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Abstract 

Background and hypothesis. 

A growing number of studies implicate a key role for metabolic processes in psychiatric disorders. 

Recent studies suggest that ketogenic diet may be therapeutically effective for subgroups of people 

with schizophrenia (SCZ), bipolar disorder (BPD) and possibly major depressive disorder (MDD). 

Despite this promise, there is currently limited information regarding brain energy metabolism 

pathways across these disorders, limiting our understanding of how brain metabolic pathways are 

altered and who may benefit from ketogenic diets. We conducted gene expression profiling on the 

amygdala, a key region involved in in the regulation of mood and appetitive behaviors, to test the 

hypothesis that amygdala metabolic pathways are differentially altered between these disorders.  

 

Study Design. 

We used a cohort of subjects diagnosed with SCZ, BPD or MDD, and non-psychiatrically ill 

control subjects (n=15/group), together with our bioinformatic 3-pod analysis consisting of full 

transcriptome pathway analysis, targeted pathway analysis, leading-edge gene analysis and 

iLINCS perturbagen analysis.  

 

Study Results. 

We identified differential expression of metabolic pathways in each disorder. Subjects with SCZ 

displayed downregulation of mitochondrial respiration and nucleotide metabolism pathways. In 

comparison, we observed upregulation of mitochondrial respiration pathways in subjects with 

MDD, while subjects with BPD displayed enrichment of pathways involved in carbohydrate 
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metabolism. Several pathways associated with brain metabolism including immune system 

processes and calcium ion transport were also differentially altered between diagnosis groups.  

 

Conclusion. 

Our findings suggest metabolic pathways are differentially altered in the amygdala in these 

disorders, which may impact approaches for therapeutic strategies.  
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INTRODUCTION. 

A growing number of studies highlight a high degree of comorbidity of metabolic disorders in 

people with schizophrenia (SCZ), bipolar disorder (BPD) or major depressive disorder (MDD), 

including cardiovascular disease and diabetes 1-6. Comorbid metabolic syndrome negatively 

impacts treatment strategies and life expectancy in people suffering from these psychiatric 

disorders 7. Furthermore, the prevalence of metabolic syndrome has been increasing in the U.S., 

with approximately 34.7% of the population meeting diagnostic criteria 8. Recent studies suggest 

that brain metabolic dysfunction is associated with specific psychiatric symptoms, including 

cognitive dysfunction, mania, depression and psychosis, as well as with effects of psychotropic 

medications 9-14. For example, metabolic dysregulation is associated with cognitive dysfunction in 

people with mood disorders 14, and alterations in molecular signaling pathways in glucose 

regulation have been reported recently in antipsychotic naïve patients with psychosis 15. 

Furthermore, a meta-analysis of genetic factors from GWAS studies and candidate gene studies 

identified twenty-four genetic factors that are shared between subjects with mood disorders and 

subjects with metabolic disorders 16. 

A number of recent clinical and preclinical studies have highlighted a key role of systemic 

metabolic dysfunction in the pathophysiology and treatment of a range of psychiatric disorders, 

including SCZ, BPD and MDD 17-20. Impaired glucose metabolism and mitochondrial dysfunction 

are proposed as core features of these disorders. The ketogenic diet, originally proposed as a 

treatment for epilepsy 21, is emerging as an effective treatment for psychiatric disorders 20, 22-25 and 

may address dysfunction in glucose metabolism and mitochondrial processes 17-20.  

Several studies provide evidence for brain metabolic abnormalities in subjects with mood disorders 

and/or psychosis. Recent gene expression profiling studies from prefrontal cortex samples 
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identified alterations in pathways involved in mitochondrial function and oxidative 

phosphorylation in subjects with SCZ 26. Electron microscopy analysis of postmortem prefrontal 

cortex samples identified altered mitochondrial architecture in subjects with BPD 27. Furthermore, 

bioinformatic analysis on transcriptomic data from peripheral tissues identified altered pathways 

in glucose signaling in subjects with psychosis 15. 

Despite the support for brain metabolic dysfunction in psychiatric disorders, evidence comparing 

metabolic signaling pathways in brain areas critically involved in mood and reward processes in 

subjects with SCZ, BPD, or MDD is limited. The amygdala is a key region involved in the 

regulation of mood, anxiety, fear, and reward (appetitive) processes. Imaging studies reported 

increased amygdala activity across each of these disorders 28-30. For example, increased amygdala 

activity was reported in unmedicated subjects with paranoid SCZ 28 and in subjects with BPD 

including mixed-mania and rapid cycling BPD 29. Similarly, increases in amygdala glucose 

metabolism in subjects with depression or BPD correlated with plasma cortisol levels 30. 

