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Abstract
Background: Cardiovascular risk prediction models based on sociodemographic factors
and traditional clinical measurements have received significant attention. With rapid
development in deep learning for image analysis in the last decade and the well-known
association between micro- and macrovascular complications, some recent studies focused
on the prediction of cardiovascular risk using retinal fundus images. The objective of this
scoping review is to identify and describe studies using retinal fundus images and deep
learning to predict cardiovascular risk markers and diseases.

Methods: We searched MEDLINE and Embase for peer-reviewed articles on 17 November
2023. Abstracts and relevant full-text articles were independently screened by two reviewers.
We included studies that used deep learning for the analysis of retinal fundus images to
predict cardiovascular risk markers (e.g. blood pressure, coronary artery calcification,
intima-media thickness) or cardiovascular diseases (prevalent or incident). Studies that used
only predefined characteristics of retinal fundus images (e.g. tortuosity, fractal dimension)
were not considered. Study characteristics were extracted by the first author and verified by
the senior author. Results are presented using descriptive statistics.

Results: We included 24 articles in the review, published between 2018 and 2023. Among
these, 21 (88%) were cross-sectional studies and eight (33%) were follow-up studies with
outcome of clinical CVD. Five studies included a combination of both designs. Most studies
(n=23, 96%) used convolutional neural networks to process images. We found nine (38%)
studies that incorporated clinical risk factors in the prediction and four (17%) that compared
the results to commonly used clinical risk scores in a prospective setting. Three of these
reported improved discriminative performance. External validation of models was rare (n=5,
21%). Only four (17%) studies made their code publicly available.

Conclusions: There is an increasing interest in using retinal fundus images in
cardiovascular risk assessment. However, there is a need for more prospective studies,
comparisons of results to clinical risk scores and models augmented with traditional risk
factors. Moreover, more extensive code sharing is necessary to make findings reproducible
and more impactful beyond a specific study.
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Introduction
Cardiovascular diseases (CVDs) are the leading causes of mortality globally.1 Clinical risk
prediction models can help to identify individuals at high risk and target preventive efforts
including lifestyle and pharmacological interventions.2 There are some well-established and
validated CVD prediction models based on sociodemographic factors and traditional clinical
variables in the general population and in selected subpopulations, like the Framingham
score,3 SCORE2,4 and QRISK models.5 A recent comprehensive systematic review called
for validating existing tools, tailoring existing models to specific populations, and identifying
new data sources to be included in models, instead of testing small alterations of the
established clinical risk models.6

Developments in machine learning for image analysis in the last decade have made it
feasible to include images as a data type in risk prediction models, potentially in combination
with traditional risk factors (multimodal prediction models). Retinal fundus imaging is a
relatively simple and the only non-invasive method used for assessing the state of blood
vessels in the body. People with type1 and type 2 diabetes are regularly invited to diabetic
retinopathy screening with retinal fundus images, which makes it a potentially relevant
predictor and allows us to follow the progression in microvascular disease. It’s likely that the
underlying disease causes damage to all blood vessels, resulting in both micro- and
macrovascular complications. The state of the blood vessels in the retina could reflect that of
blood vessels elsewhere. There is a well-established association between diabetic
retinopathy and both micro- and macrovascular complications, including CVD.7,8 However, it
remains an open question whether these associations can be translated into clinically
relevant predictors. Instead of using disease status as the predictor, the actual images might
carry more relevant information for CVD prediction.

In a preliminary search, we identified a review on the topic of our scoping review.9 However,
there are some limitations of this work. Firstly, the search procedure was described only very
briefly. Secondly, the authors only considered open-access articles in the review.Thirdly, they
had a focus on diabetic retinopathy grading and image segmentation unrelated to
cardiovascular disease. Since the review was published, we have identified several relevant
articles on the topic.10,11 Finally, we aim to evaluate the studies from a more clinical
perspective (e.g. performance comparison with or added value to existing risk scores).

We chose to conduct a systematic scoping review instead of a classical systematic review
because scoping reviews serve to scope a body of literature, examine research practices,
and clarify concepts, which fit well with our goals.12 We aimed to describe studies, with an
emphasis on clinical perspectives, that used retinal fundus images and deep learning for the
prediction of cardiovascular markers and diseases.

