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Abstract 

The study of tissue microbiomes is a recent endeavor in human microbiome research, particularly 

in the area of blood microbiomes. This is primarily due to their low biomass, which presents 

inadvertent operational contamination as a significant experimental obstacle. The critical role of 

the tissue microbiomes in cancer development has brought this topic to the forefront of cancer 

research. However, a fundamental question regarding the potential biodiversity, as stated in the 

title, has not been addressed to our knowledge. In this study, we estimate the potential microbial 

diversity or “dark” biodiversity in human tumor and normal tissues using the Diversify-Area 

Relationship (DAR) method (Ma 2018, 2019) based on large datasets from TCGA (The Cancer 

Genome Atlas) database (Poore et al. 2021). We found that the total species richness (number), 

typical species equivalents (number), and dominant species equivalents (number) of tumor tissues 

are approximately 1948, 36, and 22, respectively. Among the total species richness, the proportions 

of archaea, bacteria, and viruses are about 3%-5%, 78%-79%, and 17%-18%, respectively. 

Moreover, the tissue species richness is approximately 12.5% of skin microbiomes, and 25% of 

gut microbiomes. We also found that tumor growth does not significantly influence the global or 

pan-tumor scale diversity, which means that the previous numbers also represent the potential 

microbial diversity of human tissues, including blood. On a local or single cancer-type scale, 

tumors may influence the potential diversity in approximately 5% of cases. We hypothesize that, 

globally, local diversity variations would offset each other. 
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Lay Summary 

This study focused on microbiomes - the tiny microbes that live in our tissues, especially blood. 

Studying them is challenging due to their low biomass and risk of contamination. Microbiomes 

may play a key role in cancer, but their diversity within tissues remains unclear. Using diversity-

area relationship modeling with data from "The Cancer Genome Atlas" database, we estimated the 

potential microbial diversity of human tumor and normal tissues. We found approximately 1,948 

microbial species in tumors, comprising archaea (5%), bacteria (78%) and viruses (17%). However, 

dominant or common microbial species number only about two to three dozen. Tissue microbe 

diversity was 12.5% of that found in skin microbiomes and 25% of gut microbiomes. Tumor 

growth did not significantly impact overall diversity. Therefore, the previous diversity numbers 

also represent the microbiome diversity of general human tissues and blood. However, some cancer 

types may affect it locally. While local diversity changes can occur, globally these variations 

between tissues likely balance out. 

 

Keywords: Tumor tissue microbiome; Potential or dark diversity; Diversity and heterogeneity; 

Cancers; Blood microbiome 

 

Abbreviations 

B (Blood Derived Normal)    DAR (Diversity-Area Rela6onship)  

DAR-PL (DAR Power Law)    DAR-PLEC (DAR Power Law with Exponen6al Cutoff)  

Dmax=Maximal Accrual Diversity (MAD) DDR (Diversity-Disease Rela6onship) 

DCR (Diversity-Cancer Rela6onship)   LGD (Local to Global Diversity Ra6o)  

MAD (Maximal Accrual Diversity)   p-DDR, p-DCR (popula6on-level DDR/DCR) 

PT (Primary Tumor Tissue)   RNA-Seq (RNA-Sequencing)  

SN (Solid Normal Tissue)   WGS (Whole-Genome Sequencing)  

  
Introduction 

Recent reviews have proposed that polymorphic microbial communities, also known as 

heterogeneous microbiomes, could represent an emerging cancer hallmark or enabling 

characteristic. Cancer hallmarks refer specifically to core biological capabilities that drive tumor 
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development and progression. In contrast, enabling factors facilitate the acquisition of hallmark 

abilities without being hallmarks themselves. In his 2022 synthesis review, Hanahan (2022) 

suggested phenotypic flexibility and disrupted development as potential additional hallmark 

capabilities, adding to the currently well recognized eight hallmarks that he co-proposed about a 

decade ago. He also posited that non-mutational epigenetic changes and polymorphic microbiomes 

act as distinctive enabling characteristics that help tumors develop hallmark properties. Similarly, 

Lythgoe et al (2022) directly referred to microbes as an emerging hallmark of cancer in their 2022 

review. Hanahan's distinction of microbiomes as enabling factors rather than hallmarks reflects the 

slightly different level of the recognition of the critical role of microbes in cancer research. 

Regardless of the ultimate position on the role of microbiomes in cancer development and 

progression, their critical importance has been well recognized in the recent decade. For example, 

microbiome-immune cell interactions likely influence a tumor's ability to evade immune 

destruction, one of the currently established key cancer hallmarks. Heterogeneous microbiomes 

can profoundly impact cancer phenotypes by differentially affecting hallmark processes. 

Obviously, the microbiome also contributes heterogeneity between patients (Sepich-Poore et al. 

2021).  

 

Sepich-Poore et al. (2021) discussed the role of microbes in cancer from a historical and modern 

perspective. Early studies dating back 4000 years linked cancer to microbes (Sepich-Poore et al. 

