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1 Abstract5

Human behavior and public attitudes towards preventive control measures, such as personal pro-6

tection, screening, isolation, and vaccine acceptance, play a crucial role in shaping the course of7

a pandemic. These attitudes and behaviors are often influenced by various information sources,8

most prominently by social media platforms.9

The primary information usually comes from government bodies, e.g. CDC, responsible for10

public health mandates. However, social media can amplify, modify, or distort this information in11

numerous ways. The dual nature of social media can either raise awareness and encourage protec-12

tive behaviors and reduce transmission, or have the opposite effect by spreading misinformation13

and fostering non-compliance.14

To analyze the interplay between these components, we have developed a coupled SIR-type15

dynamical model that integrates three essential components: (i) disease spread, as reported by16
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official sources; (ii) the response of social media to this information; and (iii) the subsequent17

modification of human behavior, which directly impacts the spread of disease.18

To calibrate and validate our model, we utilized available data sources on the Covid-19 pan-19

demic from a one-year period (2021-2022) in the United States, as well as data on social me-20

dia responses, particularly tweets. By analyzing the data and conducting model simulations, we21

have identified significant inputs and parameters, such as initial compliance levels and behavioral22

transition rates. These factors enable a quantitative assessment of their contributions to disease23

outcomes, including cumulative outbreak size and its dynamic trajectory.24

This modeling approach gives some valuable insights into the relationship between public atti-25

tudes, information dissemination, and their impact on the progression of the pandemic. By under-26

standing these dynamics, we can inform policy decisions, public health campaigns, and interven-27

tions to effectively combat the spread of Covid-like pathogens and future pandemics.28

2 Introduction29

Infectious diseases posed a significant threat throughout human history. Predicting their emer-30

gence, progression, and response stands as a paramount societal goal. Infections are categorized31

by transmissibility and geographic scope [1], and the 21st century has witnessed several pan-32

demics: severe acute respiratory syndrome (SARS) (2002-2003), Swine flu (2009-2010), Middle33

East respiratory syndrome (MERS) (2015-2023), and COVID-19 (2019-present) [2].34

Multiple factors can contribute to disease spread. For vector-borne diseases they include ecol-35

ogy and environment; for communicable diseases population makeup and behavior (social interac-36

tions) play paramount roles.37

Behavioral adaptation combines risk assessment from perceptual cues, and the appropriate38

preemptive or mitigating responce. [3, 4]. Empirical evidence shows the potential of behavioral39

adaptation to curtail infection, via reduced social mixing, and other protective practices like face-40

masking, hand-washing, public space decongestion, surface sanitization, social distancing, and41
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quarantine. They played crucial role in containing outbreaks like SARS, H1N1 (Swine flu), and42

Covid-19 [5–9].43

Behavioral shifts are categorized as reactive or proactive [4]. Amid the pandemic, perceptual44

cues can come from different sources, like social media and peer interactions. Some professional45

groups (e.g., healthcare workers) undertake preventive measures regardless of immediate risk. To-46

day, social media serves as source of information, and a potent driver of behavior. On the one hand,47

it could amplify awareness and encourage preventative actions, as well as serving the tool for dis-48

seminating health information and government containment policies [10,11], On the other hand, it49

creates a platform for propagation of rumors and misinformation, which impede health-conscious50

decisions, and foster mistrust in governmental bodies, policies and scientific expertise [12].51

To explore the interplay between behavior, information, and disease, a number of modeling52

approaches were developed based on game theory, network modeling, individual-based (agewnt)53

approach, and compartmental SIR models (suscepible-infected-recovered) [13]. Behavior can en-54

ter such models in different forms, e.g. via prescribed behavioral strata and switching patterns, by55

adaptively changing model parameters, or social network topology. A number of recent and earlier56

works employed network methodology to explore behavior-disease dynamics, and address some57

basic theoretical questions [14–23]. Although network-based models can provide deeper intuition58

on theoretical level, they are hard to train and fit to a particular dataset. Other work Funk et al.59

(2010), Misra et al. (2011), Samanta et al. (2013), Misra et al. (2015), and Agaba et al. (2017)60

employed SIR formulation for two dynamic behavioral strata (aware, unaware), and in their as-61

sumptions, aware hosts have lower contact rate than the unaware hosts [24–28]. However, Funk et62

al. and Agaba et al. used direct contact as the main driver of behavioral switching, while Misra et63

al. and Samanta et al. used the pandemic-stimulated campaigns as the driver of behavioral switch-64

ing. To the best of our knowledge, Misra et al. (2011) were the first who included the media-driven65

behavioral change in their SI model, and they chose the total infected population size as the driver66

of social media. The model proposed by Misra et al. is interpretable and exhibits interesting67

dynamics, but it lacks some critical aspects, such as the recovered compartment and the aware68
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infective population. In addition, they used a first-order decay term, independent of social media,69

to model the loss of awareness, which is unrealistic as aware hosts can also be affected by social70

media and maintain their awareness [25]. Rai et al. (2022) and Koutou et al. (2023) incorporated71

social media into their models, but in their setups, media inputs mainly affect the instantaneous72

infection rate, and there are no clear behavioral stratifications in their models [29, 30]. Guo et al.73

(2021) explicitly included media reports of cases as a modulating variable for infection rate and74

quarantine rate, and they chose the hospitalized population size as the driver of social media [31].75

Tiwari et al. (2021) stratified the susceptible pool into three behavioral compartments (unaware,76

highly active aware, and loss active aware), and they let social media drive hosts into two aware77

pools. However, they didn’t apply the behavioral stratification to other compartments, such as the78

infective population and the recovered population. Also, Tiwari et al. still used the first-order79

awareness decay, which as mentioned before, is not realistic [32].80

In this study, our goal is to develop a simple and robust behavior-modified ODE model to val-81

idate the importance of behavior and media in disease transmission, and we want to explore the82

effects of behavior and media on the pandemic outcomes. Our setup is close to the combination of83

the setups of Funk et al. (2010) and Misra et al. (2011), but we explicitly used pandemic-stimulated84

social media as the driver of behavioral switching. Also, unlike previous works, our aware/unaware85

(compliment/noncompliant) behavioral pools are driven by ‘media attention’, which in turn feeds86

on the state of the pandemic. Such adaptive behaviors, in particular acceptance of vaccines, mod-87

ulate transmission rate and determine the course of the pandemic.88

3 Method89

3.1 Modeling setup90

We constructed the model based on the classical SIR model, and we stratified each epidemiological91

compartment into two behavioral strata. As shown in Table 1, our model consists of seven variables92

in total. Same as the classical SIR model, S, I , and R denote susceptible, infected, and recovered93
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3.1 Modeling setup 5

hosts. In addition, each epidemiological compartment has two behavioral strata: non-compliant94

(subscript N ) and compliant (subscript C). Finally, M represents the effective pandemic-related95

media, and here “effective” means that the media is accessible and frequently viewed on the social96

media platform.97

Table 1: Variable table

Variable Description
SN Noncompliant susceptible hosts
SC Compliant susceptible hosts
IN Noncompliant infected hosts
IC Compliant infected hosts
RN Noncompliant recovered hosts
RC Compliant recovered hosts
M Effective Pandemic-related media

