential of RWD 
to offer enrollment target scenarios, grounded in disease epidemiology and empirical R/E 
distributions adjusted for biomarker prevalence. Such data-driven targets are pivotal for the 
development of informed and equitable diversity plans in oncology clinical trials, paving the way 
for more representative and generalizable research outcomes. 
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Introduction 
 
The recognition of racial and ethnic underrepresentation in clinical trials by regulatory agencies 
highlights a critical gap in our healthcare system, directly linked to persistent health inequities.1 
Recent assessments have shown notably lower participation rates among Black and 
Hispanic/Latino patients compared to their White counterparts, across multiple cancer types.2 
This discrepancy is compounded by the frequent absence of disaggregated race and ethnicity 
(R/E) data in clinical trial reports3 obscuring the ability to monitor and address these disparities 
effectively. This lack of diversity not only challenges the generalizability of trial outcomes but 
also perpetuates existing health inequities by limiting the ability to deliver treatments that benefit 
diverse patient populations.4 
 
Moreover, the introduction of the Food and Drug Administration (FDA) Omnibus Reform Act of 
2022 (FDORA) signifies a legislative push towards diversifying clinical trial participation1. As 
mandated by this legislation, in 2022 the FDA has issued draft guidance recommending the 
submission of diversity action plans for Phase 3 and pivotal trials, covering drugs, biological 
products, or devices, highlighting the FDA's commitment to modernizing clinical trial diversity.5 
These plans are expected to encompass not only R/E enrollment goals but also strategies 
encompassing patient-directed measures, community engagement, workforce-directed measures, 
and trial design modifications aimed at overcoming barriers to participation, including 
geographic and socioeconomic disparities.5,6 
 
Given the shift towards biomarker-driven drug development in oncology,7–9 the utilization of 
real-world data (RWD), particularly clinico-genomic databases, presents a promising avenue for 
informing R/E enrollment goals.10 However, a number of issues create challenges for effectively 
leveraging RWD for this purpose, such as the overrepresentation of insured and White patients,11 
significant non-random missingness in R/E data,12–16 and inconsistencies between RWD and 
disease incidence databases.17 These hurdles often reflect broader issues of healthcare access and 
socioeconomic disparities.18 Additionally, R/E data in RWD may originate from various sources, 
not exclusively self-identified R/E, but also includes the assignment of R/E classifications on 
patients by third parties.19 Furthermore, R/E missingness in RWD can be attributed to issues in 
data collection and transmission rather than simply patient abstention.12,20,21  
 
To navigate these obstacles, we propose a robust methodology leveraging clinico-genomic 
RWD, incorporating an accurate R/E imputation method13 and incidence adjustment factors to 
derive data-driven R/E distributions for use in the development of clinical trial enrollment 
targets. Our methodology exemplifies how such an approach can be applied through a case study 
on a hypothetical biomarker-driven clinical trial targeting prostate adenocarcinoma, leveraging 
data from the Tempus clinico-genomic database. This case study highlights the potential of 
RWD to inform enrollment target scenarios that are not only based on the epidemiology of the 
disease but also adjusted for empirical R/E distributions and biomarker prevalence, thereby 
supporting the development of informed and equitable diversity plans in oncology clinical trials. 
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Methods 
Patient cohorts 
We obtained data from the de-identified Tempus clinico-genomic database, which includes 
genomic and clinical data from cancer patients that underwent tumor profiling using Tempus’ xT 
assay as part of their healthcare.22  Selection criteria included tumor profiling with the Tempus 
xT assay (v2-v4) from 2018 to 2022, selecting the test with the first collection date in case of 
multiplicity. For our analyses of disparities between expected vs observed R/E distribution for 
the top ten most frequent cancers in the Tempus database, we selected a cohort of 41,856 
deidentified patient records. For our mock clinical trial case study, a cohort of 4,328 patients 
diagnosed with prostate adenocarcinoma with sequencing of prostate gland tumor tissue was 
selected. Demographic information included: patient age at date of specimen collection, age at 
diagnosis, gender, and stated (i.e., either self-reported or observed) R/E. Clinical information 
included: histology, PSA measurements, stage, grade, total Gleason score (raw and aggregated), 
and castration resistant status derived from clinical records (cf. Supplementary Table 1).   
 
Definition of race and ethnicity categories 
The R/E classifications in EHR, cancer statistics, and RWD sources in the US, follow the 1997 
federal guidelines from the US Office of Management and Budget. 25 These guidelines 
encompass two self-reported categories: a) Race (options include American Indian or Alaska 
Native, Asian, Black or African American, Native Hawaiian or Other Pacific Islander, and 
White); and b) Ethnicity (options include Hispanic or Latino and Not Hispanic or Latino).26 To 
address analytical challenges due to overlapping race and ethnicity categories, our study opts to 
consolidate responses into mutually exclusive categories:26 Hispanic or Latino, non-Hispanic 
(NH) Asian, NH Black, and NH White, noting that other racial groups currently lack sufficient 
representation in our data to support robust model development.26 The federal R/E category 
standards have recently been updated27 although their implementation is not expected until 
2029.27 Self-identified R/E (SIRE) is considered the gold standard R/E data. However, RWD 
may include R/E data from third parties, healthcare providers, or others who either assign 
categories based on physical characteristics,19 or omit this data, either unintentionally due to 
error, or intentionally to prevent discrimination.28,29 Therefore, we refer to R/E data in RWD as 
“stated” R/E rather than SIRE.13 
 