Methods
The scoping review was conducted in accordance with the Joanna Briggs Institute (JBI)
methodology for scoping reviews and reported according to the Preferred Reporting Items
for Systematic Reviews and Meta-analyses extension for scoping review (PRISMA-ScR)
guidelines.13 The scoping review protocol was published on Figshare on December 19,
2023.14

Eligibility Criteria
Participants
We considered studies analysing data from human participants regardless of their health
status (e.g. population-based studies or cohorts with a specific condition).
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Context
This scoping review focuses on studies in the clinical research context, regardless of the
geographical location, ethnicity, and gender composition of the study populations.
Methodological articles comparing different methods for CVD risk prediction based on retinal
fundus images were considered if any of the methods used deep learning.

Types of Sources
We included peer-reviewed articles (e.g. original articles, brief reports; peer-reviewed
full-length articles in conference proceedings ). Included studies needed to be human clinical
studies (including methodological studies with examples using clinically relevant outcomes
and measures). Furthermore, we only included studies that used deep learning to predict
cardiovascular markers, or presence of CVD, or CVD incidence based on retinal fundus
images. Studies could also use a deep learning-derived score from retinal fundus images
(not pre-defined retinal features), to predict cardiovascular markers or diseases.

We excluded review articles, editorials, conference abstracts and preprints. Studies were
excluded if they only included optical coherence tomography (OCT) or other eye images for
prediction, if they extracted pre-defined features of the vessel network (e.g. tortuosity, fractal
dimension) and then associated them with CVD markers, or if they predicted factors that
were not based on measurements of the cardiovascular system, but merely risk factors of
CVD (e.g. age, sex, cholesterol, HbA1c). We also excluded association studies, even if they
investigated the association between a deep learning-derived score and cardiovascular
markers or diseases, since such studies do not report any predictive performance metrics.

Articles in languages not understood by the review team (English, Danish, Swedish,
Norwegian, Hungarian, German, Polish, and Chinese) that were considered eligible by title
and abstract were not included in the synthesis but would have been included in an
appendix for others to analyse.

Search Strategy
We considered MEDLINE and Embase as databases for the search. Most of the data
science literature focuses on diabetic retinopathy grading, most likely due to the availability
of open-access datasets from this domain. As this task is not directly relevant from a
cardiovascular perspective and it is unlikely that such datasets have detailed phenotyping of
cardiovascular health or follow-up for hard endpoints, we did not consider technical
databases.

Information specialist THA conducted the search on November 17, 2023. The search
comprised three key concepts: retina, cardiovascular diseases and artificial
intelligence/machine learning. Each concept was searched using Medical Subject Headings
(MeSH) and free-text words, and no limits were applied. The search string was developed in
MEDLINE and subsequently translated to Embase. The search string was tested against
eight key articles within the field and reviewed by another information specialist (ON). The
full search string in both databases is available on Figshare.15

After the selection process, we used the software tool citationchaser16 to retrieve all
references within and all articles citing the included articles and previous reviews within the
same topic. Retrieved articles were screened to find all relevant articles.

Study Selection
Following the search, all identified citations were collated and uploaded into
EPPI-Reviewer 6 and duplicates were removed.17

In the screening phase, two independent reviewers screened titles and abstracts to assess
eligibility. At the beginning, we had a pilot screening workshop examine the in- and exclusion
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of about 25 abstracts. In the official screening, the reviewers met to assess alignment in the
process after screening 10% of the abstracts. After all titles and abstracts had been
screened, full-text versions of relevant articles were retrieved and assessed in detail against
the eligibility criteria by two or more independent reviewers. Reasons for the exclusion of
articles at full-text screening were recorded and reported in the Results section. Any
disagreements between the reviewers at any stage of the selection process were resolved
through discussion. If there was no consensus after this, the senior author (AH) made the
final decision. The study selection process is presented using a flow diagram.

Data Extraction
Research questions (Table 1) were pre-specified and published in the scoping review
protocol.14 Data was extracted from included articles by the first author and verified by the
senior author. Data was collected using a data extraction instrument developed based on the
research questions. The extracted data included specific details about the study methods
and characteristics relevant to the review questions listed in the protocol (e.g. first author
and year of publication; study population and design; CVD outcomes; deep learning model
used; predictive performance; comparison to clinical risk scores if included). The identified
studies described in the data extraction table are published on Figshare.15

Data Analysis
Study characteristics are aggregated using descriptive statistics (frequencies and
percentages). A narrative summary accompanies the tabulated and charted results and
describes how the results relate to the review’s objective and questions.