To recap, the studies conducted prior to this one have demonstrated certain limitations in their98

actions and media inputs, such as the absence of a consistent behavioral classification for all epi-99

demiological compartments, unfinished behavioral transition, and media drivers that are sensible100

but yet to be validated. However, media input plays a key role in human behavior, which is a101

key part in epidemiological models for pandemic. Considering these challenges, we are propos-102

ing a straightforward and easy-to-understand framework for examining the impact of behavior and103

media inputs on the spread of infectious diseases. By combining data analysis methods with theo-104

retical modeling, we are not only able to validate our model framework using actual data but also105

provide reliable inferences from that data. We believe that our work can offer more insights into106

the integration of behavior and media into epidemiological models.107

We summarized our ideas in Figure 1. First, we included two dynamic behavioral strata for all108

three epidemiological compartments (susceptible, infective, and recovered), designated as com-109

pliant (C) and non-compliant (NC). We assumed that compliant hosts (C) have reduced disease110

exposure and transmission, and they accept vaccination . In contrast, non-compliant pool (NC)111

has higher exposure - transmission rates relative to (C), and reject vaccination. Besides behavioral112

pools, our model contains the dynamic social media compartment - its disease-related content, that113
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3.1 Modeling setup 6

get input from the current epidemic state, and serves as a principal driver of behavioral change114

(NC to C transitions). We assumed that social media serves as the major massive control of hosts’115

behavior, and its effect surpasses any other behavioral impact factors. We will use data analytic116

strategies to justify this choice. Our media divers are different from those of the previous works as117

we think social media usually respond to the change of the pandemic state (e.g. new incidence in118

a week, which is the information we typically saw on social media during the Covid-19 pandemic)119

rather than the pandemic state itself. In addition, the change in the pandemic state is usually more120

observable and changes more quickly than the pandemic state itself, so the change in the pandemic121

state may be better in explaining the short-term fluctuation in social media.122

We assumed that two behavioral pools change dynamically throughout the pandemic, but we123

ignored the direct behavioral transition between compliant infective and noncompliant infective124

due to the short infectious period. Also, we assumed that hosts’ behavioral switching pattern125

stays constant throughout time, meaning that host behavior will be driven by the perceived state126

of infection and vaccination via social media. By assuming that disease-related media contains127

a roughly fixed proportion of appropriate content that can make hosts compliant, we used the128

total amount of social media rather than its content as the driver of the compliance switching,129

and we will justify this assumption with text mining and sentimental analysis later. Specifically,130

noncompliant hosts are more likely to become compliant after seeing more disease-related media,131

and compliant hosts will keep paying attention to media and thereby maintain their compliance.132

Thus, the net-behavior-flow goes from non-compliant to compliant when there is a lot of disease-133

related social media, and the flow reverses its direction when social media decreases. Moreover, we134

assumed that hosts are more likely to lose compliance after getting recovered, meaning that there is135

a negative feedback loop: when social media increases due to infection or vaccination, more hosts136

will take the vaccine and recover, leading to loss of average compliance and subsequently less137

vaccination, which slows down social media production. One more assumption for social media is138

the turnover because newly created media can replace the old media, and other media can replace139

disease-related media when the rate of producing the disease-related media decreases.140
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3.1 Modeling setup 7

IN RNSN

IC RCSC

MM MInfection

Vaccination

λN

λC

Adaptive behavioral change

Recovery

Immune loss

Recovery

Immune loss

Figure 1: Schemetic diagram of the coupled-SIR model. Every epidemic compartment has two behavioral
strata: compliant (green) and non-compliant (red). The left part of the diagram shows the cross-infection
between two infective behavioral strata and two susceptible behavioral strata, where being compliant can
reduce disease transmission and exposure. The right part of the diagram shows the behavioral switching
driven by the quantity of pandemic-related media, and the state of the pandemic modulates the quantity of
media. From our later analyses, both the content and the quantity of the media exhibit strong associations
with infection and vaccination, so they serve as the primary driving factor of social media, as shown by the
pink arrows in this diagram. The recovery and immune loss happen independently in each behavioral pool.

The choice of infection and vaccination rates as the prime drivers of social media, as shown141

by the magenta arrows in Figure 1, was not arbitrary, but derived from data analysis via machine142

learning tools.143

Table 2 shows all nine parameters in our model. Parameter r is the basic disease transmission144

rate, or the approximate average number of infections per infected individual given that almost all145

the individuals in the population are susceptible, between an arbitrary infected individual and an146

arbitrary susceptible individual. Parameter ω is a number between 0 and 1, and it represents the147

reduced transmission/exposure for being compliant relative to being non-compliant. In addition,148

the per-pair disease transmission rate depends on the identities of the disease carrier (I) and the149
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3.1 Modeling setup 8

disease recipient (S). Therefore, the pair IN&SN , IC&SN , IN&SC , and IC&SC have the trans-150

mission rate r
P

, rω
P

, rω
P

, and rω2

P
, where P is the total population size. Parameter A is the maximum151

per capita behavior switching rate, and the per capita behavior switching rate converges to A when152

the amount of media M approaches infinity. Parameter MT is the compliance threshold, and when153

MT gets larger, hosts need more disease-related media to become compliant. Parameters γ and δ154

are the recovery rate and immune loss rate. Parameter vC is the vaccination rate of the compliant155

individual, and we assume only SC takes the vaccine for simplicity. Parameter ϵ is the media due156

to new cases, which corresponds to the media such as tweets that report the incidence or other157

incidence-related information. Parameter σ is the media due to new vaccination cases, which cor-158

responds to the media that reports the news about new vaccines, pharmaceutical companies, and159

cases of vaccinations.160

Table 2: Parameter table

Parameter Description Unit
r Basic transmission rate week−1

ω Reduced transmission/exposure for being compliant rela-
tive to being non-compliant

Unitless

A Maximum behavioral switching rate week−1

MT Compliance threshold Unitless
γ Disease recovery rate week−1

δ Immune loss rate week−1

vC Per capita vaccination rate by the compliant pool week−1

ϵ Media due to new cases (incidence) Unitless
σ Media due to new vaccination cases Unitless

One full model (equation 1) consists of the classical infection-recovery-wanning-reinfection161

cycle and the adaptive behavioral switching. Term ϕ denotes the switching between non-compliant162

and compliant strata, and we modified the equation such that the total behavioral switching rate be-163

tween one non-compliant individual (S or R) and one compliant individual (S or R) ϕN→C+ϕC→N164

is A, corresponding to our assumption that hosts have constant behavioral rigidity throughout the165

time. In addition, we made the rate of change of disease-related media dM
dt

linearly dependent on166

the total infection rate and the vaccination rate with an additional media turnover term, and we167
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3.2 Data sources and analysis 9

justified this form with our data analysis results. Our model focuses on population dynamics and168

large-scale behavioral control via media, so it becomes more accurate when the population size is169

sufficiently large.170

dSN

dt
= −λNSN − ϕN→CSN + ϕC→NSC + δRN

dSC

dt
= −λCSC + ϕN→CSN − ϕC→NSC + δRC − vCSC

dIN
dt

= λNSN − γIN

dIC
dt

= λCSC − γIC

dRN

dt
= γIN − ϕN→CRN + ϕC→NRC − δRN

dRC

dt
= γIC + ϕN→CRN − ϕC→NRC − δRC + vCSC

dM

dt
= ϵ(λNSN + λCSC) + σvCSC − dM

P = SN + SC + IN + IC +RN +RC

λN =
r(IN + ωIC)