2021). One of the first clinical studies in 1868 observed tumor regressions in streptococcus-

infected patients, providing an early demonstration of immunotherapy. However, these claims 

faced reproducibility issues and toxicity concerns over the next century. While the viral theory of 

Rous sarcoma virus gained traction in 1911, decades of searching failed to find viruses causing 

human cancers. Instead, somatic mutations are now primarily linked to many cancers. Recent 

studies reconsider the importance of bacteria and fungi in cancer and immunotherapy through 

immune-mediated mechanisms (Sepich-Poore et al. 2021). The human microbiome project 

enabled large-scale metagenomic sequencing, fueling renewed interest in microbe-cancer 

relationships over the past decade. Landmark studies in 2020 (Nejman et al. 2020, Poore et al. 

2020) provided experimental and computational evidence, signifying a breakthrough in 

understanding the cancer microbiome's role and potential for improving immunotherapy. 
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Of the estimated 1012 microbial species on Earth, only 11 have been identified as human 

carcinogens (Sepich-Poore et al. 2021). Although only a small number of microbes directly cause 

cancer, many appear to promote tumor development and progression through immune-mediated 

interactions, a process known as the immuno-oncology-microbiome axis. Key questions in this 

field include the roles of microbes - whether they are causal, complicit, or merely passive 

bystanders, and the current understanding of intertumoral microbes (Sepich-Poore et al. 2021). 

This article seeks to tackle one outstanding issue, part of the open problem regarding intertumoral 

or tissue microbiomes, seemingly straightforward as indicated by the title: the diversity of 

microbial species found in human tumor and normal tissues. Our primary focus is on the overall 

diversity of microbes in human tissues, a topic that, to our knowledge, has not been previously 

explored. While comprehensive studies have been conducted on local microbial diversity, known 

as alpha-diversity, and even beta-diversity, which evaluates regional or inter-locality diversity 

(including our own studies, Ma 2024a, b), the global diversity of microbes in human tissues 

remains an uncharted territory. 

 

The challenge of estimating total or global biodiversity was first posed in the 19th century (Watson 

1835), during the era of Charles Darwin when naturalists were passionately cataloguing the flora 

and fauna of our planet. A straightforward approach might be to aggregate the data collected by 

naturalists worldwide. However, two significant issues arise with this approach. Firstly, the 

vastness of the Earth makes it impossible for naturalists to reach every location where organisms 

exist. Secondly, there may be overlapping data in the catalogues compiled by different naturalists, 

whether from the same or different regions. A potential solution to the first issue could be 

implementing effective sampling schemes, as it is neither feasible nor necessary to conduct 

exhaustive counts of species numbers, especially considering the ongoing processes of speciation 

and extinction. The second issue could be addressed through an automated algorithm designed to 

eliminate overlaps. The complexity of these issues necessitates the use of statistical or stochastic 

algorithms to handle the challenges of sampling, stochasticity, and overlap (e.g., Connor and 

McCoy 1979, Chao et al. 2014). 

 

The first attempt to estimate biodiversity was made by British plant biogeographer and evolutionist, 

Hewett Cottrell Watson (1804–1881), who introduced the concept known as the species-area 
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relationship (SAR) (Watson 1835). The SAR correlates the accumulation of species numbers (S) 

with the size of the area (A) where the species are found, using a power function (𝑆 = 𝑐𝐴!). 

Intuitively, a larger area should be inhabited by more species, or in other words, the larger the area 

a naturalist surveys or samples, the more species they should collect. For this reason, SAR is also 

referred to as the collector's (or naturalist's) accumulation curve. The SAR can be transformed into 

a linear relationship on a logarithmic scale, i.e., ln(𝑆) = ln(𝑐) + 𝑧𝑙𝑛(𝐴) , which makes the 

increasing correlation between species number and area size even more apparent. Since Watson's 

pioneering work, the SAR has been extensively and intensively studied in community ecology and 

biogeography (e.g., Preston 1962, Connor and McCoy 1979, Rosenzweig 1995, Plotkin et al. 2000, 

Ulrich & Buszko 2003, Tjørve & Tjørve 2008, Triantis et al. 2012). For instance, the SAR served 

as a foundational model for MacArthur and Wilson's (1967) island biogeography theory, which 

significantly influenced community ecology in the 1960s and 1970s. In practical terms, the SAR 

has arguably become the most critical model in conservation biology, particularly for protecting 

biodiversity and endangered species, influencing decisions such as the appropriate size of 

conservation zones for endangered species (Rosenzweig 1995). 

