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ABSTRACT  23 

 24 

Background 25 

Echocardiography is the most common modality for assessing cardiac structure and 26 

function. While cardiac magnetic resonance (CMR) imaging is less accessible, CMR 27 

can provide unique tissue characterization including late gadolinium enhancement 28 

(LGE), T1 and T2 mapping, and extracellular volume (ECV) which are associated with 29 

tissue fibrosis, infiltration, and inflammation. While deep learning has been shown to 30 

uncover findings not recognized by clinicians, it is unknown whether CMR-based tissue 31 

characteristics can be derived from echocardiography videos using deep learning. We 32 

hypothesized that deep learning applied to echocardiography could predict CMR-based 33 

measurements.  34 

 35 

Methods 36 

In a retrospective single-center study, adult patients with CMRs and echocardiography 37 

studies within 30 days were included. A video-based convolutional neural network was 38 

trained on echocardiography videos to predict CMR-derived labels including wall 39 

motion abnormality (WMA) presence, LGE presence, and abnormal T1, T2 or ECV 40 

across echocardiography views. The model performance was evaluated in a held-out test 41 

dataset not used for training. 42 

 43 

Results 44 

The study population included 1,453 adult patients (mean age 56±18 years, 42% 45 

female) with 2,556 paired echocardiography studies occurring on average 2 days after 46 
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CMR (interquartile range 2 days prior to 6 days after). The model had high predictive 47 

capability for presence of WMA (AUC 0.873 [95%CI 0.816-0.922]), however, the 48 

model was unable to reliably detect the presence of LGE (AUC 0.699 [0.613-0.780]), 49 

native T1 (AUC 0.614 [0.500-0.715]), T2 0.553 [0.420-0.692], or ECV 0.564 50 

[0.455-0.691]). 51 

 52 

Conclusions 53 

Deep learning applied to echocardiography accurately identified CMR-based WMA, but 54 

was unable to predict tissue characteristics, suggesting that signal for these tissue 55 

characteristics may not be present within ultrasound videos, and that the use of CMR for 56 

tissue characterization remains essential within cardiology. 57 

 58 

 59 

Clinical Perspective: 60 

Tissue characterization of the heart muscle is useful for clinical diagnosis and prognosis 61 

by identifying myocardial fibrosis, inflammation, and infiltration, and can be measured 62 

using cardiac MRI. While echocardiography is highly accessible and provides excellent 63 

functional information, its ability to provide tissue characterization information is 64 

limited at this time. Our study using a deep learning approach to predict cardiac 65 

MRI-based tissue characteristics from echocardiography showed limited ability to do so, 66 

suggesting that alternative approaches, including non-deep learning methods should be 67 

considered in future research. 68 

 69 

 70 
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 73 

Abbreviations: 74 

AHA: American Heart Association 75 

AUROC: Area under receiver operating characteristic 76 

A4C: Apical 4 chamber 77 

A2C: Apical 2 chamber 78 

CMR: Cardiac magnetic resonance 79 

ECV: Extracellular volume 80 

LVEF: Left ventricular ejection fraction 81 

LGE: late gadolinium enhancement 82 

PLAX: Parasternal long axis 83 

MOLLI: modified inversion look-locker 84 
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Introduction 86 

 87 

Echocardiography plays a central role within cardiovascular care, providing essential 88 

information on cardiac structure and function in a highly-accessible format
1
 

2
. Cardiac 89 

MRI (CMR) is also critical to cardiovascular care but has reduced accessibility due to 90 

the availability of scanners and qualified physicians to interpret the images. In addition 91 

to providing information on cardiac structure and function, CMR is able to provide 92 

unique tissue characterization that is helpful for assessing for etiology of disease
3
. This 93 

includes myocardial composition including scarring through late gadolinium 94 

enhancement (LGE) and infiltration, edema, and diffuse fibrosis through relaxometry 95 

techniques such as T1 and T2 mapping, and extracellular volume (ECV) fraction. 96 

Despite the utility of CMR
4
, logistical barriers continue to limit its broader uptake, 97 

including the availability of CMR resources, the examination cost, the use of 98 

gadolinium contrast, and logistical complexity.  99 

 100 

Deep learning applied to medical imaging provides the opportunity to obtain more 101 

information than currently recognized by clinicians in standard clinical care
5–9