P

λC =
rω(IN + ωIC)

P

ϕN→C =
AM

M +MT
RN+RC

P

ϕC→N =
AMT

RN+RC

P

M +MT
RN+RC

P

(1)171

172

3.2 Data sources and analysis173

3.2.1 Data Description174

In order to model and validate behavior and media responses effectively, we opted to utilize US175

Covid-19 data. This choice is motivated by several key factors. Firstly, Covid-19 stands as the most176

recent widespread global epidemic up until 2023. The collective endeavors of society, institutions,177

and governments have resulted in comprehensive Covid-19 data availability. This data holds signif-178
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3.2 Data sources and analysis 10

icant value for both research and general applications, including media content creation. Secondly,179

the Covid-19 pandemic has witnessed a distinct increase in individuals’ accessibility to social me-180

dia, unlike any prior pandemics. This surge is attributed to advancements in hardware, software,181

and heightened utilization of social media platforms. Consequently, individuals have engaged with182

social media more extensively throughout the Covid-19 outbreak. Thirdly, our data is sourced from183

https://ourworldindata.org, a reputable and widely acknowledged platform catering to diverse au-184

diences—ranging from researchers and journalists to policymakers. Remarkably, this platform’s185

data is cited in excess of 50,000 media articles, including over 20,000 contributions from promi-186

nent outlets like the New York Times and BBC. This broad journalistic accessibility underscores187

the data’s pivotal role in capturing the direct influence of the pandemic on social media.188

For our primary Covid-19-related media source, we singled out Twitter, considering its promi-189

nence and representative nature of Covid-19-related social media activity. We procured Covid-19-190

associated tweet IDs from Chen et al., who have curated such data since January 2020 [33]. By191

merging the Covid-19 pandemic dataset with Twitter data, we obtained a comprehensive dataset192

encompassing both domains.193

Figure 2 illustrates the selection and plotting of two time-series variables from Covid-19 pan-194

demic and Twitter data, using epidemic weeks as time units. The data is divided into three seg-195

ments: 2020, 2021, and 2022. The 2020 data is omitted due to high Covid-19 data missingness.196

Gaps in Twitter data collection, attributed to Twitter API restrictions by Chen’s group, are ob-197

served. For feature selection, model selection, and model calibration, the 2021 data is employed.198

Validation of our calibrated model is conducted using the 2022 data. Notably, the evolving coro-199

navirus exhibits multiple strains taking turns as dominant. Figure 2 indicates prevalent variant200

timeframes. Since alpha and beta variants are somewhat similar to each other, we assumed that201

our model can mostly recover the patterns in the year 2021’s data with a single solution trajectory.202

However, since the omicron variant has shown several genetic and phenotypic variations that can203

make it escape the immunity established with respect to the alpha or the beta variant, we decided204

to reset the entire recovered pool to susceptible at the point when the omicron variant becomes205
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prevalent.206

Weekly new Covid-related tweets

Weekly new vaccinations

Weekly new cases

2020 2021 2022 2023

0

2,000,000

4,000,000

0
5,000,000

10,000,000
15,000,000
20,000,000
25,000,000

0

10,000,000

20,000,000

30,000,000

Date

N
u

m
b

er
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Data partitioning Additional training for the final model Model selection and training Model testing Not used

Figure 2: Combined time-series dataset including two variables from the pandemic data and Twitter data
from the start of 2020 to the start of 2023. The dataset has three parts corresponding to their usage in this
study: not used, model selection and training, and model testing. We discarded the “not used” part due to
its high data missingness. Model selection includes the selection of the most predictive features and the
functional form for the social media, and we used nested cross-validation for these tasks. Model training on
2021’s data is the Bayesian inference with respect to the final differential equation model. We finally tested
the calibrated differential equation model on 2022’s data. We also marked the dates of the prevalence of
different Covid variants.

As shown in Figure 1, we didn’t stratify the social media compartment, and one of our as-207

sumptions is that disease-related media contains a roughly fixed proportion of appropriate content208

that can make hosts compliant. To validate this assumption, we did text mining and sentimental209

analysis to quantify the proportion of appropriate content in disease-related media, as explained210

in the next section (3.2.2). We used the cleaned unigram and bigram data published by Banda et211

al. (2021), which can be acquired at https://github.com/thepanacealab/covid19 twitter [34]. The212

raw data contains Twitter ids related to Covid-19 posted every second since March 2020, and the213

cleaned data contains the top 1000 unigrams and bigrams each day. We used the cleaned data to214
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3.2 Data sources and analysis 12

get a general view of the content of disease-related tweets each day. Indeed, our subsequent text215

analytical results only reflect the general media content trend and composition, while in reality,216

social media’s content can vary between different geographical regions, different socioeconomic217

groups, and individual users.218

3.2.2 Text mining and sentimental analysis219

Sentimental analysis is the process of analyzing the emotion behind each word, sentence, or larger220

text body. Specifically, we used sentimental analysis to see if disease-related media conveys the221

appropriate sentiments from hosts to hosts and raise hosts’ awareness of the pandemic in a positive222

manner. Indeed, here we assumed that the media with appropriate sentiments is generally the media223

with appropriate content to promote hosts’ compliance, but in reality, individuals have different224

sensitivities and responses to the same media content. There are many ways to conduct sentimental225

analyses, but most of them either utilize sentimental lexicons or machine learning models. Machine226

learning models such as SVM, deep learning, and other common classifiers are able to classify227

large text bodies based on the context and are scalable to large data volumes, but these models228

typically require careful calibration and tuning [35] to achieve good accuracy. Lexicon-based229

sentimental analysis assigns sentimental scores or labels to each token in a predefined library,230

meaning that it cannot classify words that are not in the library. However, sentimental lexicons231

are usually constructed with manual annotation on carefully chosen tokens by linguists, so these232

lexicons are usually more reliable for sentimental tasks when there is insufficient training data for233

the machine learning models. Specifically, we used the sentimental lexicon NRC created by Saif234

Mohammad and Peter Turney [36, 37]. The NRC lexicon assigns various sentimental labels to235

each word, and it includes some of the most frequently used English nouns, verbs, adjectives, and236

adverbs. Of course, the NRC lexicon does not include most of the Covid-related terms, so we237

used the bigram data to find out the in-bag tokens associated with Covid-related terms to assign a238

sentimental score for them. The details of the previous scheme can be found in Appendix A.239
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3.2.3 Statistical model selection and validation240

The purpose of using machine learning is to select the most important variables and then build a241

parsimonious and predictive model from these variables to predict social media fluctuation. As242

mentioned earlier, we used the year 2021’s data for model selection and calibration and the year243