Several studies indicate that the amygdala is a brain region where neuroanatomical and molecular 

pathology diverges in psychiatric disorders. Differences in resting state functional connectivity 

between the amygdala and prefrontal cortex are reported in subjects with SCZ and subjects with 

BPD 31. Amygdala volume is decreased in children and adults with BPD 32 and total neuron number 

is also decreased in BPD but not SCZ subjects 33. In comparison, amygdala volume is increased in 

subjects with MDD 34. In addition, decreased perineuronal nets and marked increases of 

chondroitin sulphate proteoglycan-expressing glial cells were reported in the amygdala of subjects 

with SCZ but not in subjects with BPD 35. 

Improving our understanding of how brain metabolic processes are affected in people with SCZ, 

BPD or MDD can provide insight into the use of current as well as new treatment strategies for 
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people with and without comorbid metabolic syndrome. There is currently a lack of studies 

comparing amygdala gene expression profiles across these three disorders. We used RNAseq 

profiling and our 3-pod bioinformatic analysis on a well-characterized cohort from the Stanley 

Neuropathology Consortium to determine whether metabolic signaling pathways are differentially 

altered in the amygdala of subjects with SCZ, BPD or MDD. 

 

METHODS. 

Subjects. Fresh frozen coronal sections containing the amygdala were obtained from the Stanley 

Neuropathology Consortium. This cohort consists of 15 subjects with SCZ, 15 subjects with BPD, 

15 subjects with MDD and 15 control subjects (Table 1). Details regarding this cohort including 

demographic and patient information is available at the Stanley Neuropathology Consortium 

Integrative Database. Ethical approval for the Stanley Brain Collection was obtained through the 

Uniformed Services University of the Health Sciences, Bethesda, MD. 

  Schizophrenia Bipolar Disorder Major Depressive Disorder Control  

Age (years) 44.2 (25-62) 42.3 (25-61) 46.5 (30-65) 48.1 (29-68) 

Sex 9 M, 6 F 9 M, 6 F 9 M, 6 F 9 M, 6 F 

Race 12 C, 3 A 14 C, 1 AA 15 C 14 C, 1 AA 

PMI (hrs) 33.7 (12-61) 32.5 (13-62) 27.5 (7-47) 23.7 (8-42) 

pH 6.1 (5.8-6.6) 6.2 (5.8-6.5) 6.2 (5.6-6.5) 6.3 (5.8-6.6) 

Hemisphere 6 R, 9 L 8 R, 7 L 6 R, 9 L 7 R, 8 L 

Suicide 11 No, 4 Yes 6 No, 9 Yes 8 No, 7 Yes 15 No, 0 Yes 
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Table 1: Summary table of subjects and demographic information. C: Caucasian, A: Asian, A.A.: African 

American. R: right, L: left. M: male, F: female. Information for all demographic and patient information 

used for our analysis is available at the Stanley Neuropathology Consortium Integrative Database.  

 

RNAseq & alignment. RNA isolation, library preparation, and next generation sequencing was 

performed by the Molecular and Genomics Core Facility at the University of Mississippi Medical 

Center, as described previously 36. Total RNA was isolated from tissue samples using the 

Invitrogen PureLink RNA Mini kit with Trizol (Life Technologies; Carlsbad, CA, USA) following 

manufacturer protocol. Quality control of total RNA was assessed using the Qiagen QIAxcel 

Advanced System for quality and Qubit Fluorometer for concentration measures. The RQI was 6.6 

± 2.1 (mean ± SD). Libraries were prepared using the TruSeq Stranded Total RNA LT Sample 

Prep Kit from Illumina (San Diego, CA, USA) per manufacturer’s protocol using up to 1 ug of 

RNA per sample. Libraries were index-tagged, pooled for multiplexing, and sequencing was 

performed on the Illumina NextSeq 500 platform using a paired-end read (2 x75 bp) protocol with 

the Illumina 150 cycle High-Output reagent kit. Reads were aligned to the NCBI GRCh38Decoy 

Refseq genome with the basespace application RNA-Seq Alignment (Version: 2.0.1 [workflow 

version 3.19.1.12+master]) that conducted both splice aware genome alignment with STAR 

alignment (version 2.6.1a, 37) and transcriptome quantification with Salmon (version 0.11.2) 38. 

Differential gene expression analysis. To better understand the drivers of expression variation in 

our study, variance partition analysis was conducted using variancePartition R package 39. This 

analysis allowed us to quantify the variation in each expression trait that could be attributed to 

differences in each covariate. Each subject in the study was associated with sixteen covariates, 

including sex, age, duration of illness, age at illness onset, cause of death suicide, psychosis, 
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lifetime antipsychotics (fluphenazine equivalent), smoking history, substance abuse severity, 

ethanol severity, diagnosis, zeitgeber time (ZT), brain hemisphere, tissue pH, brain weight, and 

PMI.  The top two covariates with the greatest median were accounted for in the subsequent 

generalized linear modeling fitting for each comparison. Transcriptome-wide gene counts were 

subject to differential gene expression analysis using DEseq2 R package 40 with recommended 

default settings. Genes where there are less than 50% samples with normalized counts greater than 

or equal to 1 were filtered out. Unless otherwise specified, significantly differentially expressed 

genes are defined as those with a p-value less than 0.05. 

