Dissecting Schizophrenia Biology Using Pleiotropy with Cognitive Genomics

¹Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY

² Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY

Upasana Bhattacharyya*^{1,2}, Jibin John*^{1,2}, Todd Lencz^{31,2,3}, Max Lam^{31,4,3}
¹Institute of Behavioral Science, Feinstein Institutes for Medical Research
²Division of Psychiatry Research, Zucker Hillside Hospital, Invision of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY
Departments of Psychiatry and Molecular Medicine, Zucker School of Medicine at Hofstra
Hempstead, NY
Institute of Mental Health, Singapore Departments of Psychiatry and Molecular Medicine, Zucker School of Mempstead, NY
Institute of Mental Health, Singapore
Lee Kong Chian School of Medicine, Population and Global Health, Nany Ĭ Hempstead, NY
Institute of Mental Health, Singapore
Lee Kong Chian School of Medicine, Population and Global Health, Nanyang Technological University

Hempstead, NY
⁴Institute of Mer
⁵Lee Kong Chian T,

Institute of Mental Health, Singapore
Iee Kong Chian School of Medicine, Pi
These authors contributed equally \overline{a}

Let Kong Chian School of Medicine, Population and Global Health, Nanyang Technological University
These authors contributed equally
These authors contributed equally $\ddot{\text{s}}$

^{\$}These authors contributed equally
Corresponding Authors: <u>tlencz@nor</u>
These authors authors: tlencz@nor [§]These authors contributed equally

These authors contributed equally Corresponding Authors: tlencz@northwell.edu; max.lam@ntu.edu.sg

Abstract

logical pathways underlying these loci has become a priority for the field. We have previously
ed the pleiotropic genetic relationships between schizophrenia and two cognitive phenotypes
ional attainment and cognitive task leveraged the pleiotropic genetic relationships between schizophrenia and two cognitive phenotypes
(educational attainment and cognitive task performance) to differentiate two subsets of illness-
relevant SNPs: (1) those w (educational attainment and cognitive task performance) to differentiate two subsets of illness-
relevant SNPs: (1) those with "concordant" alleles, which are associated with reduced cognitive
ability/education and increas Optimal test (PLEIO). Our pleiotropic meta-analysis of schizophrenia and the two cognitive phenotypes
revealed 768 significant loci (159 novel). Among these, 347 loci harbored concordant SNPs, 270 relevant SNPs: (1) those with "concordant" alleles, which are associated with reduced cognitive
ability/education and increased schizophrenia risk; and (2) those with "discordant" alleles linked to
reduced educational and/ reduced educational and/or cognitive levels but lower schizophrenia susceptibility. In the present
study, we extend our prior work, utilizing larger input GWAS datasets and a more powerful statistic:
approach to pleiotropi study, we extend our prior work, utilizing larger input GWAS datasets and a more powerful statistic
approach to pleiotropic meta-analysis, the Pleiotropic Locus Exploration and Interpretation using
Optimal test (PLEIO). Ou approach to pleiotropic meta-analysis, the Pleiotropic Locus Exploration and Interpretation using
Optimal test (PLEIO). Our pleiotropic meta-analysis of schizophrenia and the two cognitive phenotype
revealed 768 significan Coptimal test (PLEIO). Our pleiotropic meta-analysis of schizophrenia and the two cognitive phenomorevealed 768 significant loci (159 novel). Among these, 347 loci harbored concordant SNPs, 270
encompassed discordant SNPs, The second of the significant loci (159 novel). Among these, 347 loci harbored concordant SNPs, 270
encompassed discordant SNPs, and 151 "dual" loci contained concordant and discordant SNPs.
Competitive gene-set analysis u encompassed discordant SNPs, and 151 "dual" loci contained concordant and discordant SNPs.
Competitive gene-set analysis using MAGMA related concordant SNP loci with neurodevelopme
pathways (e.g., neurogenesis), whereas di Competitive gene-set analysis using MAGMA related concordant SNP loci with neurodevelopme
pathways (e.g., neurogenesis), whereas discordant loci were associated with mature neuronal s
functions. These distinctions were als Pathways (e.g., neurogenesis), whereas discordant loci were associated with mature neuronal synap
functions. These distinctions were also observed in BrainSpan analysis of temporal enrichment
patterns across developmental pathways (e.g., neurogenesity), interests and some also absent the paints of temporal enrichment patterns across developmental periods, with concordant loci containing more prenatally expressed genes than discordant loci. functions. These distinctions were also observed in BrainSpan analysis of temporal enrichment
patterns across developmental periods, with concordant loci containing more prenatally expressed
genes than discordant loci. Dua patterns across than discordant loci. Dual loci were enriched for genes related to mRNA translation initiation,
representing a novel finding in the schizophrenia literature.
Keywords: schizophrenia, cognition, educational peresenting a novel finding in the schizophrenia literature.
Keywords: schizophrenia, cognition, educational attainment, GWAS, pleiotropy
Neywords: schizophrenia, cognition, educational attainment, GWAS, pleiotropy

Keywords: schizophrenia, cognition, educational attainment, GWAS, pleiotropy Keywords: schizophrenia, cognition, educational attainment, GWAS, pleiotropy