2022’s data for validation. We used a nested cross-validation approach on the year 2021’s data to244

perform feature and model selections. As shown in Figure 3, we divided the year 2021’s data such245

that there are five outer folds and five inner folds for each outer fold. To reduce the search space,246

we used the inner folds to select the features and the outer folds to select between models with247

different feature encodings and transformations. Features and models are selected based on the248

test MSE and one-standard-error rule to obtain robust selection results that are both parsimonious249

and predictive. Finally, we tested the justified model on the year 2022’s data.250

Train Test set

Feature selection based on
knowledge about Media

TrainVali

ValiTrain

Functional
form
selection

Feature
selection

Test tuned and
calibrated model

New tweets
= 𝑎(new cases) + 𝑏(new vaccinations)

Performance measure

Figure 3: Nested cross-validation scheme on 2021’s data for feature and functional form selections. We
used the 25 inner folds to select the most important features to predict social media fluctuation, and we then
used the 5 outer folds to select the most predictive functional form for these important features. Once we
were done with the model selection, we calibrated the final differential equation model on the entire 2021’s
data. The test set is 2022’s data, and we tested our final differential equation model on this set.
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3.2 Data sources and analysis 14

3.2.4 Bayesian inference251

Our inferential process consists of three major steps: fitting, testing, and prediction. In addition,252

We considered two nondisjoint and inter-dependent time-varying factors as our prior knowledge253

during the full course of the process: vaccine availability and disease variant. In the fitting step,254

we fitted our differential equation model (equation 1) to the entire 2021 data together with a part of255

the 2022 data to infer the values of time-homogeneous parameters and time-dependent parameters.256

Specifically, we chose parameter γ, δ, r, and vC to be time-dependent, where the first three pa-257

rameters are mainly controlled by the properties of the currently dominant disease variant, and the258

last one is affected by the development and production of vaccine in response to different disease259

variants. We considered the prevalence of the Omicron variant as the turning point for all four260

time-dependent parameters, where they change from one set of constant values ({γ, δ, r, vC}) to261

another set of constant values ({γOmicron, δOmicron, rOmicron, v
Omicron
C }). In addition, we reset the recovered262

pools to the corresponding susceptible pools at the point (Figure 2) when the Omicron variant263

becomes prevalent.264

We used our model to compute the expected weekly incidence, the expected weekly number265

of vaccinations, and the expected weekly number of tweets. Then, we used negative binomial266

distribution as the likelihood model to account for the potentially large observational errors in the267

data (details can be found in Appendix C). We used Stan, a programming language for Hamiltonian268

Monte Carlo (HMC) Bayesian inference, to obtain the posterior distributions and credible intervals269

of the parameters and initial conditions (https://mc-stan.org).270

For the testing step, we obtained the posterior predictive distributions from the calibrated and271

compared the model prediction with the rest of the 2022 data that is not used for model calibration.272

Finally, we used the calibrated model to predict the future dynamics and explore some intervention273

strategies to examine their impact on disease transmission.274
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4 Result275

4.1 Data analysis276

The detailed results of text mining and sentimental analysis can be found in Appendix A. In short,277

we demonstrated that Covid cases, vaccines, and deaths are overrepresented in social media con-278

tent, indicating that these factors are potential drivers of disease-related social media (Figure S1).279

In addition, we showed that the proportion of appropriate media stays roughly constant throughout280

time, and the proportion of inappropriate rigid media is negligible throughout time (Figure S2).281

The detailed results of feature and model selection can be found in Appendix B. In sum, we282

found that the following linear equation carries the most predictive power for the new media, so283

we integrated this equation into our final model (Equation 1), to predict the rate of change of284

disease-related media dM
dt

.285

dTweet
dt

= β1
dCase
dt

+ β2
dVaccination

dt
, (2)286

287

In plain words, the newly generated social media is driven by the new infections and new288

vaccinations.289

4.2 Sensitivity analysis290

Our model contains 7 variables and 9 parameters, and all the variables are not directly observable,291

so our first step is the sensitivity analysis, which can help us identify the most significant inputs,292

some can be used for the preparedness of the pandemic.293

We evaluated the model sensitivity with the metric named partial rank correlation coefficient294

(PRCC), which measures the monotonicity between each of the parameters and the user-specified295

response. Following the well-accepted procedure for PRCC, Latin hypercube sampling and partial296

ranked correlation were used to evenly sample in the feature space and to prevent confounding ef-297
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4.2 Sensitivity analysis 16

fects that lead to false positive associations. We selected two response metrics: cumulative number298

of cases and cumulative number of vaccinations. A positive or a negative PRCC indicates a posi-299

tive or negative monotonic relationship between the response and one parameter after controlling300

all the other parameters. The more positive or negative the PRCC is, the stronger the monotonic301

relationship is.302

As shown in Figure 4, the cumulative number of cases is sensitive to several behavior-related303

parameters, such as the maximum behavioral transition rate (A), reduced transmission ‘compliant/non-304

compliant’ (ω), compliant vaccination rate (vC), and threshold for noncompliance (MT). Specifi-305

cally, the increase in the behavioral transition rate (A) will lead to lower cumulative incidence, and306

the increase of the reduced transmission ‘compliant/non-compliant’ (ω), meaning that the com-307

pliant hosts take fewer effective preventive measures, will cause higher cumulative incidence. A308

larger MT causes a faster loss of compliance and therefore will lead to a higher cumulative inci-309

dence. One may expect an increase in the compliant vaccination rate (vC) can effectively reduce310

the cumulative incidence, but vC only has a moderate effect because it initiates the negative feed-311

back loop: the more compliant hosts, the more hosts get vaccinated, which leads to faster loss of312

compliance and eventually slows vaccination down. In addition, media-relative parameters such313

as infection-driven media change (ϵ) and vaccination-driven media change (σ) are negatively as-314

sociated with the cumulative incidence, suggesting that media can potentially be a disease control315

mechanism. Moreover, the initial numbers of noncompliant susceptibles and noncompliant infec-316

tives are very sensitive, suggesting that increasing hosts’ compliance prior to the pandemic may317

effectively reduce the size of the pandemic.318
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4.2 Sensitivity analysis 17

Figure 4: Sensitivity according to the cumulative cases in one year. The higher the PRCC value, the strong
the monotonicity between the parameter and the cumulative cases.