Imputation of race and ethnicity categories 
To overcome missingness of stated race and ethnicity in our real-world data, we performed 
imputation of mutually exclusive R/E categories with a previously reported method.13 The 
assessment of the sensitivity and specificity of the heuristic version of method used here,13 

demonstrated high accuracy with data from the Tempus database (correct rate of 96% and 
weighted error of 0.9% 13), performing much better than other commonly used methods, such as 
the Medicare Bayesian Improved Surname Geocoding31 (MBISG; reported correct rate of 78% 
and weighed error of 8.9%32), and with low no-call rate (~3%).13  
 
Disparity between expected vs observed R/E distribution in the Tempus database 
We calculated the difference between the expected and observed distribution of R/E categories 
by first determining the expected distribution from newly diagnosed cancer cases data reported 
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in the USCS Data Visualizations Tool33 data tables for the years 2015-2019 (release date 
November 2022; https://www.cdc.gov/cancer/uscs/USCS-1999-2019-ASCII.zip). We conducted 
our analysis at the state level to overcome frequent R/E data suppression at the county level in 
the USCS data, and further limiting to states where none of the R/E categories we analyzed were 
censored and to states within the service area of Tempus. “Unknown” race and NH American 
Indian and Alaska Native categories in the USCS data were excluded from our analysis.  
 
For each state we calculated Ec,r,s , the expected proportions of patients with cancer c for race-
ethnicity r in state s as: counts per race-ethnicity/total patients for cancer c in state s in the USCS 
data. Similarly, we calculated Oc,r,s , the observed Tempus proportions of patients of cancer s for 
race-ethnicity r in state s  as Tempus counts per cancer per race-ethnicity/Tempus total patients 
for cancer c in state s. We then calculated the disparity fraction34 (DFc,r,s), the difference between 
the expected proportion and the observed proportion in the Tempus data for each cancer, race-
ethnicity, and state:  
 

DFc,r,s = Ec,r,s –  Oc,r,s   
 
If DFc,r,s > 0, group r is under-represented, whereas if DFc,r,s < 0, group r is over-represented. 
 
We further calculated overall DFs for each cancer, weighting each state-level DF by the 
proportion of cases in the USCS data from that state and the proportion of Tempus data obtained 
from that state as follows. First, we calculated the USCS weight for cancer c in state s:  Wc,s= 
USCS incidence count of cancer c in state s / USCS total incidence counts for cancer c. Next, we 
calculated the Tempus sampling rate of cancer c in state s:  SRc,s= counts of Tempus patients for 
cancer c in state s / total number of cancer c patients in selected Tempus cohort. We computed 
the adjusted weight for state s in cancer c as:  AWc,s= Wc,s*SRc,s.  
 
We then calculated the weighted disparity fraction for each cancer as: 
 

𝑊𝐷𝐹!,# =
𝐷𝐹𝑐, 𝑟, 𝑠	 ∗ 	𝐴𝑊!,$

∑ 𝐴𝑊!,$%
$&'

 

 
Statistical significance of differences between expected and observed R/E distributions 
We performed a binomial proportion test to determine whether observed differences were 
statistically different to expected, per cancer, per R/E, per state. Then we aggregated p-values 
from the binomial proportion tests across states, per cancer, per R/E, by weighting each state-
level p-value as before by AWc,s, using Stouffer’s Z-score method. To make p-values equivalent 
to 2-tailed p-values, we select the minimum of the “greater” and “less” combined p-value for 
each R/E, we multiplied each p-value by 2, and if any of the resulting p-values was greater than 
1, we replaced by 1. We adjusted the aggregated p-values for multiple testing with the 
Benjamini-Hochberg procedure for controlling the false discovery rate on the combined 2-tailed 
p-values. The number of tests was the number of cancers times the number of R/E categories 
(Supplementary Table 2). 
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Adjustment factors for enrollment targets 
Let 𝑂′!,#  represent the new distribution of R/E categories for the cancer type under study c for 
each R/E category r after applying the inclusion/exclusion criteria (I/E). To adjust these new 
proportions (𝑂′!,#  ) for the initial disparity, we use the weighted disparity fraction (𝑊𝐷𝐹!,#). 
However, since 𝑂′!,#  may represent the distribution of a disease subtype, the adjustment needs 
to be made carefully to acknowledge the reasons for these criteria while also addressing the 
initial disparity. We proportionally adjust 𝑂′!,#  by a factor derived from 𝑊𝐷𝐹!,# ensuring that 
the adjustments do not counteract the inclusion criteria’s purpose. This adjustment aims to 
balance the need to respect the impact of the inclusion criteria with the goal of mitigating initial 
disparities. Hence, we define 𝐴!,# , the adjusted final proportion, as follows: 
 