Pod 1: Full gene set pathway analysis. Gene Set Enrichment Analysis (GSEA) with full set of 

genes was performed using fgsea R package (version 1.16.0) against human enrichment map gene 

sets downloaded from baderlab.org/ EM_Genesets/. As a gene ranking metric, sign(logFC) * (-

log10(p-value)) or “stat” obtained from DESeq2 output were used. The GSEA method is described 

in detail 41. Briefly, GSEA first ranks genes based on differential expression. Then an enrichment 

score statistic is generated, which reflects the degree of overrepresentation of genes in a gene set 

at the top or bottom of the entire list of ranked genes. Unless otherwise specified, significantly 

altered pathways (gene sets) are defined as those with a p-value less than 0.05. This analysis also 

identified leading-edge (LE) genes which are the core subset of genes in a gene set that account 

for the enrichment signal 41. We analyze the overlap between multiple leading-edge subsets.  

Pod 2: Targeted pathway analysis. Targeted pathway analysis with disease gene sets composed 

of the top and bottom 10% genes (greatest absolute log2FC) was performed using enrichR R 

package (version 3.0). Gene ontology (GO) databases GO biological process, GO cellular 

component, and GO molecular function were used in analysis. EnrichR generates a combined score 

to identify pathways that are significantly up or downregulated from a given list of DEGs 42. 
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Pod 3: Identification of perturbagens altering gene expression. The Library of Integrated 

Network-Based Cellular Signatures (LINCS) (http://www.ilincs.org/ilincs/) is a National Institute 

of Health initiative that aims to create a comprehensive network of molecular reactions in response 

to environmental and internal stressors 43. The LINCS project uses the L1000 assay, a gene 

expression array of 978 “hub” genes, to generate gene signatures. Approximately 82% of the 

information content of the transcriptome is accounted for in the genes represented in the L1000 

assay 44. The LINCS database contains hundreds of thousands of gene signatures, including gene 

signatures generated in human cell lines treated with chemical perturbagens (drugs). The log2FC 

and p-value for the L1000 genes were extracted from DEG analysis (disease signatures) and 

submitted as input to inquire a list of chemical perturbagens (drug signatures). The reported score 

is the Pearson correlation coefficient between the disease signatures (SCZ v CTL, BPD v CTL, 

MDD v CTL) and the precomputed iLINCS drug signatures. The chemical perturbagens with 

discordance scores < -0.321 and concordance scores > 0.321 were retained. Chemical perturbagens 

were clustered by mechanism of action (MOA) categories inquired from L1000 FWD 45, 

DrugBank database 46, and the Broad Institute. The R script for the 3-pod DEG workflow 

incorporating GSEA, targeted pathway analysis and iLINCS analysis is available at 

https://zenodo.org/badge/latestdoi/642681935. 

 

Psychotropic medication gene overlap analysis. To determine whether the DEG changes 

observed in this study were affected by psychotropic medications, a hypergeometric test was 

performed using GeneOverlap R package (version 3.17) (https://github.com/shenlab-

sinai/GeneOverlap) to compare the neuropsychiatric disorder differential expression profiles 

(filtered by FDR<0.01, FDR<0.05, and p-value <0.05) to transcriptomic datasets (filtered by p-
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value < 0.05) obtained from the Stanley Online Genomics resource 

(https://www.stanleygenomics.org/) for SCZ subjects who were on and off antipsychotic 

medication and BPD subjects on and off mood stabilizers at time of death. The Jaccard Index, 

which assesses the similarity between two sets of genes and p-value of the statistic test, is reported 

as previously described 47. 

 

Cell type deconvolution analysis. This study leveraged single-cell expression profiles obtained 

from snRNA-seq data of human amygdala collected from eight postmortem brain donors by the 

Lieber Institute for Brain Development 48. The dataset includes 19 clusters representing glial, 

stromal, immune cell populations, and neuronal classes. The raw counts and annotated single-cell 

clusters were obtained as SingleCellExperiment objects from 

(https://github.com/LieberInstitute/10xPilot_snRNAseq-human).  The snRNA-seq raw counts 

data underwent filtering to remove genes with zero expression across all cells. Subsequently, 

normalization was performed using the Trimmed Mean of M-values with singleton pairing 

(TMMwsp) method from the edgeR package 49, suitable for data with a high proportion of zeros. 

Cellular deconvolution was performed using CIBERSORTx 50, employing support vector 

regression (SVR) for cellular proportions estimation. To create a signature matrix containing 

marker genes for each cell type, the cibersortxfractions docker container was used, with 

adjustments made for the microfluidics-based sequencing (10xGenomics) by setting the fraction 

parameter to 0 as recommended by 50. To enhance visualization, cell types with predominantly 

zero fractions across all samples were excluded. Excitatory and inhibitory neuron subcluster 

fractions were combined into their respective classes. Additionally, the proportions of each cell 
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type across all groups were normalized to the mean of the control group. The significance of altered 

cell-type proportions among the different groups was assessed using the Wilcoxon Sum test. 