Sensitivity analysis with respect to the cumulative number of vaccinations shows somewhat319

consistent but slightly different results. As shown in Figure 5, the cumulative number of vaccina-320

tions is relatively less sensitive to A and ω, but it remains sensitive to MT as the loss of compliance321

can reduce the number of vaccinations. Moreover, the cumulative number of vaccinations is very322

sensitive to the vaccination-driven media change (σ) and media turnover (d), indicating that media323

is important in maintaining compliance among the population and thereby the vaccination.324

Figure 5: Sensitivity according to the cumulative vaccinations in one year. The higher the PRCC value, the
strong the monotonicity between the parameter and the cumulative vaccinations.
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4.3 Model calibration and validation 18

4.3 Model calibration and validation325

To further understand the actual effects of both behavior and social media inputs, we fitted and326

validated our model to the data according to the scheme in section 3.2.4. Our BMSIR model offers327

a much better fit and a more accurate prediction than the standard SIR model. Although we didn’t328

directly validate the behavior components in our system, our simple model produces reasonable329

predictions of incidence, vaccination, and social media, simultaneously. However, our simple330

model fails to capture all the aspects of the data, which is reasonable as human interventions were331

As shown in Figure 6, for the weekly data in the year 2021 the model prediction roughly332

recovers the pattern in the incidence data, but the model only captures part of the patterns in the333

vaccination and media data. Specifically, the major discrepancies between the model-predicted334

incidence and the data occur between January and July, and the model fails to capture two sudden335

drops in cases and one sudden increase in vaccination. These discrepancies can be attributed to the336

governmental interventions during that period, such as mandatory vaccinations, increased testing337

and surveillance, travel policies, quarantine, and mandatory preventative measures in workplaces.338
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Figure 6: Bayesian posterior predictive distributions for the weekly data in the year 2021 using the BMSIR
model. We used all the data points in this figure for the Bayesian inference.

Again, for the weekly data in the year 2021 and year 2022, the model captures most of the339

pattern in the incidence data, and the model predictions for media and vaccination roughly follow340

the trends in the data. The inaccurate predictions are possibly due to the drastic difference between341

Omicron and the variants in 2021. Also, the current model assumes sufficient vaccine supply at all342

times, but the Omicron-specific vaccine was released at the end of August 2022.343
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Figure 7: Bayesian posterior predictive distributions for the weekly data in the year 2021 and year 2022
using the BMSIR model. In week 52, we moved subpopulations in the recovered pools to the corresponding
susceptible pools, and some model parameters start to use Omicron-specific values. Week 60 is the last data
point used for training, and the model is fully blind to all the data points after week 60. The data after week
60 is the test part, and we simulated the model trained on data before and include week 60 to compute the
posterior predictive distributions of the data after week 60.

The detailed posterior parameter estimates for the BMSIR model can be found in Appendix C.344

Figure S6 shows the posterior distributions of the parameters in our model. The posterior distri-345

bution of ω shows that compliant individual, on average, has roughly a 20.0%-22.4% reduction in346
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their exposure and transmissibility. The duration of immunity (1
δ
) for alpha and delta variants is347

about 74.7-84.7 days, approximately 2 and a half months. For Omicron, the duration of immunity348

is about 147-168 days, slightly less than half of a year. Thus, immunity to the Omicron variant349

stays approximately two times longer compared to the immunity to the Beta and Alpha variants.350

By comparing the posterior statistics of σ and ϵ, we can see that one new vaccination leads to a351

significantly higher production of disease-related media compared to one new incidence (about 14352

times higher). The posterior infectious/recovery period ( 1
γ

) for alpha and delta variants is about353

8.25-8.65 days, and the infectious/recovery period for the omicron variant is about 4.13-4.34 days.354

Thus, the average infectious period for Omicron is shorter than those of Alpha and Beta variants.355

The posterior distribution for r indicates that the Omicron variant is approximately 1.65 times more356

transmissible than the Beta and Alpha variants. In addition, posterior inference on parameter vC357

shows that the rate of taking the booster vaccine is lower than the rate of taking the regular vaccine,358

which is consistent with the delayed release of the Omicron-specific vaccine. Finally, the posterior359

distribution for d shows that disease-related media remains effective on the social media platform,360

on average, for 21-24 days. Our estimated infectious period and immunity duration of Alpha and361

Beta variants are mostly consistent with the estimates (9 days for the infectious period and 0.5-10362

years for the immunity duration of Alpha and Beta variants) by Lavine et al. (2023) [38]. Figure363

S7 shows the posterior distributions of the initial conditions. Our fitting result indicates that at364

the beginning of 2021, there are roughly 70.0-72.0%, 0.381-0.510%, and 27.6-29.5% susceptible,365

infected, and recovered hosts. The initial proportions of compliant hosts in the S, I, and R pools366

are about 4.86-11.5%, 4.12-98.0%, and 3.62-97.2%, which are quite diffusive, possibly due to the367

small sample size for training.368

To justify the important roles of behavior and media in the disease transmission process, we369

compared our behavioral-modified SIR (BMSIR) model with the standard SIR model, whose fitting370

results are in Appendix C. By comparing Figure 6 and S8, one can see that the BMSIR model has371

a better agreement with the data compared to the standard SIR model, suggesting that the BMSIR372

model is more flexible and presumably less biased compared to the standard SIR model. Granted,373
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one might argue that the better fit of the BMSIR model is due to its higher degrees of freedom374

compared to the standard SIR, but we wanted to show that this conclusion holds also in the test375

data part. By comparing Figure 7 and S9, we can see that the standard SIR model fails to capture376

the endemicity and overestimates the weekly number of vaccinations, and the BMSIR model can377

still enclose most of the test data in its credible intervals. In sum, the BMSIR model seems to378

be much more similar to the actual data generation process compared to the standard SIR model,379

indicating that behavior and media are likely to play important roles in the disease transmission380

process.381

4.4 Prediction and control382

4.4.1 Effects of behavioral and media inputs on the pandemic outcome383

Using the posterior knowledge from section 4.3, we explored the effects of different behavioral384

and media inputs on the US pandemic outcomes. The first parameter of interest is the maximum385

behavioral switching rate (A), which reflects hosts’ average flexibility in their behaviors. As shown386

in Figure 8, when A is nonzero, the more behaviorally flexible the hosts are, the less incidence and387

more vaccination there are in approximately one year. In addition, the calibrated model shows that388

increasing behavioral flexibility can reduce the yearly prevalence of infection to approximately389

12% of the total US population and increase the prevalence of vaccination to approximately 1.3 per390

person. Interestingly, when hosts are maximally rigid (A = 0), the yearly prevalences of incidence391

and vaccination will both be low.392

Next, we altered the value of the compliance threshold (MT), which reflects hosts’ sensitivity393

to media. When hosts become less sensitive to media (larger MT), the incidence will increase,394

and the vaccination will decrease. As shown in Figure 8, when hosts’ sensitivity to media drops395

to a certain level, hosts will almost stop taking vaccination, and the yearly prevalence of infection396

will grow above 100%. This is a realistic problem as hosts’ distrust tends to build up during the397

pandemic, and our result suggests that such distrust can be detrimental.398
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Lastly, we altered the value of the media turnover rate, which reflects the average lifespan of the399

disease-related media. As shown in Figure 8, the shorter the life span of the disease-related media400

(larger d), the more incidence, and less vaccination there will be. Our result shows that increasing401

the lifespan of the disease-related media can substantially reduce the size of the outbreak.402
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Figure 8: Distritbuions of the yearly cumulative incidence and yearly cumulative vaccination using posterior
knowledge of the BMSIR model from section 4.3 after altering the value of parameter A, MT, and d.