 

Despite its widespread applications, the classic SAR model presents two issues. The first pertains 

to the ever-increasing or decreasing nature of the power function in the SAR model, which lacks 

"saturation" points or extreme (maximum or minimum) values. Given the Earth's finite size, it's 

reasonable to argue that the number of species should also be finite. To address this issue, Plotkin 

et al. (2000) and Ulrich & Buszko (2003) introduced the power law model with exponential cutoff 

(PLEC) and power law with inverse exponential cutoff (PLIEC), both of which incorporate 

saturation points (extreme values). With PLEC or PLIEC, the SAR curve can reach saturation or 

maximums, corresponding to the maximum number of species on Earth, or alternatively, to the 

maximum number of species in a specific region, such as human tissues. 

 

The second issue associated with the classic SAR relates to the definition of biodiversity, which, 

in its simplest form, is the number of species in a region (area), known as species richness (S or 

R). The problem with this simplified definition is that it fails to account for the fact that not all 

species are equal: some are abundant (such as ants and many insects), while others are not only 

rare (e.g., pandas and tigers), but also potentially more valuable. In the context of this study, as 
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previously mentioned, only 11 microbial species have been identified as human carcinogens or 

oncomicrobes according to the International Association for Cancer Registries (IACR) (cited in 

Sepich-Poore et al. 2021). It is clear that different microbial species in human tissues have varying 

oncological significances, and our interest should lie in estimating the numbers of microbial 

species at various levels of significance. 

 

Indeed, there are numerous diversity metrics (indexes) beyond the simplest measure of species 

richness. So many, in fact, that practitioners often find themselves overwhelmed by the multitude 

of choices, lacking a solid standard to guide their proper applications (Magurran 2013, Henderson 

2021). Among these many diversity metrics, Shannon's entropy and Simpson's index are two of 

the most commonly used. It might seem that a simple substitution of species richness in the classic 

SAR with these metrics would solve the problem, but the solution is not that straightforward. 

Diversity metrics such as Shannon entropy and Simpson's index are not only incompatible with 

each other, but they also do not scale in terms of simple mathematical functions like power-law 

models. This complexity may explain why a breakthrough in this area has been elusive for a long 

time. 

 

One diversity metric that possesses such appropriate properties is the so-called Hill numbers, first 

introduced as biodiversity metrics by Hill (1973) from economics. However, it did not garner the 

attention it deserved among ecologists until its rediscovery by Chao et al. (2014), possibly due to 

the somewhat abstruse interpretations Hill (1973) used to explain its central concept of "numbers 

equivalent of elements" in economics. The accomplishment of Hill numbers is actually similar to 

linking the US dollar to gold at the rate of $35 per ounce under the Bretton Woods system, as per 

Ma & Li (2024). Hill numbers are now considered the most suitable system for biodiversity metrics, 

unifying Shannon, Simpson, and other diversity indexes. Against this backdrop, Ma (2018a, 2019) 

extended the classic SAR into the Diversity-Area Relationship (DAR) using Hill numbers, and 

also to the Diversity-Time Relationship and Diversity-Time-Area Relationship (DTAR). The 

extensions also incorporated the adoption of PLEC and PLIEC as DAR models and derivations of 

maximal accrual diversity (MAD). The MAD or Dmax essentially represents the potential diversity 

or 'dark' diversity, accounting for species that may be locally absent but exist in the regional species 
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pool (and may therefore immigrate at a certain time). In the context of this study, it means that 

MAD can account for microbial species that are absent in some individuals while present in others. 

 

With the DAR-PL and DAR-PLEC models, and leveraging a recent breakthrough in computational 

approaches to distill large datasets of tumor tissue microbiomes, we can address the question raised 

in the article title. This has been made possible thanks to the revolutionary AI-machine learning 

approach by Poore et al. (2020), who produced a substantial dataset of tissue microbiomes from 

the TCGA (The Cancer Genome Atlas) database. To enhance the robustness of our estimations, 

we employ extensive permutation tests to manage the inherent stochasticity (uncertainty). Figure 

1 and Table 1 provide a roadmap of our study. 

 

Material and Methods 

The Microbiome Dataset of Tumor Tissues and Study Design  
The cancer microbiome datasets encompass 32 different types of cancer, each represented by 

microbial samples taken from one to three sample sites: primary tumor (PT), solid normal tissue 

(SN), and blood-derived normal (B). Each disease's tissue site is considered a specific group or 

treatment, with samples collected from a cohort of patients diagnosed with the same cancer type. 

To avoid issues related to small sample sizes, groups with fewer than 15 samples were excluded 

from the analysis. This resulted in a dataset of 17,066 samples across 32 cancer types for further 

host-population level diversity analysis. It's crucial to note that all microbiome samples were 

obtained from patients with confirmed cancer diagnoses. Figure 1 sketches out the study design, 

and Table 1 provides supplementary interpretations of the design. 

Fig 1 and Table 1 about here. 
 