Results
The search resulted in 1,990 records, of which 172 were duplicates (Fig 1). After screening
the titles and abstracts of the remaining 1,818 records, 1,790 were excluded as irrelevant. Of
the 28 records included for full-text screening, 10 were excluded because they did not use
deep learning (n=5), were not original articles (n=2), did not focus on CVD (n=2) or did not
use fundus retinal images (n=1). Another six records were identified in citations and
references of the included studies and previous reviews on similar topics.9,18 In total, 24
studies were included in this scoping review, all of which were published after 2018.

Among the identified studies, 11 out of 24 (46%) predicted markers of subclinical CVD as the
outcome, 18 predicted clinical CVD, and five studies included both types of outcomes. Ten
out of 18 studies were cross-sectional using retinal fundus images to predict prevalent CVD,
and eight were cohort studies including clinical CVD.

Markers of subclinical CVD included systolic and diastolic blood pressure, left ventricular
characteristics, brachial-ankle pulse‑wave velocity, coronary artery calcium (CAC) score, and
carotid intima-media thickness (Table 2). Clinical CVD included hypertension, peripheral
arterial disease, coronary heart disease, cerebrovascular disease, stroke, myocardial
infarction, heart failure, and CVD mortality. Apart from the desired outcomes listed in the
studies, one study had an outcome described as CVD without further details, and one study
had the outcome described as major adverse cardiovascular events (MACE) without further
details included.

Most studies were conducted in the general population or without the mention of specific
patient groups (22 out of 24). Two studies had more specific study populations, one included
people with atrial fibrillation,19 and another included people with type 1 diabetes or type 2
diabetes.20 We used the first authors’ first affiliation as a proxy for the geographical location
of the studies. More than half of the identified studies were conducted in Asia (13 out of 24,
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54%): five from South Korea, four from China, and four from Singapore. We did not identify
any studies from Africa, South America or Australia.

Most studies (n=23, 96%) used convolutional neural networks to process images. One study
used the vision transformer deep learning architecture.21 No studies used a deep learning
framework specifically developed for time-to-event data. Several performance metrics were
used in the studies. The most often used predictive performance metric was discrimination,
characterised by the area under the receiver operating characteristic curve (AUROC), also
referred to as C-statistic or concordance index in time-to-event settings (n=18 out 24, 75%).
For continuous outcomes, the most often used metrics were accuracy (n=6, 25%), mean
absolute error (MAE) and the coefficient of determination also known as r-squared (n=3).

We found nine studies that combined clinical risk factors (in tabular data form) with images
as predictors in their studies. Five out of nine included clinical risk factors in the deep
learning models, whereas the other four applied a two-step approach extracting new
variables using deep learning and then including them in Cox regression or Poisson
regression models. Five studies compared the performance with established clinical risk
scores such as Framingham Risk Score,22 Systematic Coronary Risk Assessment
(SCORE),23 QRISK3,24 and the Pooled Cohort Equation for atherosclerotic CVD
(PCE-ASCVD) (Table 3).25 One study presented a comparison with a customised clinical risk
prediction model developed as part of the same study. Four studies reported incremental
improvement in the predictive performance after adding retinal fundus images or scores
derived from them to the clinical risk score or model of their choice.

External validation of models was rare (n=5 out of 24, 21%), while internal validation was a
common practice. Eight studies used cross-validation, and 12 split and set part of their study
sample aside for validation. No study used a fully open-access dataset. Eight studies used
data from the UK Biobank,26 which is available to anyone for a data access fee. Only four
studies made their code publicly available on GitHub. None of the studies reported
randomised clinical trials to evaluate the implementation of the developed algorithms and
scores.

Discussion
We identified and described studies exploring the integration of retinal fundus images in the
prediction of cardiovascular markers and diseases. The majority of these studies were
cross-sectional, lacking examination of predictive utility for hard clinical endpoints in
prospective settings. Few studies compared their models with established cardiovascular
risk scores, evaluating the potential of the multimodal approaches. In most of these cases,
including retina images led to small improvements in discriminative performance. However,
other clinically relevant metrics, like calibration, were often overlooked.