𝐴!,# =	𝑂′!,# + 	𝛼	 ⋅ 	𝑊𝐷𝐹!,# 	
 
where α is a scaling factor that determines how strongly to adjust 𝑂′!,# based on the initial 
disparity fraction. The scaling factor α is normally set at 1, nonetheless it is abrbitrary and 
depends on the weight given to correcting for disparities versus adhering to the new proportions 
dictated by the inclusion criteria. Once 𝐴!,# is obtained for each R/E category, we calculate the 
total of the adjusted proportions and normalize them to ensure they sum to 100%, 𝐴1!,# – this can 
be done simply by rounding.  Finally, one can multiply 𝐴1!,# with the total trial enrollment target 
for each R/E to obtain initial diversity enrollment targets. 
 

Results 
Assessment of disparities in R/E proportions between national cancer incidence data and RWD 
We reasoned that differences in R/E distribution between epidemiological incidence databases 
and RWD can inform about specific over- or under-representations of R/E categories in RWD 
sources, enabling the development of correction factors. Calculating the expected distribution 
based on incidence data is complex, as incidence varies significantly by county due to 
environmental and socioeconomic factors,33,35 and suppression/censoring of some R/E categories 
in some counties due to privacy reasons, such that a given RWD may not represent all US 
counties or states equally. Expected R/E distributions can be calculated using cancer incidence 
data from databases such as the Surveillance, Epidemiology, and End Results (SEER) program,23 
or the CDC's US Cancer Statistics (USCS) database.24 The latter offers a more comprehensive 
overview by including data from most US states and incorporating SEER and the National 
Program of Cancer Registries (NPCR) data.24 Since cancer incidence can significantly vary 
between counties,35 comparing RWD with nationwide incidence data may not always be 
appropriate. Further, for clinico-genomic databases derived from clinical genomic testing, it is 
crucial to consider the patient catchment area and apply weights to adjust for sampling variances 
across counties.36 In the Methods section, we describe a procedure to calculate such expectations 
for different cancer types reported in the USCS and determine whether there are statistically 
significant differences between the expected and observed distributions.  
 
By comparing expectations with observed R/E distributions, we calculate a weighted disparity 
fraction (WDF) to reveal representation biases by R/E in specific cancer types.34 Figure 1 
illustrates the R/E disparity fractions for 10 major cancer types showcasing the varied over- and 
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under-representations across cancers. Some disparities are statistically significant, and while the 
disparities are small (less than 8 percent points overall), unexpected patterns can be observed.  
For example, in our pan-cancer cohort, we observed an over-representation of NH Asian patients 
in breast cancer cases, and Hispanic/Latino patients in lung cancer and melanoma cases. 
Conversely, under-representation was noted among NH Black patients with gastroesophageal 
cancers, Hispanic/Latino patients with prostate cancer, and NH White patients with breast, 
colorectal, melanoma, and pancreatic cancers. The latter may seem counterintuitive; however, 
considering that tumor profiling is not yet common in first-line therapy for many cancers,37 and 
that most patients undergoing tumor profiling are in stages 3 or 4 (Supplementary Table 1), we 
hypothesize a depletion of regularly screened patients diagnosed in earlier stages when the 
disease is more curable. For instance, in melanoma cases, detecting tumors is easier in patients 
with lighter skin and the disease is more easily cured in early stages.38 
 
A workflow to establish R/E enrollment targets in oncology trials from clinico-genomic RWD 
With the above considerations in mind, we propose a workflow to establish data-driven R/E 
enrollment targets for oncology clinical trials, leveraging data from de-identified clinico-
genomic databases. The workflow, detailed in Box 1 and illustrated in Supplementary Figure 1, 
is composed of three major steps: I) Assess disparities between expected and observed R/E in the 
chosen RWD source; II) Modeling the impact of I/E criteria in R/E distribution, including 
biomarkers, to finalize the selection of I/E criteria; and III) Compute enrollment targets, 
rectifying differences between expected and observed R/E distributions in RWD.  
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A case study to demonstrate our workflow: Hypothetical prostate cancer trial design 
To illustrate the application of our workflow with a practical example, we will navigate through 
the steps of the process for a hypothetical interventional trial targeting prostate cancer treatment. 
Prostate cancer, a disease characterized by significant racial and ethnic disparities, is known to 
disproportionately affect Black men in the United States and globally39. Despite the population-
level incidence rate being nearly 1.8 times higher in Black men compared to White men40, 
clinical trials often fail to accurately represent these disparities among R/E subgroups39. This 
underrepresentation highlights the importance of prostate cancer as an exemplary case for 

Box 1. A workflow to establish R/E enrollment targets from RWD. 
Step I – Assess disparities between expected and observed RWD R/E distributions. 