 
 Results  

Analysis of Tumor Microbiome Diversity Scaling  
We initially constructed tumor microbiome diversity scaling models, specifically DAR-PL 

(diversity-area relationship with power law) and DAR-PLEC (DAR with power law with 

exponential cutoff), based on Scheme-I and II as outlined in Table 1 and Figure 1, with the results 

documented in Tables S1 and S2. The tumor tissue microbiome datasets were well-fitted by all PL 
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and PLEC models, as indicated by a P-value less than 0.05 (refer to Table S1 for RNA-Seq and 

Table S2 for WGS). Besides the P-values, Tables S1 and S2 also present all DAR parameters. 

 

Comparing tissue types in their diversity scaling parameters within the same cancer type 

While Tables S1 and S2 list the DAR parameters for the RNA-Seq and WGS datasets respectively, 

Table S3 exhibits the results of permutation tests comparing different tissue types of the same 

cancer type. Specifically, it shows the P-values from tests conducted for each DAR parameter. 

 

Except for the Dmax, Amax, and LGD parameters, the differences between tumor sites in other DAR 

scaling parameters are negligible (only a few comparisons showed statistically significant 

differences). Even for Dmax, Amax, and LGD, the percentage of statistically significant 

differences generally falls below 5% (see Table S3 and Table S4). An exception was observed in 

Kidney Renal Clear Cell Carcinoma, but the differences were only around 10% in most cases. 

These findings suggest a universal diversity scaling across different microbiome sampling sites 

(tissue types). In other words, it appears that, within the same tumor type, diversity scaling 

parameters are not influenced by tumor site. This is in strong contrast with the findings from alpha-

diversity and beta-diversity, as elaborated in the discussion section. 

 

Comparing cancer types in their diversity scaling parameters for the same tissue type 

Different from the previous comparisons of different tissue types (microbiome sampling sites, e.g., 

primary tumor [PT] vs. solid normal [SN]) within the same cancer type (e.g., lung cancer) in Tables 

S3 and S4, Tables S5 and S6 exhibit the results from comparing different cancer types (e.g., lung 

cancer vs. breast cancer) for the same tissue type (e.g., PT). 

 

First, compared to the previous tests of tissue types, statistically significant differences among 

cancer types are more prevalent in terms of the RNA-Seq protocol, but less prevalent or similar to 

the previous comparisons of tissue types for the WGS protocol. In other words, the sequencing 

protocols appear to make a significant difference in this case. 

 

With the RNA-seq protocol, statistically significant differences among cancer types were 

particularly prevalent for Dmax (mostly approximately 16-34% on average). For the other scaling 
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parameters (except Dmax), statistically significant differences were more prevalent only under 

diversity order q=0 or species richness (mostly approximately 10-34% on average). For other 

diversity orders, statistically significant differences in the other scaling parameters (mostly below 

5% on average) were more prevalent than in the previous comparisons of tissue types, but less 

prevalent than in the comparisons of Dmax. 

 

Also, with the RNA-Seq protocol, statistically significant differences among cancer types appear 

to be more prevalent for primary tumor (PT) than for solid normal (SN), approximately one-third 

more prevalent. 

 

With the WGS protocol, statistically significant differences among cancer types seem to be more 

prevalent only in terms of Dmax (mostly approximately 16-40% on average) compared to the 

previous comparisons of cancer tissue types (mostly under 10%). In terms of the other scaling 

parameters, the differences are similar to the previous cases (mostly under 5%). 

 

Pan-tumor Microbiome Diversity-Scaling Analysis 
Given the nearly universal invariance in major DAR scaling parameters, especially z, it is justified 

to combine all cancer disease types, and even tissue types to analyze diversity scaling across 

cancer/tissue types. Table S7 exhibits the results of fitting the DAR-PL and DAR-PLEC models 

with all cancer types and/or tissue types combined, based on the designs of Scheme-III and IV in 

Table 1. Table 2 below excepts the key DAR parameters for convenience of illustration, with the 

combined tissue types and cancer types. We further compared the DAR parameters with 

permutation tests based on 1,000 repetitions of re-sampling, and the test results were exhibited in 

Table S8. It turned out that no statistically significant differences were detected in any of the 

comparisons (P<0.05) between different tissue types in Table S8. That is, there are no statistically 

significant differences between tumor tissue types (PT, SN, or B) in any of the DAR parameters 

for the models built based on Scheme-III and IV. In other words, on a pan-tumor basis, diversity 

scaling makes no difference between tissue types. This suggests that tumors do not significantly 

influence the total microbiomes on a pan-tumor basis or across cancer types. 
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From Table S7 and Table 2, some very interesting numbers that directly answer the question raised 

in the article title are worthy of emphasis here. Since no statistically significant differences were 

detected between tissue types, there was no need to distinguish between PT, SN and B samples to 

estimate the numbers of microbial species (microbial species richness) or MAD (maximum accrual 

diversity) in terms of the Hill numbers or species equivalents. Due to the nature of MAD, which 

is estimated from the saturation point of the DAR-PLEC curve (i.e., the diversity accumulation in 

terms of Hill numbers), the title question can be converted into how many species there are in 

human tissue microbiomes. We can depend on the total tissues (PT, SN, B) samples combined to 

estimate MAD. As to the sequencing protocols, due to potential differences in processing samples 

and computational pipelines, we do not combine their samples (results). Instead, we treat their 

estimation results as the range of MAD estimation. 