4.4.2 Control strategy403

To further explore the effects of behavior and social media on some hypothetical disease control404

strategies, we computed and extended the posterior trajectories of the variables in our BMSIR405

model until the year 2025 by using the posterior knowledge from section 4.3. Figure 9 shows the406

posterior trajectories of the model variables and weekly variables derived from model variables407
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without any additional intervention strategies. The second column of Figure 9 basically repeats the408

information in Figure 6 and 7 but shows instead the posterior distribution of the expected weekly409

incidence, weekly vaccinations, and weekly tweets, while Figure 6 and 7 shows the posterior410

predictive distribution of the actual observed data. In Figure 9, trajectories continue until October411

2025, and we assume no new variants that are substantially different from Omicron. Our model412

predicts that the proportions of compliant hosts in different epidemiological compartments remain413

transiently high only at the beginning of the outbreak and keep constantly low for the rest of the414

time. Also, our model predicts that Covid-19 will become endemic with approximately 0.1% of the415

total US population if there are no additional perturbations, such as better treatments, surveillance,416

or new variants. Starting from this simulation, we explored two hypothetical control strategies:417

better preventative measures and governmental awareness programs.418
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Figure 9: Posterior trajectories of the BMSIR model from section 4.3. In the left column, we showed the
proportions of both behavioral pools of susceptible, infected, and recovered hosts in the total population.
For the instantaneous tweets, we showed the number of tweets per person. In the right column, we showed
weekly incidence, vaccinations, and tweets in absolute numbers.

We first altered parameter ω as an analogy to having better preventative measures while keeping419

other things intact. In the new simulation, we reduced ω by half starting from January 20, 2024420

(160 weeks from December 26, 2020), meaning that compliant hosts will have more and better421

choices of preventative measures to reduce their exposure and transmission. As shown in Figure422

10, having more and better preventative measures does not significantly reduce the infection, and423

our model simulation suggests that this is due to the extremely low proportion of compliant hosts424

in the population after the pandemic.425
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Figure 10: Posterior trajectories of the BMSIR model from section 4.3 but with addition and better pre-
ventative measure since January 20, 2024 (160 weeks from December 26, 2020). Specifically, parameter ω
decreases by half starting from week 160.

Next, we added an additional sourcing term g(t) to dM
dt

to represent the information about the

awareness programs on social media platforms. Specifically, we let the awareness programs for

infectious disease to happen every four weeks and continue to exist for one week, starting from

January 20, 2024 (160 weeks from December 26, 2020). We therefore modeled g(t) as:

g(t) =


k = 107 if t ≥ 160 ∧ 0 ≤ (t mod 4) ≤ 1

0 otherwise
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If such a control scheme exists, there will be 70 million additional awareness-program-related426

tweets in each four-week period, which is really a minuscule amount considering that there are427

roughly 500 million new tweets per day (these additional awareness-program-related tweets only428

take about 0.5% of all the new tweets in four weeks). Surprisingly, such minor media input is much429

more effective in disease control than our previous control scheme that reduces compliant exposure430

and transmissibility by half. As shown in Figure 11, additional media input is more effective than431

the additional preventative measures in reducing the infection and endemicity, and it also increases432

the number of vaccinations. Our model simulation indicates that, after the pandemic, interventions433

through the media are more effective than direct preventative measures, and preventative measures434

will be more effective when there is a sufficient amount of compliant hosts in the whole population.435
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Figure 11: Posterior trajectories of the BMSIR model from section 4.3 but with information about awareness
program as additional input to social media. Specifically, we added an additional term g(t) to dM

dt starting
from week 160. We modeled g(t) such that the input to media activates every four weeks and keeps active
for one week after each activation.

5 Conclusion and discussion436

Human behavior and social media are two important factors in determining the pandemic out-437

comes, and many researchers have incorporated human behavior into their predictive models438

[14–23, 25–28, 39]. However, there is currently no gold standard to model the interplay between439

human behavior, infection, and social media. Many previous works have provided theoretical440

frameworks to model the behavioral and social media inputs, but these studies lack data validation441
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to justify their assumptions.442

In this study, we combined data analytic techniques and mathematical modeling in order to443

address three major questions. First, how to incorporate behavior and social media into the standard444

SIR model? Although many past works have demonstrated approaches to model human behavior,445

the focus on social media is insufficient. By using a nested cross-validation scheme and feature and446

model selection techniques, we demonstrated that the most efficient form to predict the weekly new447

disease-related tweets is the linear form with two main effects: weekly new incidence and weekly448

new vaccinations. We, therefore, incorporated media into the standard SIR model according to449

this linear form. For the behavior part, we borrowed some ideas from Funk et al. (2010) and450

Misra et al. (2011) with some modifications [24, 25]. Then, we used many approaches such as451

sentimental analysis, data calibration, data validation, and model comparison to justify some of452

our assumptions and part of the model formulation. Indeed, our model is still rather simple and453

cannot capture all the patterns in the data, and we didn’t validate some aspects of the model, such454

as the noncompliance and compliance separation. Unfortunately, validating human behavior is a455

challenging task as human behavior is not directly observable, but with the growing dimensionality456

of the data, one can still try to infer some of the behavior variables. In this study, we used the457

overall model test accuracy to justify our framework, but the correctness of the model still requires458

validation on each individual part.459

One of our main questions is whether behavior and media play significant roles in the transmis-460

sion of the disease. Through the data validation, we have shown that incorporating behavior and461

media significantly improves the fit on both the training and testing part compared to the standard462

SIR model. In addition, our sensitivity analysis indicates that infection and vaccination are very463

sensitive to behavior and media inputs.464

Another question is how behavior and media affect the pandemic outcomes. With our posterior465

knowledge derived from the US Covid-19 data, we manipulated different parameters to demon-466

strate the effects of behavior and media on a somewhat realistic setting. We demonstrated that467

behavioral flexibility, media sensitivity, and media lifespan can significantly affect infection and468
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vaccination. Moreover, we showed that due to the limited proportion of compliant hosts in the pop-469

ulation, having more and better preventative measures is not as effective as having more awareness470

programs, as the latter promotes hosts’ compliance to better reduce the infection and increase the471

vaccination.472

Future investigations can explore media stratification, differential human attention, and be-473

havioral rigidity. In addition, future studies should focus more on how to obtain relevant data to474

validate human behavior.475
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Appendix478

Appendix A: Twitter analysis479

As shown in Table S1, we investigated six general Covid topics and assigned some topic-specific480

terms to them. Next, for each topic-specific term, we filtered out the associated in-bag tokens from481

the bigram data. In addition, we assigned the appropriate, inappropriate nonrigid, and inappropriate482

rigid sentiments to each topic, and we investigated the composition of these three categories for483

each topic-specific term and eventually the topic. Here, “appropriate” means that the media can484

promote hosts’ compliance, and “inappropriate” means that the media encourages non-compliance.485

Moreover, “rigid” means that media can increase hosts’ distrust and insensitivity to the appropriate486

media and therefore increase the inertia of non-compliant hosts. Since social media always vary487

with time, we picked four months (January, April, July, and November) in the year 2021 and 2022,488

and we repeated the analysis on each of these time points. To give an example, suppose “vaccine”489

is associated with “effective”, then the proportion of appropriate sentiment is 1. If “vaccine” is490

associated with “inequality” the proportion of inappropriate nonrigid sentiment is 1. If “vaccine”491

is associated with “injury” the proportion of inappropriate nonrigid sentiment is 75%, and the492

proportion of inappropriate rigid sentiment is 25%.493
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Table S1: Sentimental analysis of the content of the Covid-related tweets. We investigated six general
Covid topics by picking their terms. For each topic-specific term, we obtained its associated words and
categorized their sentiments into three classes in terms of the current context. Each word can have mixed
sentiments, so we computed the expected amounts of appropriate, inappropriate nonrigid, and inappropriate
rigid sentiments for each word, each topic-specific term, and finally each Covid-related topic.