 

 

RESULTS. 

Amygdala transcriptional signature in SCZ, BPD and MDD.  

Differential gene expression analysis identified 2,890 (SCZ), 3,795 (BPD) and 3,016 (MDD) 

nominally significant differentially expressed gene (DEGs) with p-value < 0.05 (volcano plot 

Figure S1, Table S1). DEGs included SERPINA3, COL1A1, and OXTR in SCZ, CRY1, PPP3CC 

and PDYN in MDD, ABCG2, SERPINA3, several L-type calcium genes including CACNB2 and 

CACNA1C, and several extracellular matrix genes including NCAN PTPRZ1, VCAN, IL33, and 

several clock genes including PER3, PER1, PER2, and NPAS4 in BPD.  

Variance partitioning analysis quantified the variation in each expression trait that could be 

attributed to differences in each covariate (% variance explained) (Figure S2). The top two 

covariates with the greatest median of variation for each disease were duration of illness (7.4%) 

and age at onset of illness (4.2%) for BPD; age at onset of illness (5.4%) and pH (4.1%) for MDD 

and age at onset of illness (11.2%) and duration of illness (4.1%) for SCZ comparisons.  

 

Pathway analysis 

Pathway analysis (Figure 1, Table S2) conducted using GSEA takes advantage of information on 

continuous expression changes from all transcribed genes to determine the biological processes 

(gene sets) that are statistically significantly different between the disorder and control groups 41. 

Enrichment of pathways involved in “metabolic processes” (see pop-out cluster in Figure 1), were  
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Figure 1. Pathway analysis of DEGs in amygdala in three psychiatric disorders. Enrichment 

of clustered biological pathways following gene set enrichment analysis (GSEA) of BPD, MDD 

and SCZ comparisons. The color-intensity (blue to red) is proportional to the enrichment score 

(ES). The enrichment score represents the degree to which the genes in the set are over-represented 

at either the top or bottom of the list. The “metabolic processes” cluster is expanded. All pathways 

indicated in heatmap are significantly (p<0.05) enriched. BPD bipolar disorder, MDD major 

depressive disorder, SCZ schizophrenia. 
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identified in all disorders. “Nucleotide metabolism” was downregulated in SCZ, with few 

upregulated pathways enriched in MDD. “Carbohydrate metabolism-related processes” were 

predominantly enriched in BPD. “Mitochondrial respiration/energy metabolism” related pathways 

were downregulated in SCZ, upregulated in MDD, but not significantly enriched in BPD. In line 

with previous reports, these results suggest dysregulation of bioenergetic processes in psychiatric 

disorders. However, they also indicate unique dysfunction in different energy metabolism 

pathways in the amygdala in these disorders. Similarly, “immune system processes” are enriched 

in all disorders but pathways are primarily upregulated in BPD and downregulated in SCZ (Figure 

2). Fewer immune-related pathways are enriched in MDD in the amygdala compared to BPD and 

SCZ.  

Other pathway clusters contained pathways that were enriched across psychiatric disorders, 

however, pathways associated with “biological adhesion” and “cell death” were uniquely or 

predominantly downregulated in SCZ and upregulated in MDD, respectively (Figure 1). The top 

5 pathways in these clusters, based on enrichment score (ES), are indicated in Figure 2.  

Furthermore, “calcium ion transport” pathways were predominantly downregulated in subjects 

with BPD. Several genes encoding for L-type calcium channels were identified as leading-edge 

genes (Figure 2) in these pathways, including CACNA1C, implicated in GWAS studies of BPD 

51, and CACNB2, which has genetic associations with BPD 52 and with cardiovascular disease 53, 

54. The top “calcium ion transport” pathways identified in BPD are listed in Figure 2. 
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Figure 2. Pathway analysis. Heatmap indicating significantly (p<0.05) enriched pathway clusters 

that are predominately or uniquely enriched in a single psychiatric disorder, and table of 

corresponding top 5 pathways in each cluster. “Biological adhesion” and “cell-death” related 

pathways are enriched in SCZ and MDD respectively “Immune system process” pathways are 

upregulated in SCZ and downregulated in BPD. The top 5 pathways in each cluster are listed by 

enrichment score (ES). The top BPD “Ion transport” pathways and leading edge (LE) genes are 

also shown. BPD bipolar disorder, MDD major depressive disorder, SCZ schizophrenia. 

 

Leading-edge gene analysis.  

Leading-edge gene analysis identified the genes that are most influential for enrichment of 

significant pathways (Table S3). Leading-edge genes are identified based on the frequency with 

which they are identified in biological pathways; their expression is not necessarily statistically 
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significant in disease compared to control. The top 10 upregulated and downregulated leading-

edge genes are identified for BPD (Figure 3A), MDD (Figure 3B) and SCZ (Figure 3C). 