 

Figure 2 illustrates the potential microbial diversity (Dmax) of pan-tumor microbiome for each 

taxon (archaea, bacteria, or viruses) and each tissue type (primary tumor [PT], solid normal [SN], 

or blood [B]), as well as the 'Total' of combined tissue types and taxa, at different diversity orders 

(q=0, 1, 2, 3), under each sequencing protocol (WGS or RNA-Seq). The pan-tumor microbiome 

concept means that the DAR model is built across cancer types—the microbiomes of all cancer 

types are combined as the microbial landscape. Therefore, Fig 2 actually shows the potential 

diversity at the largest pan-tumor scale of tissue microbiomes across all cancer types, including 

the 'Total' that also combined the tissue types besides cancer types. Given the lack of statistically 

significant differences between tissue types and the saturation nature of Dmax estimation, Figure 2 

also illustrates the potential diversity of human tissue microbiomes (the last bar in purple). 

 

After the previous rational simplification, from Table S7 we conclude that the species richness 

(q=0) or the total number of tissue microbial species is between 1946 (estimated from RNA 

samples) to 1948 (estimated from WGS samples), which are rather close to each other and 

demonstrate the robustness of the Poore et al. (2020) TCGA datasets used in this study. The 

categorical breakdown of species richness for taxa are archaea between 102 (WGS) and 103 (RNA), 

bacteria between 1528 (RNA-Seq) and 1536 (WGS), and viruses between 330 (RNA-Seq) and 368 

(WGS). Except for viruses, the numbers from both sequencing protocols are rather close and their 

differences are negligible. 
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For diversity order q=1, or the number of species equivalents of typical abundances, the numbers 

are between 21 (WGS) to 36 (RNA-Seq) or 26 on average across protocols and tissue types. The 

taxa breakdowns of typical species are archaea between 2.7 (WGS) and 6.5 (RNA-Seq), bacteria 

21 (WGS) and 37 (RNA-Seq), and viruses between 20 (RNA-Seq) and 26 (WGS). 

 

For diversity order q=2, or the number of species equivalents of dominant abundances, the 

numbers are between 21 (WGS) and 22 (RNA-Seq). The taxa breakdowns of dominant species are 

archaea between 2 (WGS) and 4 (RNA-Seq), bacteria between 9 (WGS) and 22 (RNA-Seq), and 

viruses between 9 (RNA-Seq) and 11 (WGS). 

 

  
Conclusions and Discussion 

Regarding the diversity-scaling analysis of the tumor microbiomes, the previous findings can be 

summarized in the following main conclusions. Except for Dmax, the diversity scaling parameters 

are generally not significantly different between tissue types and among cancer types (except for 

q=0 or species richness with RNA-Seq). For Dmax, on average, the differences among tissue types 

are around 5%, and around 25% (16%-34%) among cancer types. Additionally, the differences in 

Dmax among cancer types also vary in terms of sequencing protocol (RNA-Seq < WGS) and tissue 

types (PT > SN). 

 

This level of diversity analysis performed for tumor microbiomes summarized here mirrors the 

population-level diversity-disease relationship (DDR) previously reported by Li and Ma (2021), 

in which they found, based on the analysis of 23 microbiome-associated diseases, that the 

population-level DDR or p-DDR was only significant in approximately 5% of cases for the 

parameter Dmax, and was insignificant for other DAR parameters. A significant relationship means 

that the parameters are different between the disease and health states, or between PT and SN or 

between PT and B. On this point, both the diversity-cancer relationship (DCR) and general DDR 

at the host population level show the same pattern—virtually all major DAR scaling parameters 

are invariant (especially z) except for Dmax, which is variable in approximately 5% of cases. Note 

that the p-DDR or p-DCR are different from DDR/DCR at the individual host level, or microbial 
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alpha-diversity level, where Ma et al. (2019) found that the DDR relationships were significant in 

approximately 1/3 of the cases they studied. Both studies analyzed the same datasets of 23 

microbiome-associated diseases but generated different results. Li and Ma (2021) postulated that 

it should be the mutual cancellations of individual-level DDR differences (ups and downs) that 

generated the 'flat' or insignificant scaling parameters at the host population level. Here, we believe 

that the findings on p-DCR in this study simply cast supportive evidence on that previous 

hypothesis—that mutual cancellations of the ups and downs at the individual host level differences 

are responsible for the general lack of differences at the host population level. 