Clinical risk prediction models are traditionally developed using regression-based statistical
methods that can only handle categorical and numerical variables i.e. tabular data. Recent
advancements in deep learning allowed the analysis and integration of images with
promising results in various medical domains, including clinical risk assessment of
cardiovascular health.27 A multimodal approach offers the opportunity to extract novel
insights from new, and often routinely collected data types, expanding the utilisation of
available clinical data.

We found a series of studies on prediction of CAC from one research group, where they
developed and validated a retinal fundus image-based score referred to as Reti-CVD or
RetiCAC, and its utility was compared to existing CVD risk scores.28–30 The score was
proposed as a non-invasive and cost-efficient alternative to the computer
tomography-derived CAC score. Multiple validation studies investigated the incremental

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.17.24305957doi: medRxiv preprint 

https://www.zotero.org/google-docs/?iFvAEA
https://www.zotero.org/google-docs/?X9oFnK
https://www.zotero.org/google-docs/?iHaKgC
https://www.zotero.org/google-docs/?6N5fAk
https://www.zotero.org/google-docs/?zFb6bW
https://www.zotero.org/google-docs/?n57GYD
https://www.zotero.org/google-docs/?10THU9
https://www.zotero.org/google-docs/?Nu2KXx
https://doi.org/10.1101/2024.04.17.24305957
http://creativecommons.org/licenses/by/4.0/


predictive value of RetiCAC on top of established clinical risk prediction models. Rim et al.
added the score to PCE-ASCVD to predict SCORE CVD events and Tseng et al. added the
score to QRISK3 to predict 10-year CVD respectively.28,29 They both reported small
improvements in predictive performance after adding retinal image-derived scores to the
models. In another study, Reti-CVD was used to identify people at intermediate and high risk
of CVD according to established clinical risk scores (PCE-ASCVD, QRISK3 and
Framingham Risk Score), and reported that it could effectively identify these groups.11 Lee et
al. conducted a regulated pivotal trial (single-centre conformity design, confirmatory
retrospective analysis) to validate the efficacy of Reti-CVD for stratification of CVD risk.30 The
trial concluded superior performance in risk stratification compared to some subclinical CVD
markers (carotid intima media thickness, pulse wave velocity), and non-inferiority to CAC
score-based risk stratification. The commercialised product based on the RetiCAC/Reti-CVD
score obtained CE approval as a class IIa medical device in the European Union and several
countries in Asia.31 However, our search has not identified any randomised controlled trial
conducted to evaluate the actual clinical impact of using the score.

In addition to the studies focusing on CAC prediction, three other studies compared their
predictive performance with established clinical risk scores. Poplin et al. used a deep
learning model to predict the 5-year MACE from retinal images.32 They compared the
predictive performance of the original SCORE model to its image-augmented version They
did not find evidence for improved predictive performance by including retinal images. Chang
et al. had a similar approach to the outcome of CVD mortality using the Framingham Risk
Score. This study reported minor improvements by integrating images into the model.33 In a
case-control study, Lee et al. predicted the prevalence of CVD using a multimodal deep
learning model integrating retinal images and traditional risk factors and compared the
results to the predictive ability of PCE-ASCVD.10 They found major performance
improvement by using the deep learning model.

When examining performance evaluations, we found a strong focus on model discrimination,
which describes how well a model ranks predicted probabilities between individuals with and
without an event. However, in a clinical setting, CVD risk scores are often used with a
specific threshold (e.g. 10%) to make decisions on interventions, e.g. treatment
intensification. Therefore, good discrimination alone is not sufficient, but calibration is highly
relevant as well, which was overlooked by most of the studies. A miscalibrated model can
lead to resource misallocation. Individuals incorrectly predicted with a high risk of CVD may
be administered unnecessary tests or treatments, while those who could benefit from
interventions may be overlooked.