1. Obtain expected distributions from incidence databases such as USCS. 
2. Evaluate the disparity between expected (based on incidence data) and observed R/E 

distributions for the specific RWD cohort used in modeling.  
3. Assess whether these differences are statistically significant. These assessments can be done 

using subsets of the cohort with complete stated R/E data (complete case analysis), or the entire 
cohort by using imputed R/E data.  

4. If significant differences are observed, derive correction factors to be applied later in the 
workflow. Given that R/E missingness significantly reduces the sample size available for the 
analysis and can be biased, imputed R/E data is usually more reliable for this step.  

 
Step II – Modeling of I/E criteria and its impact on R/E distributions.   

1. Stratify the selected cohort by those clinical inclusion/exclusion (I/E) criteria that are available in 
the RWD database to generate post-I/E R/E distributions. Apply I/E criteria individually to 
determine which criteria have the most significant impact on R/E distributions.  

2. If distributions are computed for both stated and imputed R/E data, compare them and assess 
whether there are differences. If differences observed between these are significant, a bias in 
missingness may be present, and  imputed R/E may be more reliable. Caution is needed with 
stated R/E if, after applying I/E criteria, the sample size of underserved populations is too small. 
These considerations allow sponsors to decide whether to rely on stated R/E, or instead proceed 
with imputed R/E. 

3. For biomarker-driven clinical trials, assess the impact of biomarker presence on R/E distributions. 
This analysis will aid in reassessing I/E criteria and, if possible, in avoiding criteria or clinical 
thresholds that unnecessarily reduce participation from underserved minorities. The analysis 
above can be applied to both stated and imputed R/E.  

 
Step III – Compute R/E enrollment targets.   

1. Once I/E criteria have been finalized, combine these criteria to compute a final R/E distribution 
based on RWD.  

2. If Step I resulted in significant differences between expected and observed R/E distributions at 
the cohort level, the correction factors developed in Step 1 may be applied to obtain a final R/E 
distribution to derive enrollment targets. Scaling factors can be used to balance adjustment vs. 
other goals. 
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demonstrating how our methodology can improve the participation of underrepresented 
minorities in oncology clinical trials by establishing data-driven enrollment targets. 
 
Our case study involves a hypothetical interventional trial aiming to enroll 500 men with stage 3 
or 4, ETS-positive prostate adenocarcinoma (PRAD). The ETS gene family, comprising 28 
transcription factors, frequently shows aberrant expression in prostate cancer, with ERG being 
the most commonly affected41 The overexpression of ERG, mainly due to structural 
rearrangements of the transmembrane protease serine 2 (TMPRSS2) with ERG (with ETV1 and 
ETV4 being less common), is a hallmark in over 30% of prostate cancer cases.42 Our scenario 
relies on the notion of repurposing of drugs that may be effective in ETS-positive cancers.43 
Specifically, our hypothetical scenario considers a repurposed drug therapy being tested in a trial 
for patients with prostate adenocarcinoma confirmed to have TMPRSS2:ERG gene fusions. As 
tumor profiling becomes increasingly common in the cancer treatment journey,44 the feasibility 
of biomarker-driven clinical trials targeting specific molecular alterations is on the rise. Real-
world, clinico-genomic databases offer multimodal clinical and genomic data useful in modeling 
biomarker-driven clinical trials. As we demonstrate below, they also provide insight into setting 
R/E enrollment targets and developing diversity plans for such trials. 
 
Set-up: RWD cohort and eligibility criteria 
The RWD for this analysis was obtained from the Tempus de-identified clinico-genomic 
database.22,45 We selected a cohort of 4,328 PRAD patients that underwent tumor genomic 
profiling of prostate tumor tissue with the Tempus xT assay.22 Supplementary Table 1 shows the 
cohort patient characteristics by imputed race and ethnicity. We propose a list of tentative I/E 
criteria for participation in our hypothetical trial in Box 2. This list is a basic set of criteria that 
can be readily explored in RWD, sufficient to exemplify our process. 
 

 
 
Expected vs observed R/E distribution differences for the prostate cancer cohort (Step I) 
As described in Step 1 of our workflow and detailed further in the Methods section, we utilized 
the USCS database to obtain the expected distribution of R/E for prostate cancer patients. We 
then calculated the difference in proportions between the expected R/E distributions and those 
observed in our cohort, (the weighted disparity fraction, WDF). Table 1 presents these results. 
 

Box 2. Candidate Eligibility Criteria 
Inclusion Criteria: 

- Histological proof of adenocarcinoma of the prostate. 
- Detectable PSA of at least 2µg/ml. 
- Prostate biopsy histology grade total Gleason ≥ 6. 
- Stage 3 or 4 disease. 
- Presence of TMPRSS2:ERG gene fusions assessed centrally by a gene mutation biomarker panel. 

 
Exclusion Criteria: 

- Pathological findings consistent with small cell carcinoma of the prostate. 
- Known castration-resistant disease. 
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Table 1. Distributions of race and ethnicity categories in USCS and Tempus and the weighted disparity 
fractions (WDFs) for each category are presented. Note that in over-represented categories, WDFs are 
negative, whereas in under-represented categories, these values are positive. Statistical significance of WDFs 
were evaluated using a binomial proportions test (refer to Methods and Supplementary Table 2 for details). 