 

In this study, our p-DDR level analysis goes beyond single disease or single cancer type; instead, 

our diversity-scaling analyses were performed at the individual cancer type level (for comparing 

different tissue types such as PT vs. SN or B) and at the pan-tumor level (across cancer types for 

comparing different cancer types such as lung vs. breast cancer), respectively. This pan-disease 

analysis was not performed in previous studies by Li & Ma (2021) and Ma et al. (2019) because 

those microbiome datasets were not from single tissue types—instead they included rather 

heterogeneous samples from gut, oral, skin, and vaginal microbiomes. In this study, all 

microbiomes were from human tissues or blood. Although we consider the tissue microbiome 

samples to be more homogeneous than those analyzed in the previous studies (Ma et al. 2019, Li 

& Ma 2021), there should still be a certain level of heterogeneity among different tissue types. We 

postulate that the relatively larger Dmax differences (around 25%) at the pan-tumor level among 

cancer types, compared to approximately 5% difference at the tumor level, should be attributed to 

the heterogeneity among different cancer types including different tissues such as lung versus 

breast tissues. 

 

Given the general lack of differences in major scaling parameters, especially z, at the pan-tumor 

level analysis, we further built pan-tumor DAR models (Table S7) by combining all disease types. 

Further tests (Table S8) of the pan-tumor population DAR models (pp-DAR models) revealed no 

significant differences between tissue types (PT, SN, or B), which prompted us to further build pp-

DAR models by combining tissue types (Tables S7 & S8). In Table S7 and Table 2 (summary 

version), we show that the total species richness, typical species equivalents, and dominant species 

equivalents of human tissues including blood are approximately 1948, 36, and 22, respectively. 
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Among the total numbers, the proportions of archaea, bacteria, and viruses are about 5%, 78%, 

and 17%, respectively, in terms of RNA-Seq. The proportions are slightly higher (about 1%) for 

bacteria and viruses in terms of the WGS protocol, and that for archaea would be approximately 

3% only. 

 

To the best of our knowledge, there is no existing study that has estimated the total (gamma) 

microbial diversity at the host population level for tumor tissue microbiomes, or actually for any 

human tissue microbiomes. Since no significant differences were detected between tumor tissues 

and solid normal tissues (or even blood-derived normal), our results with combined cancer types 

and tissue types can be considered an estimate of gamma diversity of the human tissue microbiome. 

Although no similar estimates exist for human tissues, there were similar estimates for non-tissue 

human microbiomes. In fact, the development of the DAR modeling method extending the classic 

SAR (species-area relationship) was demonstrated with Human Microbiome Project (HMP) 

datasets (HMP Consortium 2012; Ma 2018a, 2018b, 2019). We choose two human microbiome 

sites, skin and gut (stool), to compare with the tissue microbiome. For species richness (q=0), the 

total species in the tissue microbiome is approximately 1⁄4 (25%) of the gut microbiome (7706) 

and 1/8 (12.5%) of the skin microbiome (16206). For the number of typical species (q=1), the 

number of typical species equivalents in tissue microbiomes is 3.5% of gut microbiomes (1020), 

and 6% of skin microbiomes (605). For the number of dominant species (q=2), the number of 

dominant species equivalents is 8% of the gut microbiome (272), and 40% of the skin microbiome 

(55). The higher similarity between tissue and skin microbiomes than between tissue and gut 

microbiome in terms of dominant species equivalents is somewhat puzzling and deserves further 

investigation, given that one is 'internal' and another is 'external' and therefore should be dissimilar. 

In contrast, for the total species number, the tissue microbiome is indeed more similar to the gut 

microbiome than to the skin microbiome. Note that our comparisons here are purely based on 

numbers of species, rather than on compositional comparisons. It is likely that the comparisons are 

not very informative and instead simply offer relative numbers of species equivalents. 
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Table 1. Brief description of the major elements of the study design 

Elements of 
Study Design Descriptions 

Grouping 
(Treatments)  
of Samples 

2 Sequencing Protocols (RNA-Seq and WGS)  
32 Cancer Types (Cancer Diseases or Kinds)  
3 Microbial Taxa (archaea, bacteria and viruses) and the ‘Total’ samples of the three taxa. 
3 Tissue Types or Microbiome Sampling Sites (MSS): Solid normal tissue (SN), Primary 
tumor (PT), and Blood derived normal (B); all from diagnosed cancer patients. 

DAR (Diversity-
Area Relationship) 
Models (Ma 2018a, 
2019).  

DAR-PL (DAR Power Law) model: 𝐷 = 𝑐𝐴!, where D is the diversity in Hill numbers, 
and A is the area size (e.g., number of samples or individuals). 

DAR-PLEC (DAR Power Law with Exponential Cutoff): 𝐷 = 𝑐𝐴!exp	(𝑑𝐴) 

Schemes for DAR 
Model-Building：
Scheme-I and II 
are tumor or local 
scale DAR, and 
Scheme-III & IV 
are pan-tumor or 
global scale DAR.  