Apart from the use of clinically relevant performance metrics for model evaluation, fair
comparisons between existing and new models are also of high importance. Some of the
identified studies reported that retinal images can be used to predict demographic factors
(e.g. age, sex) and traditional clinical risk factors (e.g. blood pressure, body mass index).32

Many of these factors are associated with CVD risk, therefore, good performance of a
prediction model based only on images does not necessarily mean that retinal images have
additional value for CVD risk prediction, which is the underlying motivation of most identified
studies. Models might achieve good performance by indirectly predicting risk factors that are
easier to collect than retinal images. 32 This question can be partly addressed by stratifying
participants by clinical risk factors possible to predict based on retinal images (e.g. age,
sex).34 Another solution is to conduct incremental comparisons integrating images with
traditional clinical risk factors, however, one should be careful with interpreting the results if
important, unobserved risk factors are not included in the models.

Although studies demonstrated the potential of deep learning to contribute to improvements
in cardiovascular risk assessment, methodological challenges, like insufficient validation,
and poor reproducibility due to the lack of openness about data and code, must be
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addressed by future studies. Moreover, diverse study populations, both for development and
validation, would improve the equality and fairness of potential clinical applications.35,36 No
impact study was identified in our scoping review, which is a crucial missing link to measure
the actual clinical utility of retinal image-based prediction models in CVD risk assessment.

Although most deep learning models were originally not designed to analyse time-to-event
data, recent developments enabled them to account for this special data structure.37,38

However, none of the identified studies applied such a time-to-event framework. The most
common approach to circumvent this limitation was a two-step approach combining deep
learning with classical survival analysis methods.20,28–30 In step one, the deep learning model
takes one or a pair of retinal fundus images as input and outputs an intermediate score or
abstract feature representation. In step two, the score is used, often in combination with
clinical risk factors, as input for a Cox or Poisson regression model, that then outputs
predicted probabilities. Since these statistical models are consistent with what is used in
classical survival analyses, the comparison and validation are analogous to established risk
scores and risk prediction models. Some studies ignored the time-to-event nature of data,
which can lead to underestimation of CVD risk especially in high-risk groups.39

Strengths and Limitations

As a systematic scoping review, the strength of our study is the comprehensive and
systematic exploration of the scope. The search strategy was thoroughly developed and
documented contributing to transparency and reproducibility. Our review was written with a
broad target audience addressing study characteristics relevant from both a clinical and a
data science perspective. One limitation of our study is that we searched only medical
databases, and might have overlooked studies from the technical sciences and engineering
communities. To address this, we screened all references and citing articles of the included
studies and reviews similar to ours. This process resulted in six additional articles, five of
which were not indexed in the medical databases we searched.

Perspectives

In this scoping review, we identified a gap between the proposed methods in clinical
research and the latest developments in the field of deep learning. A fully deep
learning-driven multimodal time-to-event prediction model could bring new insight to
cardiovascular disease risk analysis and risk progression by learning from a series of images
in longitudinal settings. Our findings support that improvements are needed in the recently
proposed five critical quality criteria for artificial intelligence-based prediction model
development and validation studies.40 Research in this highly interdisciplinary field must
strive to report adequate details from both the clinical and data science aspects. Further
collaboration and better communication between the two fields are crucial to raising the
quality of studies. More validation studies with a focus on diversity regarding geographical
location and ethnicity should be conducted in the future. At the same time, efforts should be
spent to promote open-access datasets and algorithms to align with the FAIR principles.41

With the new AI Act approved in the European Parliament and similar proposals introduced
globally, it is expected that research utilising AI technology will be forced to adhere to stricter
regulations regarding transparency, accountability, and ethical considerations throughout the
developmental and implementation lifecycle.

Conclusion
Technological advancements in the field of artificial intelligence offer the potential to integrate
new data types in analyses that were traditionally based on tabular data. Our scoping review
presented the landscape of how deep learning methods integrate retinal fundus images in
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cardiovascular risk prediction. Some evidence shows improvements in predictive
performance when adding images to clinical risk factors, but similar to prediction research in
general, methodological weaknesses have to be overcome before the full potential can be
exploited. There is a need for conducting more prospective studies, promoting performance
metrics other than discrimination, increasing efforts on external validation of findings in
datasets from diverse settings, and initiating impact studies to measure the clinical value of
new multimodal risk assessment tools while improving the reproducibility of research.
Working with images and deep learning models requires new methodological skills and close
collaboration between the clinical research and data science communities so that developed
models are described and tested adequately, and most importantly that they fulfil a validated
clinical purpose.
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Tables
Table 1 - A priori defined research questions

1 To what extent is deep learning used for predicting cardiovascular risk using retinal fundus images and
what characterises the studies?