Approximately 11% (upregulated) and 15% (downregulated) of the leading-edge genes are shared 

across all 3 psychiatric disorders (Figure 3D). The highest number of common leading-edge genes 

are shared between SCZ and MDD (approx. 16%). BPD has the greatest number (approx. 24%) of 

unique LE genes. The top 10 common leading-edge genes (Figure 3E) include genes involved in 

metabolic processes (GPER1 & PPP3CA), L-type voltage gated calcium signaling (CACNB4), 

mu opioid signaling (OPRM1) and GABAergic signaling (GABRB2). 

 

Figure 3. Leading edge gene analysis. The top 10 upregulated and downregulated leading edge 

(LE) genes, based on frequency identified in biological pathways are shown for BPD (A), MDD 

(B) and SCZ (C). (D) The number and proportion (%) of all LE genes and their intersection in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305854doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.17.24305854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 16 

BPD, MDD and SCZ. (E) The top 10 upregulated and downregulated LE genes that are common 

across BPD, MDD, SCZ. BPD bipolar disorder, MDD major depressive disorder, SCZ 

schizophrenia. 

 

LINCS chemical perturbagen analysis 

iLINCS analysis identified chemical perturbagens (Table S4), organized by mechanism of action 

(MOA), that were dissimilar (discordant) or similar (concordant) to the transcriptional signatures 

of BPD (Figure 4A-B), MDD (Figure S3A, C) and SCZ (Figure S3B, D). The signature reversion 

principle suggests that chemical perturbagens that are discordant with the disease signature may 

induce gene expression changes that “reverse” disease-associated gene expression signatures 55. 

Equally, concordant chemical perturbagen signatures may indicate drugs that induce gene 

expression changes similar to those found in the disease state, informing on the underlying gene 

targets that may be implicated in disease.  

 Few chemical perturbagen signatures clustered by MOA were identified for SCZ and MDD 

analyses (Figure S3). However, “ATPase inhibitor” is the top mechanism of action for chemical 

perturbagens that are discordant to the BPD gene signature. The chemical perturbagens that 

comprise the nineteen ATPase inhibitor signatures include several cardiotonic steroids (Figure 

4D) that modulate the Na+/K+ ATPase (ATP1A1-3) in a dose-dependent manner 56.  

A small number of “ATPase inhibitor” chemical perturbagens (Blebbistatin (non-muscle myosin 

II ATPase inhibitor) and Evodiamine (ABCG2 inhibitor)) were identified as concordant with BPD, 

however these drugs do not target the Na+/K+ ATPase. ATP1A1 and ATP1A2 were significantly 

differentially expressed (p<0.05) in BPD but not SCZ and MDD. ATP1A1 was identified as a 

leading-edge gene in all three disorders, while ATP1A2 was identified as a leading-edge gene in 

BPD and MDD. We focused on the chemical perturbagens that share a common mechanism of 
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action as this likely represents a more robust biological signature than single chemical perturbagen 

signatures (Figure 4E).  

 

 

Figure 4. LINCS analysis. The mechanisms of action (MOA) of chemical perturbagens that are 

(A) discordant (dissimilar) and (B) concordant (similar) to the BPD amygdala LINCS signature. 

(D) The top BPD discordant MOA, ATPase inhibitor and the associated chemical perturbagens, 

cardiotonic steroids. (E) The top individual LINCS chemical perturbagen signatures that are most 

discordant with the BPD signature based on similarity score. BPD bipolar disorder, MOA 

mechanism of action. 
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Cell-type analysis 

Cellular deconvolution analysis (Figure 5) identified significant reductions in cell type proportions 

of excitatory neurons in SCZ (p=0.004), BPD (p= 0.011) and MDD (p=0.013) relative to controls. 

Cell type proportions of astrocytes were significantly increased in SCZ (p=0.001), BPD (p=0.009) 

and MDD (p<0.001) compared to controls. Cell type proportions of oligodendrocytes were 

significantly reduced in SCZ (p=0.001) and MDD (p=0.019) but not BPD (p=0.2) compared to 

controls. These data support significant differences in cell compositions in psychiatric disorders 

compared to controls.  

 

Medication effects  

Antipsychotic medication was assessed as a potential confounding variable in variance partitioning 

analysis (Figure S2) however, it did not contribute significantly to the variance explained in the 

SCZ and BPD comparisons. We also compared the similarity of gene expression from our 

neuropsychiatric disorder RNAseq analysis with transcriptomic datasets obtained from the Stanley 

Online Genomics resource (https://www.stanleygenomics.org/) for SCZ subjects who were on and 

off antipsychotic medication and BPD subjects on and off mood stabilizers at time of death. 

Hypergeometric overlap analysis did not find significant overlap of the postmortem on/off 

medication and the psychiatric disorder datasets (p>0.05, Figure S5). An alternative statistic 

derived from hypergeometric overlap analysis, the Jaccard Index, which assesses the similarity 

between two sets of data, found that similarity was low (Figure S5, similarity 2% - 8%) suggesting 

the psychotropic medications do not drive the gene expression changes associated with disease. 