(i) Scheme-I: the combinations of Sequencing Protocol ´ Cancer Types´ Taxa ´ Tissue 
Types (270 DAR models). That is, one DAR model is built for each taxon at teach 
sampling site for each cancer types with each sequencing protocol.  
(ii) Scheme-II: the combinations of Sequencing Protocol ´ Cancer Types ´ Tissue Types 
(i.e., all three taxa were combined, noted as “Total”) (86 DAR models). The scheme is the 
same as Scheme-I except that the ‘taxon’ is replaced with the ‘Total’ of the three taxa.   
(iii) Scheme-III: the combinations of Sequencing Protocol ´ Tissue Types ´ Taxa (i.e., all 
32 disease kinds combined) (15 DAR models). This scheme is for each taxon at each site 
under each protocol with all cancer types combined.  
(iv) Scheme-IV for Building DAR: Sequencing Protocol ´ Taxa (i.e., all tissue types and all 
32 disease kinds combined). This scheme is the same as scheme-III, except that all tissue 
types are combined. In addition, DAR models were also built by combining all taxa besides 
combining all cancer types and tissue types, i.e., one DAR model for all datasets of the WGS 
and another for RNA-Seq.  

Pair-wise 
Comparisons with 
Permutation Tests  

Tissue Type Comparison: This involves a comparison of DAR parameters of different 
tissue types (i.e., a pairwise comparison of PT vs. SN vs. B) for each cancer type. It's 
important to note that the sequencing protocol and microbial taxon remained constant for 
each comparison, and a percentage was calculated for each cancer type, resulting in 148 
comparisons. These tests aim to determine whether there are significant differences in DAR 
parameters between PT and NT or between PT and B. In simpler terms, they seek to 
establish whether a tumor significantly impacts DAR scaling. 
Cancer Type Comparison: This process involves comparing the DAR parameters across 
different cancer types for each tissue type. It's crucial to note that the sequencing protocol 
and microbial taxon remained consistent in each comparison, with a percentage being 
calculated for each disease type. This approach is the inverse of the previous site 
comparison, resulting in a total of 3,928 comparisons. 

Estimation of 
Maximal Accrual 
Diversity (MAD) 
Profile Ma (2018a, 
2019) 

Estimating the MAD for Each Tissue Type and the ‘Total’ of Combined Tissue Types: 
This process involves combining all samples from the same tissue type across all cancer 
types for each sequencing protocol and each taxon and fitting them to the PLEC (power law 
with exponential cutoff) model. This is done to estimate the MAD for B, SN, and PT, 
respectively. Furthermore, we also built and estimated the corresponding MAD by 
combining all cancer types from all tissue types.  Essentially, this procedure calculates the 
total or global microbial diversity at the host population level. 
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Table 2. The DAR modeling parameters from the combined datasets of all tissue types and cancer 
types, for each of the three taxa (Archaea, Bacteria, and Viruses) under each sequencing protocol 
(RNA-Seq or WGS), excerpted from Table S7.  
Sequencing 

Protocol Taxon Diversity 
Order 

Power Law (PL) PL with Exponential Cutoff (PLEC) 

z ln(c) z d ln(c) Amax Dmax LGD (%) 

RNA-seq 

Archaea 

q = 0 0.011 4.53 0.031 0 4.398 4920 102.9 90.2 

q = 1 0.001 1.857 0.003 0 1.844 5942 6.5 99.3 

q = 2 -0.002 1.265 -0.006 0 1.292 6173 3.5 103.2 

q = 3 -0.003 1.055 -0.01 0 1.096 6778 2.8 104.4 

Bacteria 

q = 0 0.003 7.304 0.009 0 7.264 4729 1528.3 97.2 

q = 1 0.029 3.335 0.063 0 3.113 7399 36.6 77.2 

q = 2 0.041 2.699 0.092 0 2.375 6748 21.8 69.8 

q = 3 0.043 2.462 0.099 0 2.104 6486 17.5 68.7 

Viruses  

q = 0 0.138 4.472 0.16 0 4.331 29269 329.6 26.7 

q = 1 0.026 2.731 0.056 0 2.539 8821 19.6 88.9 

q = 2 0.038 1.857 0.07 0 1.663 13539 9.2 88.7 

q = 3 0.038 1.562 0.066 0 1.388 10355 6.8 87.9 

WGS 

Archaea 

q = 0 0.014 4.521 0.037 0 4.397 1730 102.9 89.4 

q = 1 -0.001 1.015 -0.004 0 1.028 2962 2.7 101.4 

q = 2 -0.002 0.546 -0.006 0 0.567 2449 1.7 102.1 

q = 3 -0.002 0.433 -0.005 0 0.452 2707 1.5 102 

Bacteria 

q = 0 0.007 7.273 0.021 0 7.199 1684 1532.6 94 

q = 1 0.013 2.913 0.028 0 2.837 4431 20.6 90.1 

q = 2 0.004 2.128 0.016 0 2.059 2766 8.7 95.8 

q = 3 0.002 1.887 0.011 0 1.837 6325 6.7 98.3 

Viruses  

q = 0 0.136 4.669 0.15 0 4.595 99977 367.6 29.6 

q = 1 0.034 2.982 0.043 0 2.94 2991 25.8 81.4 

q = 2 0.049 2.028 0.065 0 1.952 3418 11.2 73.4 

q = 3 0.046 1.67 0.069 0 1.559 11039 7.8 73.3 

Range across 
RNA-WGS 
protocols  

Archaea 

q = 0 0.04±0.014 4.375±0.08
1 0.08±0.023 0±0 4.207±0.1 1921±751 102.2±0.5 79.2±5.4 