. For 102 

example, deep learning applied to echocardiography has been shown to identify hidden 103 

features invisible to the human eye such as age, gender, serological biomarkers, 104 

prognosis, and tissue characteristics of cardiac amyloidosis and hypertrophic 105 

cardiomyopathy
10,11

.  We hypothesized that deep learning applied to echocardiography 106 

could predict CMR-based measurements. In this study, we train a video-based 107 

convolutional neural network to predict CMR features from patients with paired CMR 108 

and echocardiography studies. Predicted CMR characteristics including wall motion 109 
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abnormalities, myocardial scar, and markers of tissue infiltration, edema, and diffuse 110 

fibrosis were assessed for deep learning evaluation.  111 

  112 
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Methods 113 

 114 

Data and study population 115 

We identified all adults aged over 18 years at a large cardiac quaternary care center who 116 

received clinical CMR, with at least one clinical transthoracic echocardiogram within 30 117 

days of the CMR between May 2011 and June 2022. All echocardiography were 118 

performed using Philips EPIQ 7 or iE33 ultrasound machines. Echocardiography views 119 

including apical four-chamber (A4c), apical two-chamber (A2c), and parasternal long 120 

axis (PLAX), were automatically extracted using an automated view classifier. Videos 121 

underwent automated image preprocessing including removing identifying information, 122 

electrocardiogram and respirometer tracings, and cropping and downsampling images 123 

using cubic interpolation to a standard size and resolution of 112 × 112-pixels
12

. This 124 

study was approved by the Institutional Review Board at Cedars-Sinai Medical Center 125 

and informed consent was waived due to the retrospective analysis. 126 

 127 

Echocardiography studies were paired with the nearest CMR study within 30 days. 128 

Deep learning models were trained on echocardiogram videos with labels derived from 129 

the clincal report of the temporally closest CMR if a single echocardiography study had 130 

multiple CMRs within 30 days. Labels included presence or absence of wall motion 131 

abnormalities within the given echocardiography view (e.g., within AHA segments 132 

included within an apical 4-chamber view versus 2-chamber versus parasternal long 133 

axis) or globally (within any segment), presence or absence of LGE within a given view 134 

or globally, and both continuous and dichotomized measures of T1, T2, and ECV. 135 

Dichotomization was based on abnormal values of native T1 times over 1060ms, T2 136 
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times over 58ms, and ECV values above 33%, appropriate to scanner vendor and 137 

strength and based on local practice and published values
13

 
14

. Overall study pipeline is 138 

demonstrated in the Graphical Abstract. 139 

 140 

 141 

CMR protocol and assessment 142 

All CMR examinations were clinically-ordered studies performed using a 1.5T Avanto 143 

scanner (Siemens Healthineers, Erlangen, Germany). While clinical protocols varied 144 

over time, cine SSFP images were graded at the time of acquisition for the presence or 145 

absence of regional wall motion abnormalities based on an American Heart Association 146 

(AHA) 17 segmentation model 
15

. If available, T1 mapping was performed using a 147 

standard 5(3)3 modified inversion look-locker (MOLLI) sequence, with measurement 148 

of the T1 value within the mid-sepum within the mid slice. If overt tissue abnormalities 149 

were present in this region, measurement representative of the diffuse tissue 150 

composition would be performed in a secondary region, most commonly basal 151 

mid-septal slice, consistent with guidelines. If available, T2 mapping was performed 152 

using a T2-prepped SSFP sequence, with similar measurement approach as used for T1 153 

values. Post-contrast images included T1-mapping using a short-T1 optimized MOLLI 154 

approach. ECV values were calculated from the pre- and post-contrast T1 maps in 155 

combination with point-of-care hematocrit  masurement.  LGE was measured 12-20 156 

min after gadolinium contrast injection (Gadbutrol), using turbo FLASH or magnitude 157 

weighted and phase-sensitive inversion recovery gradient echo high-resolution short 158 

axis stacks, correlated with long axis LGE images, to grade presence, severity, and 159 

location of scarring using the AHA 17-segment model. All clinical examinations were 160 
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reviewed by two clinicians including an advanced cardiac imaging fellow, and advanced 161 

cardiac imaging attending with Level-3 equivalent training. 162 

 163 

Overview of AI model and training 164 

For model training and testing, we used a convolutional neural network with residual 165 

connections and spatiotemporal convolutions
12

 to predict CMR findings, including the 166 

presence of wall motion abnormalities, the presence of myocardial scar, native T1 value, 167 