No dataset was available to assess the effects of medication on the transcriptome in MDD subjects 

who were on compared to off antidepressants. The medication datasets were not generated in 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 19, 2024. ; https://doi.org/10.1101/2024.04.17.24305854doi: medRxiv preprint 

https://www.stanleygenomics.org/
https://doi.org/10.1101/2024.04.17.24305854
http://creativecommons.org/licenses/by-nc-nd/4.0/


 19 

amygdala tissue and thus may not reflect region-specific medication induced changes in gene 

expression.  

 

 

Figure 5. Cellular deconvolution. Cellular deconvolution from bulk RNAseq analysis of four 

different cell types in postmortem amygdala BPD, MDD and SCZ tissues. Cell type proportions 

(%) are shown for inhibitory and excitatory neurons, oligodendrocytes and astrocytes for BPD, 

MDD and SCZ relative to controls. BPD bipolar disorder, MDD major depressive disorder, MOA 

mechanism of action, SCZ schizophrenia. 
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DISCUSSION. 

Psychiatric disorders share genetic and molecular pathologies 57 but the mechanisms that are 

common and unique to each disorder are still being elucidated. We present, to our knowledge, the 

first evidence for diagnosis-specific alterations of gene expression in metabolic pathways in the 

amygdala of subjects diagnosed with SCZ, BPD, or MDD. Furthermore, we identified biological 

pathways, including cell-cell signaling, biological adhesion, cell death, and calcium ion transport- 

related pathways that have unique patterns of enrichment in the amygdala in these disorders.  

Our results indicate that metabolic pathway dysregulation in the amygdala is common 

across psychiatric conditions, but with distinct differences in specific metabolic signaling 

pathways in these disorders. Pathways involved in energy metabolism, for example “electron 

transport chain” and “oxidative phosphorylation” are downregulated in SCZ, upregulated in MDD 

but not significantly enriched in BPD. In addition, nucleotide metabolism pathways like “purine 

nucleotide metabolic process” are significantly downregulated in SCZ. Deficits in mitochondrial 

bioenergetics are widely reported in the brain in SCZ 58.  Reduced transcript and protein expression 

of electron transport chain complex I and III enzymes 59, and lower activity of complex IV 60 were 

found in the frontal cortex in subjects diagnosed with SCZ. Similar reductions in mitochondrial 

complex activity were found in the temporal cortex and basal ganglia 60. Decreases in the transcript 

expression of mitochondrial genes and associated biological pathways were also reported in the 

hippocampus 61, in superficial and deep lamina of the dorsolateral prefrontal cortex (DLPFC) 62, 

63, and in enriched populations of laser captured parvalbumin interneurons in the DLPFC 64. Our 

findings in the amygdala lend further support for downregulation of bioenergetic processes across 

different brain regions in SCZ. In contrast, we found bioenergetic pathways were upregulated in 

the amygdala in MDD subjects. Increased levels of mitochondrial transcript expression 65 and 
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increased protein expression of twenty different subunits of the oxidative phosphorylation complex 

were reported in the DLPFC in MDD subjects 66. However, as ATP levels were found to be reduced 

in the DLPFC in these subjects, upregulation of oxidative phosphorylation complexes may 

represent a compensatory response to overcome energy deficits in MDD 66. Although significant 

changes in mitochondrial transcript expression in postmortem MDD brain tissue were found after 

controlling for the effects of antidepressant treatment 65, in rodent models, administration of  

selective serotonin reuptake inhibitors (SSRIs) resulted in the upregulation of proteins implicated 

in energy metabolism and ATP synthesis  67. However, positron emission tomography (PET) 

imaging with [(18)F] fluorodeoxyglucose found elevated anterior cingulate metabolism levels and 

reduced prefrontal metabolic activity that were normalized following administration of the 

antidepressant paroxetine in MDD patients 68. This suggests basal, brain-region specific 

dysregulation of energy metabolism in MDD that is amenable to pharmacotherapy. 

Conversely, carbohydrate metabolism-related pathways, including “positive regulation of 

carbohydrate metabolic process” and “monocarboxylic acid metabolism” are upregulated in BPD, 

with few pathways enriched in SCZ and MDD in the amygdala. PET studies using 8F-

fluorodeoxyglucose have previously identified increased glucose metabolism in the left amygdala 

in bipolar-depressed patients 30, 69. Emerging evidence suggests that circumventing glycolysis may 

be an effective therapy for psychiatric disorders, particularly BPD. Ketogenic diets replace brain 

carbohydrate metabolism with ketones as an energy source 70, 71 and show promise in treating 

symptoms in people with BPD and SCZ 20, 25, 72-74. Altered glycolysis was also reported in the 

amygdala in depression patients 75, but we did not identify significant enrichment of these energy 

metabolism pathways at the transcriptomic level in this study. Widespread bioenergetic 

dysregulation, including glucose utilization deficits 58, 76, 77, availability of ATP reserves 78-81 and 
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mitochondrial enzyme dysfunction 82, 83 have been identified in postmortem brain tissue studies 

and imaging studies of psychiatric patients, although fewer studies have been conducted in the 

amygdala. Our results also support metabolic dysfunction as a core feature of psychiatric disorders, 

but with disease and brain-region specific perturbations in bioenergetic processes. 