q = 1 0.002±0.003 1.354±0.17
8 

0.003±0.00
7 0±0 1.351±0.17 3673±1547 4.4±0.9 99.5±1.8 

q = 2 0±0.003 0.861±0.16
1 0.003±0 0±0 0.879±0.157 25828±237

76 2.6±0.5 101.8±1.2 

q = 3 0±0 0.72±0.147 -0.003±0 0±0 0.746±0.147 3193±1124 2.2±0.4 103.1±0.6 

Bacteria 

q = 0 0.019±0.008 7.216±0.03
6 

0.046±0.01
6 0±0 7.114±0.057 1826±728 1535.9±2.9 89.1±3.2 

q = 1 0.034±0.01 2.952±0.1 0.055±0.01
1 0±0 2.843±0.069 3889±1133 25.7±3.2 81.2±3.8 

q = 2 0.042±0.022 2.192±0.13
2 

0.069±0.02
5 0±0 2.055±0.086 2975±1052 13.5±2.5 79.7±7.3 

q = 3 0.043±0.025 1.945±0.13
9 0.071±0.03 0±0 1.806±0.089 3498±1078 10.7±2.0 80.1±8.1 

Viruses  

q = 0 0.14±0.002 4.556±0.04
8 

0.161±0.00
5 0±0 4.461±0.063 28480±127

58 310.1±24.3 32.3±2.7 

q = 1 0.021±0.008 2.898±0.04
9 

0.015±0.02
3 0±0 2.886±0.11 3803±1713 21.8±1.3 99.6±10.7 

q = 2 0.021±0.021 2.024±0.07 0.018±0.03 0±0 1.986±0.124 3839±1820 9.4±0.5 105.0±19.4 

q = 3 0.016±0.024 1.711±0.08
7 

0.022±0.02
6 0±0 1.641±0.102 4916±1740 6.686±0.3 105.0±19.3 
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Fig 1. A diagram for illustrating the study design and its relationships with previous foundations 
works (also see Table 1 for the supplementary interpretations on the design). Legends for the 
equations: qD is the diversity in Hill numbers at diversity order q=0, 1, 2, 3; A is the ‘area’ size 
(e.g., the number of samples or individuals); qDmax is the MAD (maximal accrual diversity) of 
diversity order q, the so-termed potential or ‘dark’ diversity, which includes both local species and 
species that are absent locally but present in regional species pool.    

RNA-SeqWGS

SN (Solid 
Normal Tissue)

PT (Primary 
Tumor Tissue)

B (Blood 
Derived Normal) 

Archaea Bacteria Viruses

32 Cancer Types (Diseases) from TCGA Database 

!! = #$"exp	(*$)
DAR-PLEC ModelDAR-PL Model

!! = #$"

ln(D)=ln(c)+z ln(A)

g=2-2"

!! #$% = #$#$%" exp	(−.)

/0!! = #! / !! #$%

AI Machine Learning Supported Bioinformatics Pipeline to Generate OTU 
Tables for the following taxa and their combined ‘Total’ (Poore et al. 2021)  

‘Total’

DAR Models and Potential Diversity Estimation (Ma 2018, 2019) 

Building DAR Models for various combinations (Schemes I-IV) 
of taxa, tissue types, cancer types, and sequencing protocols

Permutation Tests for the differences in DAR-scaling between 
tissue types, cancer types on tumor and pan-tumor scales

Estimate the potential microbial diversity of tumor tissues 
on local (each cancer type) and global (pan-tumor across all 

cancers) population scales and further. Further infer the 
potential microbial diversity of human tissues and compare 

with those of the human gut and skin microbiomes
See Table 1 for the detailed design including Schemes (I-IV) This Study:
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Fig 2. The potential microbial diversity (Dmax) of pan-tumor microbiome for each taxon (archaea, 
bacteria, or viruses) and each tissue type (PT, SN, or B), as well as the ‘Total’ of combined tissue 
types and taxa, at different diversity order (q=0, 1, 2, 3), under each sequencing protocol (WGS or 
RNA-Seq). The pan-tumor microbiome concept means that the DAR model is built across cancer 
types—the microbiomes of all cancer types are combined as the microbial landscape and the DAR 
models were built on the landscape (pan-tumor scale). Given the lack of statistically significant 
differences between tissue types and the saturation nature of Dmax estimation, the last bar (in purple) 
represents the potential diversity of the human tissue microbiomes. 
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