Covid-related
topics

Topic-specific
terms

Associated words
Appropriate
sentiments

Inappropriate
nonrigid

sentiments

Inappropriate
rigid sentiments

Covid19
treatment

vaccine positive negative disgust
booster trust fear anger
mrna anticipation sadness

treatment joy surprise
testing

hospital

Detailed
Covid19
information

infection negative positive joy
symptoms fear anticipation anger

virus trust sadness disgust
variant surprise

mortality
mutation
immunity

General Covid19
information

covid negative positive joy
outbreak trust anticipation
pandemic fear

transmission anger
epidemic sadness

surprise
disgust

Outbreak
statistics

cases trust positive joy
deaths negative anticipation disgust

fear anger
sadness
surprise

Pharmaceutical
industry
and
government

pfizer positive negative anger
moderna trust fear disgust

government anticipation sadness
joy surprise

Preventative
measures

quarantine positive negative anger
lockdown trust fear disgust

mask surprise sadness
distancing anticipation
guidelines joy
prevention
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As mentioned earlier, we assumed that the quantity of Covid-related social media and the494

expected recovery state affect the gain and loss of compliance, and the pandemic state drives the495

change in the quantity of Covid-related social media. To justify this assumption and discover496

possible driving factors of Covid-related social media, we did text mining on the Twitter data.497

As shown in Figure S1, the mostly-used terms in the Covid-related tweets indicate that in 2021,498

Covid cases, vaccines, and deaths are the three highly popular topics besides Covid itself. This499

suggests that content creators on social media were more interested in these topics and produced500

more tweets related to these topics, leading to the overrepresentation of these terms in the tweet501

content. Thus, cases, vaccines, and deaths are three possible drivers of social media. In 2022,502

although the previous three topics were still among hosts’ major focus, some new trends appeared503

in the content. For instance, the prevalence of the Omicron variant around the start of 2022 has504

gained a lot of attention on social media for more than half of a year, coupled with the increasing505

popularity of the booster vaccine. Granted, in order to accurately predict the dynamics of social506

media, one has to account for the emergence of such “breaking events,” like Omircon. However,507

incorporating random events into the predictive model requires sufficient biological understanding508

and support, which is usually impossible to obtain at the beginning of the pandemic, and such a509

specifically-tunned model may have poor generalizability.510
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Figure S1: Wordclouds for the top unigrams from the Covid-related tweets in 2021 and 2022

Next, to ensure that using the media quantity and excluding the media content is a valid assump-511

tion, we did a lexicon-based sentimental analysis using the NRC emotion lexicon. One limitation512

of the lexicon-based sentimental analysis is its inability of assigning sentiments to the out-of-513

dictionary words, and in our case, most Covid-related terms are indeed not included in the NRC514

dictionary. Thus, we focused on the top bigrams and found the within-dictionary words associated515

with the Covid-related terms, and we calculated the proportions of sentimental appropriateness516

and inappropriateness among these associations as approximations to the proportions of appropri-517

ate (compliance-boosting) and inappropriate (compliance-inhibiting) media (note that one tweet518

can have mixed content), for six different Covid-related topics and their union across four months519

in both 2021 and 2022. In addition, we calculated the proportion of sentimental rigidity for every520

bigram association, representing individuals and media outlets that strongly oppose the appropriate521

media. We expect the proportion of inappropriate rigid media to be as small as possible so that the522

majority of the population could still respond actively to Covid-related media during the pandemic.523
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As shown in Figure S2 A, in 2021, we got over 60% appropriate media in all four months,524

and the appropriateness of the media slightly decreases in January, April, and July but slightly525

increased in November of 2022. Also, the proportion of inappropriate rigid media is negligible at526

all the sampling points. Thus, the proportion of appropriate media roughly stays constant during527

the pandemic, so we assumed that the overall quantity of all Covid-related media itself is sufficient528

to predict the behavioral change, as the proportion of appropriate media is roughly a constant529

scaling factor throughout the pandemic. As for the inappropriate rigid content, since it only takes530

a relatively small proportion, we assumed that the amount of behaviorally rigid hosts is negligible,531

and their tweets are too few to affect other hosts’ thoughts and behavior.532

In Figure S2 B, we summarized the proportions of our media categories in each Covid-related533

topic. In 2021, Covid treatment seems to have the most appropriate content compared to the other534

topics, and the outbreak statistics (e.g. cases and deaths) have the least appropriate content during535

the middle of the year, suggesting that individuals and media were relatively more positive and536

optimistic on the Covid treatment (e.g. vaccine and drug) while being relatively more negative537

and distrust on the outbreak statistics. In 2022, the appropriate content for Covid19 measures is538

relatively lower compared to that of 2021, possibly due to the fast emergence of different Covid539

variants, especially the Omicron variant that can escape the previously established immune surveil-540

lance. Meanwhile, the pharmaceutical industry and government in 2022 have the most appropriate541

content, suggesting an increased trust and hope for novel industrial products (e.g. booster vaccine)542

and better governmental efforts.543
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Figure S2: Tweet content composition based on the sentimental analysis. For each categorical level, we
summarized the proportion of appropriate, inappropriate nonrigid, and inappropriate rigid content, and the
detailed process can be found in Section 3.2.2. Appropriate content refers to content that expresses appro-
priate sentiments to promote hosts’ compliance, and inappropriate content is the opposite. Rigid refers to
content with extremely inappropriate sentiments that may increase hosts’ rigidity or insensitivity to appro-
priate content. We collected Covid-related terms and their associated words with sentimental labels, and we
summarized the proportion of appropriate, inappropriate nonrigid, and inappropriate rigid linkages for each
Covid-related term and topic. Part A shows the content compositions for four months in the year 2021 and
year 2022. Part B shows the content compositions for six Covid topics in four months of the year 2021 and
year 2022.

Appendix B: Feature and model selection544

With the aim of building a robust, mechanistic, and relatively predictive framework that incor-545

porates behavior and disease transmission, we chose social media as the primary driver of hosts’546

behavioral change. Although media-driven behavioral change is a sound assumption to account547

for population-level behavioral change, what causes media change and how hosts respond to me-548

dia change are two major problems that remain, and we want to address these two problems in this549
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study.550

First, we want to reduce the dimensionality of the problem and find out the most important551

predictors for Covid-related social media. We manually selected the most sensible predictors552

for the number of weekly new Covid-related tweets from the dataset (num): weekly new cases,553

weekly new deaths, the daily number of hospital patients averaged over each week, and weekly554

new vaccinations. As shown in Figure S3, based on the year 2021’s data, all four predictors are555

weekly correlated with the number of new weekly tweets, and there exists strong collinearity be-556

tween new cases, new deaths, and hosp patients. In particular, new cases and hosp patients are557

most likely to contain repeated information. Indeed, VIF analysis also shows that hosp patients558

and new cases can be greatly explained by the remaining predictors, as shown in Table S2. Since559

new cases is somewhat more interpretable and easier to model, we dropped hosp patients, and VIF560

analysis after dropping hosp patients shows only a negligible amount of multi-collinearity.561
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Figure S3: Correlations between different variables in the year 2021.