2 Which cardiovascular markers and diseases are predicted in the studies?

3 What are the study populations (e.g. general population, type 2 diabetes)?

4 How diverse are study populations (age, sex, ethnicity, geographic location)?

5 How do prediction models perform? Which clinical prediction performance metrics are used?

6 Are deep learning models compared to classical clinical risk prediction models?

7 Are the models validated internally or externally?

8 Are the models tested or implemented in a clinical setting?

9 What kind of deep learning architectures are used (e.g. convolutional neural networks)?

10 In the case of incident CVD as the outcome (follow-up studies), how is the time-to-event nature of data
handled?

11 Are there studies combining other data modalities (e.g. tabular/structured clinical data) with retinal fundus
images?

12 Are there any publicly available datasets (open / restricted by payment / private)?

13 Are the models and the code publicly available (e.g. on Hugging Face or GitHub)?
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Table 2 – Study design and outcome of included studies

Markers of subclinical CVD Clinical CVD

Cross-sectional
studies

systolic and diastolic blood
pressure20,32,34,42

left ventricular characteristics43

brachial-ankle pulse‑wave velocity44

coronary artery calcium score28–30,45–47

carotid intima-media thickness33

hypertension48,49

peripheral arterial disease50

coronary heart disease10,51

cerebrovascular disease10

stroke19,52–54

diagnosis of CVD55

Follow-up studies major adverse cardiovascular events32

peripheral arterial disease20

coronary heart disease20,29

stroke20,21,29,30

myocardial infarction20,21,30,43

major heart failure21,30

CVD mortality28–30,33
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Table 3 – Characteristics of studies that compared retina-based prediction models with
established clinical cardiovascular risk scores

First author, year Validation, model Outcome, main results
Follow-up studies

Poplin, 201832 internal split
CNN* (Inception-v3)

5-year major adverse cardiovascular events
Systematic Coronary Risk Assessment (SCORE):
AUROC=0.72 (0.67,0.76)
SCORE+retinal images:
AUROC=0.72 (0.67,0.76)
no improvement with adding algorithm

Chang, 202033 internal split
CNN (Xception model) + Cox
regression

CVD mortality
Framingham Risk Score (FRS):
AUROC=0.78 (0.73,0.82)
FRS+retinal images:
AUROC=0.81 (0.76,0.85)
improvement with adding images:
ΔAUROC = 0.0266 (0.0043,0.0489)
p = 0.02

Rim, 202128 internal split & external
CNN (EfficientNet)

cardiovascular disease events in SCORE outcome
Pooled Cohort Equation (PCE):
AUROC=0.595 (0.572,0.618)
PCE + RetiCAC:
AUROC=0.626 (0.595,0.657)
improvement with adding images:
ΔAUROC=0.031 (0.010,0.051)
p=0.0036

Tseng, 202329 Not applicable (validation
study)
CNN + Cox regression

10‑year CVD
(non-statin group)
QRISK3:
AUROC=0.682 (0.672, 0.692)
QRISK3+RetiCAC:
AUROC=0.696 (0.686, 0.706)
improvement with adding images:
ΔAUROC=0.014 (0.010,0.017)
p<0.001
(stage 1 hypertension cohort)
QRISK3:
AUROC=0.639 (0.620,0.658)
QRISK3+RetiCAC:
AUROC=0.652 (0.633,0.671)
improvement with adding images:
ΔAUROC=0.013 (0.007,0.019)
p<0.001
(middle-aged cohort)
QRISK3:
AUROC=0.650 (0.638,0.662)
QRISK3+RetiCAC:
AUROC=0.674 (0.661,0.686)
improvement with adding images:
ΔAUROC=0.023 (0.018,0.029)
p<0.001

Cross-sectional studies

Lee, 202310 internal split & external
CNN (DenseNet-169)

prevalent CVD (case-control)
Pooled Cohort Equation:
AUROC=0.677 (0.658, 0.696)
clinical risk factors + retinal images:
AUROC=0.872 (0.857, 0.886)

*CNN : convolutional neural network
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Figures
Fig 1. PRISMA flow chart
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