Interestingly, the primary finding from iLINCS chemical perturbagen analysis is that drugs 

that regulate the Na+/K+ ATPase (ATPase inhibitors) are discordant with the BPD disease 

signature. The ATPase inhibitors identified here were predominantly cardiotonic steroids, which 

modulate the activity of the Na+/K+ ATPase in a dose-dependent manner 84. Na+/K+ ATPase 

maintains plasmalemma membrane potential in neurons by reestablishing Na+ and K+ ion gradients 

following action potential firing. The Na+/K+ ATPase enzyme is posited to be the single largest 

consumer of ATP in the brain 85, and is an important regulator of ion homeostasis 86. Preclinical 

models targeting the Na+/K+ ATPase indicate that inhibition of this enzyme may contribute to 

manic symptoms in BPD. For example, intracerebroventricular administration of the ATPase 

inhibitor ouabain reduces Na+/K+ ATPase pump activity and increases dopamine release and 

locomotor activity in rats, which are alleviated by lithium administration 87, 88. ILINCS analysis 

identified ATPase inhibitors as compounds that may reverse amygdala BPD transcriptional 

signatures. This finding seems contradictory, as Na+/K+ ATPase inhibition is associated with BPD 

symptoms. However, endogenous cardiotonic steroids can have different physiological effects 89, 

and at low doses, cardiotonic steroids can increase activity of the Na+/K+ ATPase 90, 91. We found 

that expression of the primarily neuronally-expressed Na+/K+ ATPase subunit gene ATP1A1 92 

was downregulated in BPD but expression of the glial-cell expressing subunit ATP1A2 was 

significantly upregulated. Variable levels of expression of different Na+/K+ ATPase α isoforms 

have previously been reported in the prefrontal cortex 93, temporal cortex 94, 95 and parietal cortex 
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96 in BPD. The complex role of Na+/K+ ATPase, the functional effects of changes in expression of 

its different isoforms and its potential role as a disease mechanism in BPD are discussed in detail 

elsewhere 97-99. However, our results lend support to the hypothesis that modulation of Na+/K+ 

ATPase activity may play a role BPD pathophysiology and serve as a therapeutic target 100.  

We observed selective downregulation of calcium ion signaling in subjects with BPD, 

along with several genes involved in L-type calcium channel signaling as leading-edge genes 

including CACNA1C and CACNB2 (Figure 2). CACNA1C polymorphisms are one of the most 

strongly implicated genetic factors in GWAS studies of BPD 101-107 and represent a promising 

factor for developing personalized treatments. A recent GWAS also identified enrichment of 

polygenic risk factors for targets of calcium channel blockers, including the L-type calcium 

channel blocker isradipine 108. Previous studies have reported increased fMRI activity as well as 

CACNA1C mRNA expression in the dorsolateral prefrontal cortex of control subjects with two 

copies of the risk allele 109. Furthermore, increased mRNA expression along with L-type calcium 

current was reported in cultured induced neurons from people with two copies of the CACNA1C 

risk allele 110. In contrast, two studies have reported decreased CACNA1C mRNA expression in 

the superior temporal gyrus and the cerebellum in people with the risk allele 111, 112. These 

discrepancies in gene expression levels may be due to variability in multiple CACNA1C 

polymorphisms between cohorts, brain region specific effects including somatic mutations or 

medication effects.  

Despite the evidence from genetic association studies 101-108, the iLINCS perturbagen 

analysis did not identify calcium channel blockers as top discordant drugs for the gene expression 

signatures in any diagnosis group. However, ATPase inhibitors such as the cardiotonic steroid 

ouabain were the top discordant drugs identified for subjects with BPD. In addition to bioenergetic 
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perturbations, enrichment of chemical perturbagens that modulate ion pumps like the Na+/K+ 

ATPase in BPD 113 lends further support for ion dysregulation as a common pathological feature 

of this disorder 114. ATPase inhibitors regulate cellular Na+ and K+ ion levels via their action at the 

Na+/K+ ATPase pump but can also increase intracellular calcium levels and in turn activation of 

several cell signaling pathways 115. Increased intracellular calcium has been reported in subjects 

with BPD 116-118. Furthermore, ATPase inhibitors can act as anti-inflammatory compounds 119, 120. 