T2 value, and ECV fraction. For binary classification tasks for predicting dichotomized 168 

CMR findings, we used binary cross-entropy loss and trained to maximize the area 169 

under the receiver operating characteristics using an AdamW optimizer with an initial 170 

learning rate of 0.001. For classification tasks including wall motion abnormalities, 171 

scarring, abnormal T1, T2, and ECV, predictions were organized by presence or absence 172 

of abnormality within the AHA segments corresponding to the specific 173 

echocardiography view. To assess for the global presence or absence of any wall motion 174 

abnormalities or myocardial scar, we combined the predictions for A4c, A2c, and PLAX 175 

views through logistic regression for a final prediction of these measurements. For a 176 

regression tasks applied for prediction of continuous labels (native T1 value, T2 value, 177 

and ECV fraction), the model was similarly trained in A4c, A2c, and PLAX views and 178 

combined to provide a global result. The model was specified to minimize the mean 179 

average error using squared loss. In both classification and regression tasks, early 180 

stopping with 10 epochs was applied, and the batch size and the number of epochs were 181 

set to 10 and 50, respectively. The dataset was randomly split at an 8:1:1 ratio for model 182 

training, validation, and held-out testing. The weights from the epoch with the best 183 
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metrics were used on the held-out test dataset. All model training and evaluation were 184 

conducted using Python 3.8 and the publicly available PyTorch library. 185 

 186 

Statistical analysis 187 

All performance analyses were performed using a held-out test dataset not involved in 188 

model training. For dichotomous outcomes, the model’s ability was assessed by 189 

calculating the area under the receiver operating characteristic (AUROC) curve. For 190 

continuous values including T1 value, T2 value, and ECV, mean absolute error (MAE) 191 

and coefficient of determination (R
2
) were calculated. Bland-Altman plots where the 192 

average of two measurements was plotted against the difference were used to check the 193 

agreement between the actual and predicted values from echocardiography. 95% 194 

confidence intervals were calculated with 10,000 bootstrapping samples. All data were 195 

analyzed using Python and R.  196 

  197 
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RESULTS 198 

 199 

Patient characteristics 200 

We trained and tested a model using a dataset that included 2,556 echocardiography 201 

studies paired with CMR findings from a total of 1,453 patients (mean age: 56.0±17.9 202 

years, 41.8% female). The patient population had a range of cardiovascular 203 

comorbidities including hypertension (37.7%), hyperlipidemia (28.5%), and diabetes 204 

(16.5%) (Table 1). The mean left ventricular ejection fraction (LVEF) reported by 205 

echocardiography and CMR was 48.0±18.5% and 49.2±17.4%, respectively. In the 206 

CMR assessment, 48.3% had wall motion abnormalities and 49.0% had scar findings in 207 

one or more of the AHA 17 segments. Mean native T1 value was 1020±72.1 ms with 208 

26.0% of the patients having elevated values, mean T2 value was 48.7±6.1ms with 209 

8.2% having elevated values, and mean ECV was 28.4±5.7% with 21.8% having 210 

elevated values. The median time interval between the echocardiography and CMR was 211 

2 days (interquartile range, -2 to +6 days). 212 

 213 

Model Performance 214 

Prediction of wall motion abnormalities was robust, with the AUROC for prediction 215 

within the A4c segments of 0.817 (95% CI: 0.791-0.843), A2c of 0.756 (0.707-0.802) 216 

and PLAX of 0.812 (0.777-0.847) . The combination of these view prediction for global 217 

wall motion abnormalities showed strong prediction, with AUROC of 0.873 218 

(0.816-0.922) (Figure 1). On the other hand, prediction of tissue composition 219 

performed poorly overall. LGE prediction was low, at AUROC of 0.657 (0.620-0.693) 220 
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in the A4c views and poor at AUROC of 0.591 (0.522-0.650) in the A2c view and 0.541 221 