 USCS Tempus   

Race/ethnicity N %  N  % WDF P-Val 

NH Asian 24,843 2.5% 150 3.1% -0.0105 1.00 
NH Black 165,109 16.7% 810 16.8% -0.0179 1.00 

NH White 724,874 73.2% 3,512 73.0% 0.0019 0.4180 
Hispanic/Latino 75,895 7.7% 342 7.1% 0.0265 0.0001 

 
Table 1 reveals that, following our normalization procedure, there are no significant differences 
between the expected and observed proportions for NH Asian, NH Black and NH White patients. 
However, there is a small statistically significant underrepresentation of Hispanic/Latino patients 
(2.65%) in our Tempus prostate cancer cohort. Since there is at least one significant difference, 
these fractions will be used in Step III as correction factors to adjust final R/E distributions after 
applying I/E factors to set adjusted enrollment targets. 
 
Assess impact of I/E criteria on R/E distributions (Step II) 
The next step involves assessing the impact of I/E criteria on the R/E distributions found in 
RWD. Table 2 presents the stated and imputed R/E distributions for different strata of our PRAD 
cohort. The first column displays the R/E distribution for patients with histologically confirmed 
PRAD. The subsequent columns reveal the R/E distributions when applying individually various 
inclusion criteria: stage 3 and 4, total Gleason score ≥6, and patients with at least one PSA 
measurement of ≥ 2µg/ml. 
 
To illustrate the benefits of R/E imputation, Table 2 includes analyses for both imputed and 
stated R/E. Due to data missingness and the necessity of having available stated race and 
ethnicity metadata to produce mutually exclusive R/E categories, the counts of patients for each 
I/E stratum is significantly decreased when relying on stated R/E. This reduced sample size, 
coupled with the potential for bias in R/E missingness, diminishes confidence in the proportions 
derived solely from stated R/E. 
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Table 2. Distribution of race and ethnicity categories (R/E) across different inclusion criteria strata. Cells color 
highlight changes of five percentage points or more over (orange) or below (blue) the R/E distribution in the 
initial PRAD cohort. The top section presents data for imputed R/E categories, whereas the bottom section 
presents data for patients where stated R/E was available. 
  PRAD Stage 3+4 Tot. Gleason  ≥ 6 Not CRPC PSA >  2µg/ml TMPRSS2:ERG+ 
Imputed R/E N % N % N % N % N % N % 

NH Asian 142 3.4% 104 3.5% 128 3.5% 118 3.4% 36 2.6% 25 2.1% 
NH Black 772 18.6% 567 19.3% 690 18.6% 634 18.1% 278 20.1% 133 11.2% 

NH White 2839 68.5% 2028 68.9% 2527 68.2% 2413 69.0% 941 68.1% 901 75.6% 
Hispanic/Latino 389 9.4% 244 8.3% 359 9.7% 333 9.5% 126 9.1% 133 11.2% 

Stated R/E                         
NH Asian 37 3.2% 29 2.9% 37 3.2% 29 3.2% 9 2.0% 5 1.5% 
NH Black 168 14.3% 157 15.5% 165 14.4% 122 13.5% 79 17.2% 30 8.8% 

NH White 802 68.4% 686 67.8% 783 68.1% 626 69.1% 303 65.9% 246 71.9% 
Hispanic/Latino 165 14.1% 140 13.8% 164 14.3% 129 14.2% 69 15.0% 61 17.8% 

 
 
Table 2 illustrates the impact of different inclusion criteria on the R/E distribution based on 
either stated or imputed data. We observe an over-representation of NH White patients with 
TMPRSS2:ERG gene fusions and under-representation of NH Black patients, a disparity noted 
in the literature for this biomarker.46 Notably, there are differences in sample size between 
imputed and stated R/E data, with missingness in stated R/E leading to less reliable figures for 
some groups. Furthermore, the stated R/E distributions show less pronounced disparities 
compared to imputed data (e.g., the over-representation of NH White individuals in the 
TMPRSS2:ERG+ group is reduced by half), suggesting potential bias in missingness (given the 
reported accuracy of our imputation method).13 
 
Another factor to consider is how each I/E criterion reduces the sample size available for 
analysis. Specifically, when requiring a PSA measurement of >= 2µg/ml, only 33% of the initial 
PRAD cohort meets this criterion, partly due to the 37% missingness in PSA measurements. The 
cause of this missingness is unknown, but we cannot rule out the possibility that it results from 
biases in healthcare access, or other socioeconomic factors associated with R/E, rather than 
inherent differences in the tumors of the patients in these categories. Therefore, we decided to 
eliminate this criterion in the final step to define R/E distributions for setting enrollment goals. 
 