Immune system processes were selectively upregulated in the amygdala of subjects with BPD, 

which may also have contributed to the identification of ATPase inhibitors as discordant with the 

BPD disease-related gene signatures. The subjects diagnosed with BPD in our study likely 

represent subjects in a depressed or euthymic state, suggested by the prevalence of suicide in this 

group. The decreased L-type calcium signaling we observed in our study may be associated with 

depressive states whereas increased L-type calcium signaling may reflect manic episodes. Calcium 

channel blockers have been reported to be effective in treating mania and to a lesser extent 

depression in patients with BPD 121-126. Collectively, altered ATPase and L-type calcium channel 

pathways may be at the center of energy balance dysfunction in BPD, reflected by increased 

activity during mania and decreased activity in depression.  

Biological adhesion pathways, including CD4 positive T-cell pathways, were enriched 

only in the amygdala of subjects with SCZ. Pathways involved in immune system processes were 

downregulated in subjects with SCZ. These findings contrast with reports of increased cell 

adhesion and immune system molecules in serum and cortical brain samples from subjects with 

SCZ 127, 128. Cell adhesion alterations and immune system dysregulation are associated with 

metabolic perturbations in SCZ. Cell adhesion molecules are differentially expressed in serum 

from SCZ patients diagnosed with comorbid metabolic syndrome compared to SCZ patients 
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without metabolic syndrome 129. Metabolic differences in each cohort, as well as brain region 

specific changes in cell adhesion processes, may account for the differences in alterations in these 

pathways in our findings compared with previous reports.  

Our previous studies identified alterations in extracellular matrix molecules (ECMs) and 

perineuronal nets in the amygdala of subjects with SCZ, with more moderate changes in BPD 35, 

130. In the current study ECM pathways including “diseases associated with glycosaminoglycan 

metabolism”, “proteoglycans in cancer”, “vasculature development” and “blood vessel 

morphogenesis” were enriched in subjects with BPD, compared to a lack of enrichment of ECM 

pathways in SCZ or MDD. This included the ECM genes PTPRZ1, VCAN, ST6GAL1, SEMA3G 

and NCAN in subjects with BPD. GWAS studies reported a genetic polymorphism in NCAN 

associated with BPD 131, and human and mouse studies suggest this genetic factor is involved in 

manic symptoms 132. We identified a small number of differentially expressed ECM genes in 

subjects with SCZ including ST6GALNAC4, COL1A1, and COL1A2. Our results may reflect 

more subtle alterations in ECM pathways in the amygdala of subjects with BPD that may 

contribute to the previously reported alterations of PNN composition in this region 130. 

Transcriptional pathways involved in “cell death”’ were markedly and selectively 

upregulated in subjects with MDD and consisted of apoptotic and programmed cell death 

pathways. Apoptosis-related gene transcript 133 and protein marker expression 134 are found in the 

frontal cortex in MDD, suggesting increased vulnerability to persistent low-grade cell 

degeneration in this disorder. In the amygdala, volume changes are associated with reduced glial 

cell numbers, particularly oligodendrocytes 135. In line with this, we also found reduced cell 

proportions of oligodendrocytes in MDD subjects, along with reduced excitatory neuron 

proportions and increased proportions of astrocytes. Upregulated cell death pathways in MDD may 
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preferentially impact these two cell types. As in MDD, increased cell-type proportion of astrocytes 

was also observed in BPD and SCZ, supporting a role for glial cell dysfunction in these disorders 

that may contribute to disease-specific transcriptomic changes 136. For example, increased 

astrocyte proportions may contribute to inflammation, as suggested by upregulated immune 

system processes in BPD. In comparison, increased astrocyte cell proportions in SCZ together with 

downregulated immune system processes suggest impaired astrocytic function in this disorder. 

Fewer immune related pathways were identified in MDD compared to the other psychiatric 

disorders. Immune system dysregulation plays an important role in MDD 137 but our findings 

suggest it is not a major driver of pathological changes in the amygdala.   

A limitation of cellular deconvolution is that analysis is carried out with the assumption 

that up and downregulated cell-type specific marker expression is coordinated and reflects 

proportional increases or decreases of a cell type 138. That is, analysis does not distinguish between 

increased cell number and higher expression of cell markers for that cell type. It also does not 

consider the cellular reactivity state which may be relevant for the astrocyte cell subtype. Future 

studies using single nucleus RNAseq or high-resolution microscopy mRNA and protein analysis 

will provide more insight into the cell-type specific alterations in the transcriptomic pathways 

identified in our study. The information available for our cohort did not allow for analysis of 

potential relationships of mania, depression, and euthymia at death on our outcome measures. 

Future studies using larger cohorts with more detailed patient histories may shed light on the 

specific effects that mood state may have on metabolic pathways and ATPase signaling.  

In summary, our results identify diagnosis-specific alterations in metabolic pathways, 

immune pathways, and calcium ion transport in the amygdala of subjects with SCZ, BPD, and 

MDD. These results suggest that the amygdala is a region where alterations in these pathways 
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occur in a disease-specific manner, potentially associated with broader metabolic and immune 

system dysfunction that is often comorbid with these disorders. Identifying disease-specific 

alterations may guide the development and application of metabolic-based therapeutic strategies 

for SCZ, BPD, and MDD. 
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