(0.483 - 0.594) in the PLAX views. The global prediction of 0.699 (0.613-0.780) was 222 

the highest (Figure 1). AUROC for prediction of T1, T2, and ECV was similarly limited, 223 

with global prediction of abnormal T1 time of 0.614 (0.500-0.715), T2 time of 0.553 224 

(0.420-0.692), and ECV of 0.564 (0.455-0.691). These limited capabilities were 225 

consistent across A4c, A2c, and PLAX view videos (Table 2). Prediction of continuous 226 

measures globally showed that the models were minimally predictive, with R
2
 of 0.04 227 

and MAE of 49.8 ms (47.5-52.2) for T1, R
2
 of 0.002 and MAE of 5.39 ms (5.07-5.71) 228 

for T2 and R
2
 of 0.07 and MAE of 4.38% (4.17-4.58) for ECV (Supplemental Figure 229 

1). 230 

231 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 22, 2024. ; https://doi.org/10.1101/2024.04.16.24305936doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305936


13 

 

Discussion  232 

 233 

In this study, we investigated the accuracy of a video-based deep learning model for 234 

predicting CMR findings from echocardiography, with the express goal to bridge the 235 

gap between the accessibility of echocardiography and the diagnostic information of 236 

CMR. While the model was able to predict wall motion abnormalities, it was unable to 237 

reliably predict fundamental CMR tissue characteristics including LGE, T1, T2, and 238 

ECV. Of these, the LGE prediction was the highest at 0.699 (0.613-0.780), which is 239 

unlikely to be accurate enough for clinical utility. Overall, we would consider the 240 

attempt to predict meaningful CMR tissue characteristics from echocardiography 241 

unsuccessful. 242 

 243 

There has been limited previous cross-modality research specifically linking 244 

echocardiography to CMR findings, with our literature review revealing no 245 

deep-learning-based publications for LGE, let alone T1, T2, and ECV. A smaller study 246 

leveraging a radiomics-based approach in patients admitted for heart failure, was able to 247 

identify the presence or absence of LGE in the anteroseptal and posterior wall 248 

myocardial segments, within the specific regions where regions of interest were placed 249 

for feature extraction. This was performed as a subset of a larger study, focusing on 89 250 

patients for training and 40 patients for testing, all with echocardiography within 48 251 

hours of clinical CMR, resulting in an AUROC of 0.84
16

. Other approaches such as 252 

echocardiography speckle-tracking strain has also been used to predict LGE with 253 

variable success – One publication demonstrated a significant association in 155 254 

patients specifically diagnosed with carbon monoxide poisoning
17

, whereas a more 255 
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general and smaller 50-patient population was unable to find an association with 256 

echo-based strain (AUROC of 0.58), but stronger associations with CMR-based strain 257 

(AUROC 0.67-0.78 including longitudinal and circumferential strain)
18

. 258 

Electrocardiogram (ECG) deep learning approaches have been applied to predict LGE 259 

and appear to have potentially stronger associations than were found within our study, 260 

though these are typically limited to specific populations. For example, prediction of 261 

LGE in patients with mitral valve prolapse using a CNN-based approach was able to 262 

achieve an AUROC of 0.75 in approximately 600 patients
19

, and 0.76 in a hypertrophic 263 

cardiomyopathy population of 1,930 patients though the AUROC decreased to 0.68 in 264 

external validation
20

. A smaller study in 114 patients achieved AUROC up to 0.81 for 265 

ECG prediction; however, this was from a 6-fold cross-validation without a hold-out 266 

dataset, so there is likely a significant contribution of overfitting to the model
21

. 267 

 268 

In reconciling our results with the established literature, we note that our population was 269 

typically both larger, and more general than previous works. Inclusion of diverse 270 

clinical conditions may have reduced the ability to predict CMR tissue characteristics, 271 

as the histological correlates of LGE, T1, T2, and ECV can vary between disease 272 

processes. However, our overarching motivation for echocardiographic tissue 273 

characterization was broad accessibility independent of specific disease processes, and 274 

therefore we felt that that this was the most appropriate approach. Additionally, given 275 

that clinical echocardiography is already commonly used to accurately identify WMA, 276 

we present the strong deep learning prediction of WMA not as a proposed clinical 277 

application, but to provide quality assurance for the workflow in mapping CMR labels 278 

and echo images, and our ability to train deep learning models for echo. We also 279 
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recognize that of all of the tissue characterization markers, LGE was the highest and 280 