Define R/E enrollment targets (Step III) 
Once we have evaluated the impact of the different inclusion criteria on the R/E distribution, 
these can be examined to assess whether any of them create unnecessary disparities and can be 
eliminated. Some criteria are necessary for the therapy in question and will remain (e.g., 
TMPRSS2:ERG positive tumor). Once the I/E criteria are finalized, they can be combined to 
obtain a final distribution of R/E in RWD for the desired patient population (Table 3). This 
allows us to contrast this distribution with the initial PRAD cohort and with the expectations 
from the USCS incidence data as derived in Step I.  
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Table 3. Development of initial and adjusted R/E enrollment targets based on I/E criteria and the disparity 
fraction between the RWD and US Cancer Statistics (cf. Table 1). We present two scenarios, the first with the 
scaling factor α is set to 1, and the second section displays results when it is set to 0.5. Cell colors highlight 
changes of five percentage points or more over (orange) or below (blue) the R/E distribution in the PRAD 
cohort. 
      𝛼 = 1 𝛼 = 0.5 

  
Tempus 
Prostate 

Tempus 
PRAD 

I/E 
 O'c,r 

Initial  
target WDFA 

Adjusted 
(Ac,r) 

Adjusted  
target 

Adjusted 
(Ac,r) 

Adjusted  
target 

Imputed R/E % % % N % % N % N 

NH Asian 3.1% 3.4% 2.3% 11 -1.1% 1.2% 6 1.8% 9 

NH Black 16.8% 18.4% 10.9% 54 -1.8% 9.1% 46 10.0% 50 

NH White 73.0% 68.9% 76.3% 381 0.2% 76.5% 382 76.4% 382 

Hispanic/Latino 7.1% 9.3% 10.5% 53 2.7% 13.2% 66 11.8% 59 

 
 
Table 3 shows the workflow to define R/E enrollment goals. It shows the distribution of R/E 
across the selected Tempus prostate cohort (N=4,814), the PRAD subset of that cohort 
(N=4,196), and 𝑂′!,# – the observed R/E distribution after applying the final I/E criteria (N=523): 
PRAD, stage 3 or 4, total Gleason ≥6, and TMPRSS2:ERG+ as inclusion criteria, and applying 
confirmed CRPC as exclusion criteria. We then adjust for the disparity between the overall 
prostate cancer cohort in our RWD and the expectation derived from the US Cancer Statistics 
data (cf. Table 1). Following the Methods, we apply WDF as a correction factor, multiplied by a 
scaling factor. This adjustment results in a revised R/E proportion distribution and enrollment 
targets, with increases in Hispanic/Latino patients and minimal changes in the other groups. We 
also show that the impact of changing the scaling factor from 1 to 0.5 is very small.  
 

Discussion 
Real-world clinico genomic databases —which include multimodal genomic data (e.g., DNA 
alterations and gene expression values)22,48 linked with diverse clinical data from electronic 
health records (EHR) or abstracted clinical documents—offer numerous benefits for 
understanding the epidemiology of diseases in real patient populations and their distribution 
across R/E categories. Particularly in modern biomarker-driven oncology clinical trials, clinico-
genomic databases can be used to understand the prevalence of molecular biomarkers with 
respect to R/E.45,49 With tumor genomic profiling becoming increasingly common in clinical 
cancer care and recommended in treatment guidelines,44 the magnitude of these data is 
expanding rapidly. Despite representation biases, because of its scale, these data provide 
significant statistical power for analyses across all major R/E categories including underserved 
minorities.50 However, RWD often exhibits inconsistencies and missingness, especially 
regarding R/E data, with incompleteness rates varying from 30-80% depending on the 
source.12,51 Some of this missingness is not random;12–15 underserved populations tend to provide 
self-identified R/E (SIRE) less frequently.29 This gap significantly impacts the ability to define 
enrollment goals that align solely with disease epidemiology and biomarker prevalence. 
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In this paper, we outline a robust methodology utilizing real-world data to establish diversity 
enrollment targets for oncology trials, specifically emphasizing the use of clinico-genomic 
databases in biomarker-driven studies.45 We present strategies to address RWD challenges, such 
as missing R/E data and healthcare access biases, aiming to create fairer diversity plans. Our 
example of a prostate cancer trial demonstrates the application of this methodology, highlighting 
the refinement of R/E enrollment targets through the evaluation of disparities and imputation 
techniques. This approach sheds light on how inclusion/exclusion criteria affect R/E distribution, 
particularly in the context of molecular biomarkers where racial biases in their distribution may 
stem from various poorly understood factors. Data-driven approaches for eliminating 
unnecessary I/E criteria have been proposed.52 Our research suggests that these methods could be 
expanded to consider the impact of I/E on the distribution of R/E, especially when data 
missingness in criteria is present and could be biased by R/E.46 
 
An important aspect of our methodology is conducting a thorough assessment of the disparities 
between expected R/E distributions in epidemiology or disease incidence data and those 
observed in a RWD source. It's crucial to acknowledge that cancer incidence can vary 
significantly by geography.35 This variation, influenced by factors such as genetic 
predispositions, lifestyle choices, socioeconomic status, access to healthcare, and environmental 
factors,53 necessitates performing assessments with as much geographical granularity as possible, 
considering the catchment area of patients contributing to the RWD. This approach allows us to 
derive a weighted disparity fraction, which is instrumental in adjusting for the over- or under-
representation of specific R/E groups in the RWD. These disparities are the result of a complex 
interplay of factors, including access to care (particularly early-stage curative therapies) and 
insurance status.11,38 
 