Table S2: VIF table before eliminating variable hosp patients.

Variable Variance Inflation Factor (VIF)
new cases 62.3
new deaths 14.1

hosp patients 93.6
new vaccinations 2.07
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Table S3: VIF table after eliminating variable hosp patients.

Variable Variance Inflation Factor (VIF)
new cases 8.01
new deaths 8.97

new vaccinations 2.05

For the rest of the predictors and all possible interactions between these predictors, we further562

narrowed them down with the best subset selection and cross-validation on the inner folds. As563

shown in S4, many models, those located on the flat curves, have similar test performances, sug-564

gesting that this framework is vulnerable to overfitting. In addition, due to the small test set size565

(8 observations), test error is highly variable, so if we simply choose the model with the minimum566

test error in each round, the selected models are likely going to be quite different from each other.567
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Figure S4: Best-subset feature selection on 25 inner folds of the cross-validation. We used the one-standard-
error rule to select the optimal set of features in each round. The red dot in each subfigure shows the optimal
feature set in that round.

Thus, to obtain a more robust model selection result, we choose the simplest model within568

the one-standard-error test-error interval of the best model (the one with the minimum test error)569

in each round. Since we have 5 outer folds and 5 inner folds, we got 25 rounds of model selec-570

tion, and we summarized their results in Figure S5. In sum, new cases and new vaccinations are571
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justified in all the selection trials, and their interaction is justified in most but not all the trials.572

However, for each outer fold (every five selection trials), there are at least one rounds in which the573

interaction is not justified. Again, we want the model that is the most parsimonious yet retains as574

much information as possible, so we finally pinned down new cases and new vaccinations as the575

predictors of new media.576

new_cases

new_cases:new_deaths

new_cases:new_vaccinations

new_deaths

new_deaths:new_vaccinations

new_vaccinations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
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V
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b

le
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ct

io
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s

Not selected Selected

Figure S5: Feature selection result. One column represents one selection trial, with red and blue representing
selected or unselected. Every five successive trials are operated on the same set of data, and for every five
successive trials, we selected the parsimonious set of features.

While we can stop here and simply create a linear model to predict the weekly new media, we577

have not yet justified that each of these associations between the weekly new media and these two578

predictors is mostly linear. So, we square-transformed these two predictors and investigated their579

effect on the model performance. In addition, we considered “history” and “trend” as two other580

useful pieces of information to include as the production of media may have a time delay, and when581
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the weekly new cases and/or weekly new vaccinations are increasing over weeks, media production582

will also accelerate. Thus, we incorporated two new encoded features, biweekly differences, into583

the model:584

∆2
t (#Cases) = ∆t(#Cases)−∆t−1(#Cases)585

∆2
t (#Vaccinations) = ∆t(#Vaccinations)−∆t−1(#Vaccinations).586

587

Now, the full model becomes588

∆(#Tweets) = β1∆(#Cases) + β2∆(#Vaccinations)589

+ β3∆(#Cases2) + β4∆(#Vaccinations2)590

+ β5∆(#Cases)∆2
t (#Cases)591

+ β6∆(#Vaccinations)∆2
t (#Vaccinations),592

593

in which we modeled the curvatures of cases and vaccinations as effect modifiers of the weekly594

new cases and weekly new vaccinations. Then, we use the outer folds to select between several595

reduced models, and we still used the one-standard-error rule to select the final model. As shown596

in Table S4, the model with linear main effects and the interaction with the biweekly difference597

in the number of vaccinations has the lowest test CV. Within the one-standard-error interval of the598

best model, the simplest model is still the model with two linear main effects.599
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Table S4: Model selection results. One row represents one model and its 5-fold CV and the standard error
of the CV. Models are ranked from the smallest CV to the largest CV, and we applied the one-standard-error
rule to select the parsimonious model. + means the feature is in the model, and − means the feature is not
in the model.

Features CV, 1013 se(CV), 1012
∆(#Cases) ∆(#Vaccinations) ∆(#Cases2) ∆(#Vaccinations2) ∆2

t (#Cases) ∆2
t (#Vaccinations)

+ + − − − + 5.49 5.93
+ + − − − − 5.71 8.79
+ + − − + + 5.72 7.21
+ + − − + − 5.92 9.20
− + + − − + 7.01 5.78
− + + − − − 7.07 6.23
− + + − + − 7.97 11.5
− + + − + + 8.16 15.1
+ − − + − − 8.64 21.4
+ − − + − + 8.75 16.3
+ − − + + − 9.29 23.5
+ − − + + + 9.45 20.0
− − + + − − 14.0 22.0
− − + + − + 14.9 18.9
− − + + + − 16.5 36.0
− − + + + + 17.8 40.1

In conclusion, we obtained the model from the above feature to predict the weekly new media.

∆(#Tweets) = β1∆(#Cases) + β2∆(#Vaccinations),

where ∆ means the new observations in a week. Dividing ∆t to both sides and let ∆t → 0, we get600

dTweet
dt

= β1
dCase
dt

+ β2
dVaccination

dt
,601

602

where β1 and β2 are positive. We can understand the model above easily: the rate of posting Covid-603

related media increases when the spread of the disease becomes faster and/or more and more hosts604

start to take vaccines.605
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Appendix C: BMSIR parameter estimates and Bayesian inference with stan-606

dard SIR model607

WIk =
∫ k+1

k

[λNSN(t) + λCSC(t)] dt608

WVk =

∫ k+1

k

[vCSC(t)] dt609

WMk =

∫ k+1

k

[ϵ(λNSN(t) + λCSC(t)) + σvCSC(t)] dt610

611

612

y ∼ NegBinomial(µ, ϕ)613

E(y) = µ614

V (y) = µ+
µ2

ϕ
,615

616

where µ2

ϕ
is the additional variance to the Poisson variance. For simplicity, we assumed that given617

the initial conditions and parameter values, weekly numbers are independent of each other, which is618

usually not the case for the stochastic process with significant process errors. Thus, the likelihood619

of the data is620

L(D) =
n∏
k

p(WIk|X0,P)
n∏
k

p(WVk|X0,P)
n∏
k

p(WMk|X0,P)621

622
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Figure S6: Posterior distributions of model parameters. Curves define the range of the 95% credible interval
and the PDF of the distribution. Shaded areas are the 50% credible intervals. We also marked specific
posterior percentiles in each subfigure.
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specific posterior percentiles in each subfigure.
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Figure S8: Bayesian posterior predictive distributions for the weekly data in the year 2021 using the standard
SIR model. We used the same fitting procedures of the BMSIR model on the standard SIR model.
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Figure S9: Bayesian posterior predictive distributions for the weekly data in the year 2021 and year 2022
using the standard SIR model. We used the same fitting procedures of the BMSIR model on the standard
SIR model.
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