showed small signal for prediction (AUROC of 0.699); however, without a much 281 

stronger signal, we felt this was most likely due to prediction of confounding factors 282 

such as reduced ejection fraction or thinned myocardium. These factors may be easily 283 

visible on echocardiography and are associated with, but not equivalent to LGE; and 284 

thus not clinically useful to predict with deep learning. 285 

 286 

Overall, the results of our study suggest that at least within the current population and 287 

deep learning architecture, CMR-based tissue characteristics are unable to be derived 288 

from standard clinical echocardiography at this time. Additional experiments testing 289 

prediction of deep learning across various sample size and model architectures had only 290 

modest differences in performance (not shown). At the inception of this study, we 291 

recognized that the ability to derive magnetic resonance-specific findings from an 292 

ultrasound-based modality may have limited biological plausibility, as the image 293 

acquisition and reconstruction process between the two modalities are extremely 294 

technically distinct. Historically however, echocardiography tissue characteristics such 295 

as granular sparkling has been seen as suggestive of cardiac amyloidosis
22

 and 296 

integrated backscatter has been proposed for use within both inflammatory and fibrotic 297 

conditions
23,24

. Detection of histological characteristics by echocardiography thus may 298 

be best directly quantified, as while CMR-based tissue characterization is well-accepted, 299 

it still represents a surrogate of the true tissue composition. Novel echocardiography 300 

techniques such as shear-wave elastography can provide signal for fibrosis not available 301 

through standard clinical images and may be able to expand the applicability of 302 

echocardiography independent of deep-learning based techniques
25,26

. Thus, while our 303 
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results support the ongoing utility for CMR independent of echocardiography, we are 304 

optimistic for the future of echocardiography to provide highly accessible tissue 305 

characterization. 306 

 307 

Limitations 308 

There are several limitations in the present study. First, as a retrospective single center 309 

study, our results were the result of a limited dataset. In particular, CMR practices may 310 

vary significantly between locations, and it remains possible stronger relationships can 311 

be found with larger datasets. The 30-day interval was selected as being a relatively 312 

short time frame but with a high number of eligible studies, and we recognize that 313 

incident clinical events or resolution of acute findings may have occurred between the 314 

two studies, though the short median time interval gives some degree of assurance. 315 

CMR referral was clinical and included a wide range of diseases conditions and 316 

severities. This heterogeneity may have increased the challenge of finding significant 317 

associations. 318 

  319 
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Conclusion 320 

In conclusion, we found that a video-based deep learning architecture using 321 

echocardiography was able to identify CMR-based WMA, but was unable to accurately 322 

identify CMR-based tissue characteristics including LGE, T1 time, T2 time, and ECV. 323 

Further testing using alternative populations and approaches should be considered. At 324 

present, our study supports the ongoing use of CMR for tissue characterization in 325 

appropriate patients, despite challenges to patient access. 326 

 327 

  328 
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Figure Captions: 426 

Graphical Abstract: Overview of the study pipeline and results. A large 427 

echocardiography dataset involving 2,566 studies from 1,453 patients paired with CMR 428 

and echocardiography within 30 days from Cedars-Sinai Medical Center was identified. 429 

A convolutional neural network with residual connections and spatiotemporal 430 

convolutions was trained to predict each CMR finding and detect abnormal findings 431 

from echocardiography. Results showed strong prediction of functional abnormalities, 432 

but poor prediction of CMR-specific tissue characterization. 433 

Figure 1. Performance of deep-learning on a held-out test dataset. 434 

Receiver-operating-characteristic (ROC) curve for predicting myocardial wall motion 435 

abnormalities and myocardial scar finding detected by CMR. A: prediction of wall 436 

motion abnormalities, B: prediction of myocardial scar. Black curves denote the 437 

performance characteristics of a deep learning model for presence of global abnormal 438 

findings. Red, blue, and green curves demonstrated the prediction of abnormal findings 439 

within A4c, A2c, and PLAX views respectively.  440 
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Supplementary Figures 441 

Supplementary Figure 1: Performance of deep-learning model on prediction of 442 

abnormalities and estimation of CMR-specific tissue composition. (A) 443 

Receiver-operating-characteristic (ROC) curve for predicting abnormal CMR findings, 444 

including native T1 value, T2 value, and extracellular volume fraction. Green curve 445 

denotes the prediction of native T1 finding ≥1060ms. Purple denotes the prediction of 446 