Another important feature of our method is the use of imputation to address the R/E missingness 
problem in RWD.  Several methods exist to impute R/E from clinical administrative data, such 
as the widely used Bayesian Improved Surname and Geocoding method (BSIG).31 Machine 
learning methods that leverage EHR data have also been developed.54 However, all methods 
suffer from suboptimal accuracy and significant no-call rates55 and require as input personally 
identified information such as patient name and address, which makes them impractical in de-
identified RWD settings. To address these shortcomings and take advantage of the molecular 
data present in clinico-genomic RWD, we previously developed an R/E imputation method that 
leverages genetic ancestry inferred from tissue sequence data and was reported to be of 
significantly higher accuracy than methods such as BISG13 This inclusion allows for larger 
sample sizes in the analysis of I/E criteria and yields more reliable data, while also protecting 
against the biases of R/E missingness. In applying race imputation methods, we followed 
established ethical imputation recommendations,56 auditing input data for bias, scrutinizing 
methodological choices to prevent bias introduction, and rigorously assessing the imputed data's 
accuracy. Our adherence to these guidelines highlights our commitment to responsible race 
imputation use in promoting healthcare equity.57 
 
An important consideration in applying this methodology is defining the disease under study. 
The FDA's draft guideline on diversity plans suggests that enrollment goals should reflect the 
epidemiology of the targeted disease.5,17 In our example, the question arises: Is the disease being 
treated prostate adenocarcinoma, or specifically TMPRSS2:ERG+ prostate cancer? It has been 
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suggested that early-onset metastatic and clinically advanced prostate cancer, characterized by a 
higher incidence of TMPRSS2:ERG fusions, is a distinct clinical and molecular entity.58 Racial 
disparities in the distribution of TMPRSS2:ERG fusions are well documented, with Black 
patients less likely to have these alterations compared to White patients.59 The causes of this 
difference are unclear, potentially due to genetic susceptibility, hormone levels, lifestyle factors, 
and healthcare access.47 The complexity of defining disease within cancer subtypes presents a 
challenge, particularly when incidence databases offer limited subtype-specific epidemiology.60 
Given this complexity, we face a choice: set enrollments based on the distribution after applying 
I/E criteria and adjusting by factors derived from WDF, or make an additional adjustment to 
address biases introduced by selecting for the biomarker. While we did not make this additional 
adjustment in our example, it is up to clinical investigators and sponsors to decide, based on their 
specific aims and the nature of the therapy being tested. Adjusting R/E targets to compensate for 
disparities introduced by subtyping requires a delicate balance between scientific accuracy and 
equitable representation, highlighting the importance of precision in trial design. 
 
Another point of consideration is when applying I/E criteria based on algorithmic scores that 
could be biased by R/E. For example, tumor mutational burden (TMB), a commonly used 
biomarker to predict the effectiveness of immunotherapy, is inflated in groups other than NH-
White when determined from tumor-only sequencing.61 This artifact can be eliminated by 
matched tumor-normal analysis61,62 or empirically derived adjustment factors.63 Another example 
is the colorectal cancer consensus molecular subtypes (CMS) classifiers,64 which were developed 
mostly from data from White patients and may experience R/E biases and increased no-call rates 
in some groups.65 Care must be taken to assess whether these scores/classifiers are biased due to 
disparities in training data and the potential impact of such biases on R/E distributions.16,66 
 
In our methodology, we introduce a scaling factor (α) to decide the extent of adjustment to the 
final R/E distribution based on the identified disparity between expected incidence data and the 
RWD cohort. Ideally, this factor is initially set to 1, to adjust according to the discovered 
disparities in our RWD. However, investigators have the flexibility to modify its impact based on 
ethical, statistical, and feasibility considerations. The key is balancing these adjustments to 
ensure ethical fairness and scientific validity in the recruitment process, which might involve 
iterative calculations and adjustments based on feedback from stakeholders and ethical 
guidelines. 
 
Limitations of our study include our inability to impute R/E categories for underrepresented 
groups in our RWD such as American Indian or Alaska Native, and Native Hawaiian or Other 
Pacific Islander. Patients in these groups may receive no-call/”complex” calls or be misclassified 
into broader categories like Hispanic/Latino or Asian. Our R/E imputation method might require 
revalidation or retraining for use in other RWD sources or for updated federal R/E standards,27 
and drift can occur over time as the US population's admixture changes.57 Additionally, this 
imputation method is not directly applicable outside the US, where racial and ethnic categories 
differ and may encompass different genetic ancestries. Other limitations arise from averaging 
expected R/E distributions at the US state level, which may overlook potentially significant 
differences in cancer incidence at the county level due to environmental factors. This averaging 
is necessary to cope with the censoring that occurs in many counties for minority groups when 
patient counts are very low. Moreover, in de-identified data, we lack county-level patient 
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addresses for similar privacy reasons. However, our intent is not to underscore such disparities 
but to match the RWD area of service as closely as possible to obtain accurate expectations. 
Additionally, our approach aims to define R/E enrollment targets based on the disease incidence, 
the disparities leading to the RWD, and the distortions in the R/E distribution introduced by 
using biomarkers. However, this does not guarantee that the final numbers of patients enrolled 
from different groups will allow for sufficiently powered subgroup analyses.17 If such analyses 
are desired, it may be necessary to supplement minority groups based on power calculations. 
 
Setting R/E enrollment targets is a crucial aspect of a diversity plan, but it is only one part. A 
comprehensive strategy should also outline how to achieve these targets, such as by minimizing 
participation barriers for underrepresented minorities.6,67–69 This could involve opening trial sites 
in community practices, not just academic centers, educating patients and providers, and offering 
stipends, transportation, and telemedicine options to ease participation.67 Additionally, RWD can 
potentially assist in selecting sites where diverse patients are treated for specific cancers, and R/E 
imputation in RWD can provide a more complete and unbiased view of patient diversity at 
potential recruitment clinical sites. 
 

Conclusions 
The FDORA legislation and FDA guidelines for diversity plans address the long-standing 
underrepresentation of minority groups in clinical trials, a crucial ethical concern in clinical 
research. Advocating for a data-driven approach, we emphasize utilizing real-world data (RWD), 
especially clinico-genomic databases in this endeavor. These databases, expanding significantly 
beyond resources such as the TCGA, offer unparalleled diversity and scale. By leveraging such 
insights, we can foster more inclusive clinical research and develop treatments that are safe and 
effective across all patient demographics. 
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Figure 
Figure 1. Racial/ethnic disparities in the distribution of patients sequenced per cancer type with respect to United States Cancer 
Statistics (USCS) database of cancer incidence.  
We looked for differences between the observed distribution of racial/ethnic categories per cancer type in our cohort, and the expectation based on cancer 
incidence rates from the USCS database between 2015-2019 at the state level, rolled up as a weighted average adjusted by our sampling rate (number of 
patients in our cohort from each state; cf. Methods and Supplementary Table 3). Sample sizes: Asian = 2,733; NH Black = 7,168; Hispanic/Latino=5,252; 
and NH White = 44,464.  We performed one proportion Z-test to assess the differences between observed and expected proportions of race/ethnicity 
categories at the state level. We aggregated p-values across states using Stouffer’s Z-score method. A star indicates statistically different differences from 
expectation (p<0.05) - open star nominal value, black start after multiple testing adjustment (cf. Supplementary Table 2).  
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Supplementary Materials 
Supplementary Figure 1. A workflow to establish R/E enrollment targets in oncology trials from 
clinico-genomic RWD.   
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Supplementary Table 1. Patient characteristics of prostate adenocarcinoma cohort by imputed 
race and ethnicity.  
 

Characteristic 
NH Asian 
N = 142 

NH Black 
N = 772 

NH White 
N = 2,893 

Hispanic/Latino 
N = 389 

Stated Race         

White 1 (1.4%) 7 (1.8%) 1,454 (98%) 58 (51%) 

American Indian or 
Alaska Native 0 (0%) 0 (0%) 1 (<0.1%) 4 (3.5%) 

Asian 61 (88%) 0 (0%) 1 (<0.1%) 0 (0%) 

Black or African 
American 1 (1.4%) 383 (97%) 0 (0%) 10 (8.8%) 

Native Hawaiian or 
Other Pacific Islander 1 (1.4%) 0 (0%) 0 (0%) 0 (0%) 

Other Race 5 (7.2%) 4 (1.0%) 26 (1.8%) 42 (37%) 

Race not stated 0 (0%) 1 (0.3%) 2 (0.1%) 0 (0%) 

Unknown 73 377 1,409 275 

Stated ethnicity         

Not Hispanic or Latino 47 (100%) 191 (95%) 903 (99%) 24 (15%) 

Hispanic or Latino 0 (0%) 11 (5.4%) 12 (1.3%) 135 (85%) 

Unknown 95 570 1,978 230 

Age at collection         

Present 68 (63, 75) 64 (59, 69) 68 (62, 74) 64 (60, 70) 

Unknown 14 86 368 29 

Age at Dx         

Present 68 (63, 76) 64 (59, 69) 67 (61, 73) 64 (59, 70) 

Unknown 29 142 572 62 

Max. total Gleason score         

6 1 (0.8%) 10 (1.4%) 21 (0.8%) 2 (0.6%) 

7 23 (18%) 135 (20%) 463 (18%) 69 (19%) 

8 34 (27%) 147 (21%) 505 (20%) 70 (19%) 

9 54 (42%) 338 (49%) 1,312 (52%) 189 (53%) 

10 16 (12%) 60 (8.7%) 226 (8.9%) 29 (8.1%) 

Unknown 14 82 366 30 
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