T2 ≥ 58ms. The orange curve denotes the prediction of ECV ≥33%. Scatterplot for 447 

predicted versus measured (B) native T1 value, (C) T2 value, and (D) ECV. 448 
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Tables 450 

Table 1:  Baseline patient characteristics, cardiac magnetic resonance and 451 

echocardiogram findings  452 
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Characteristic Unique Patients (N = 1,453)
1
 

Age, mean (SD) 56.0 (17.9) 

BMI 26.2 (8.6) 

Gender, female 607.0 (41.8%) 

Race/ethnicity  

 American Indian 8 (0.6%) 

 Asian 125 (8.6%) 

 Black 207 (14.2%) 

 Caucasian 973 (67.0%) 

 Other 140 (9.6%) 

Hypertension 548 (37.7%) 

Hyperlipidemia 414 (28.5%) 

Diabetes 240 (16.5%) 

CMR LVEF, mean (SD) (N=1,432) 49.2 (17.4) 

Native T1 (ms), mean (SD) (N=1,116) 1,020.7 (72.1) 

T2 (ms), mean (SD) (N=1,069) 48.7 (6.1) 

ECV (%), mean (SD) (N=941) 28.4 (5.7) 

Native T1 >= 1060 ms 290 (25.6%) 

T2 >= 58 ms 88 (8.2%) 

ECV >= 33% 205 (21.4%) 

Global wall motion abnormality (CMR) (N=1,405) 678 (48.3%) 
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Characteristic Unique Patients (N = 1,453)
1
 

Global scar finding (CMR) (N=1,252) 614 (49.0%) 

Total Echocardiogram studies paired with CMR 2,566 studies from 1,453 patients 

Echocardiogram LVEF, mean (SD) 48.0 (18.5) 

A4c videos  2,331 studies from 1,375 patients 

A2c videos 1,965 studies from 1,270 patients 

Plax videos 2,299 studies from 1,404 patients 

1
Mean (SD); n (%)  

CMR: Cardiac Magnetic Resonance; LVEF: Left Ventricular Ejection Fraction; BMI: 453 

Body Mass Index; ECV: Extracellular Volume; SD: Standard Deviation;  454 
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Table 2: Diagnostic accuracy of deep learning for predicting wall motion abnormalities, 455 

myocardial scar, and abnormal tissue composition by echocardiographic view 456 

 457 

Cardiac magnetic 

resonance imaging 

parameters Video AUROC 

Wall motion abnormalities   

WMA in A4c region A4c view 0.817 (0.791 – 0.843) 

WMA in A2c region A2c view 0.756 (0.707 – 0.802) 

WMA in PLAX region PLAX view 0.812 ( 0.777 – 0.847) 

 

Logistic regression using three 

views 0.873 (0.816 – 0.922)  

Myocardial scar   

Scar in A4c region A4c view 0.657 (0.620 – 0.693) 

Scar in A2c region A2c view 0.591 (0.522 – 0.650) 

Scar in PLAX region PLAX view 0.541 (0.483 – 0.594) 

 

Logistic regression using three 

views 0.699 (0.613 – 0.780) 

Relaxometry parameters   

Native T1 value (ms) A4c view 0.546 (0.497 – 0.596) 

 

A2c view 0.525 (0.479 – 0.581) 

 

PLAX view 0.518 (0.464 – 0.577) 
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Logistic regression using three 

views 0.614 (0.500 - 0.715) 

T2 value (ms) A4c view 0.521 (0.465 – 0.578) 

 

A2c view 0.539 (0.469 – 0.619) 

 

PLAX view 0.559 (0.491 – 0.692) 

 

Logistic regression using three 

views 0.553 (0.420-0.692) 

ECV fraction (%) A4c view 0.549 (0.501 – 0.599) 

 

A2c view 0.598 (0.514 – 0.680) 

 

PLAX view 0.535 (0.463 – 0.691) 

 

Logistic regression using three 

views 0.564 (0.455 - 0.691)  
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Figures: 458 

Graphical Abstract: 459 
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Figure 1: 461 
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Supplementary Figure 1: 462 
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