Schift is a contributing significantly to the worldwide burden of disease¹. Over the past decade,
E-wide association studies (GWAS) have identified many genomic loci associated with
hrenia, revealing its heterogeneous a population, contributing significantly to the worldwide burden of disease⁴. Over the past decade,
genome-wide association studies (GWAS) have identified many genomic loci associated with
schizophrenia, revealing its hete schizophrenia, revealing its heterogeneous and multifaceted nature^{2–6}. However, gleaning bio
insights from GWAS results has proven challenging, with downstream analyses pointing broad
neuronal and synaptic mechanisms wit schizophrenia, revealing its heterogeneous and multifaceted nature² °. However, gleaning biological
insights from GWAS results has proven challenging, with downstream analyses pointing broadly towa
neuronal and synaptic insights from CMM CMM MATCH MATHONG, MIN ACTIVE CHALLENDING (POMAG) CONDITED AND previously considered and synaptic mechanisms without clear mechanistic differentiation^{2,4,7}. Pleiotropic analyses, combining GWAS of schiz neuronal and synaptic mechanisms without clear mechanistic differentiation^{2,4,7}'. Pleiotropic analyses,
combining GWAS of schizophrenia with other genetically correlated forms of psychopathology, have
boosted the power o boosted the power of gene set enrichment analyses; such studies have implicated a range of
neurodevelopmental, synaptic, and other molecular pathways^{8,9} but have not adequately parsed the
association of individual pathwa boosted the power of gene set enrichment analyses; such statics have not adequately par
heurodevelopmental, synaptic, and other molecular pathways^{8,9} but have not adequately par
association of individual pathways with sp

neurodevelopmental, synaptic, and other molecular pathways^{9,9} but have not adequately parsed the
association of individual pathways with specific phenotypic features.
In two recent studies^{10,11}, we have demonstrated th associated that pleiotron in two recent studies^{10,11}, we have demonstrated that pleiotron and the specific phenotypic features.
Associated with specific phenotypic features.
Associated with specific phenotypic features. In two recent studies^{20,11}, we have demonstrated that pleiotropic analysis of schizophrenia
with cognitive endophenotypes may permit well-powered, fine-grained, mechanistic
tiation of molecular pathways associated with s differentiation of molecular pathways associated with specific phenotypic constellations. Im
cognitive ability is a core dimension of schizophrenia pathology¹²; cognitive deficits often en
frequently preceding schizophre cognitive ability is a core dimension of schizophrenia pathology¹²; cognitive deficits often emerge e
frequently preceding schizophrenia's onset by years and contributing to diminished functional
outcomes, including educ cognitive ability is a core dimension of schizophrenia pathology**; cognitive deficits often emerge early,
frequently preceding schizophrenia's onset by years and contributing to diminished functional
outcomes, including e frequently preceding schizophrenia's onset by years and contributing to diminished functional
outcomes, including educational attainment¹³. Moreover, recent GWAS of cognition and educa
attainment demonstrate significant outcomes, including educational attainment¹³. Moreover, recent GWAS of cognition and educational
attainment demonstrate significant overlap with schizophrenia risk loci^{10,14–17}. However, genetic
correlation analyses re attainment demonstrate significant overlap with schizophrenia risk loci^{+0,14–1}'. However, genetic
correlation analyses reveal a nuanced relationship between cognitive function, educational attail
and schizophrenia risk. and schizophrenia risk. While there is a significant negative genetic correlation between reduced
cognitive function and increased schizophrenia susceptibility ($r_g \approx -0.20$), there exists a paradoxical,
positive genetic c cognitive function and increased schizophrenia susceptibility (r_g \approx –0.20), there exists a paradoxic
positive genetic correlation between greater educational attainment and schizophrenia risk (r_g \approx 0
despite a s positive genetic correlation between greater educational attainment and schizophrenia risk (r_g ≈ 0.1
despite a strong genetic overlap between educational attainment and cognitive ability (r_g ≈ 0.70). positive generic correlation between educational attainment and cognitive ability ($r_g \approx 0.70$), despite a strong genetic overlap between educational attainment and cognitive ability ($r_g \approx 0.70$), despite a strong genetic overlap between educational attainment and cognitive ability (rg ≈ 0.70).

Thus, while the two can be exploited in pleiotropic analyses of
threnia. In our previous work^{10,11}, we identified two distinct subsets of schizophrenia-re
loci: those with "concordant" alleles that align with expectatio schizophrenia. In our previous work 10,11 , we identified two distinct subsets of schizophrenia-
genetic loci: those with "concordant" alleles that align with expectations—lower cognition/e
and increased illness risk—an genetic loci: those with "concordant" alleles that align with expectations-lower cognition/education and increased illness risk—and "discordant" SNPs that show higher educational attainment and/or
cognitive ability alongside greater schizophrenia susceptibility. This distinction is obscured when
pleiotropy is examined gl cognitive ability alongside greater schizophrenia susceptibility. This distinction is obscured when
pleiotropy is examined globally, using only genomewide correlational analysis (r_g). Downstream
analyses of concordant l pleiotropy is examined globally, using only genomewide correlational analysis (r_g). Downstream
analyses of concordant loci implicated neurodevelopmental pathways in schizophrenia, while
discordant loci were associated wi pleases of concordant loci implicated neurodevelopmental pathways in schizophrenia, while
discordant loci were associated with postnatally expressed synaptic mechanisms underlying the
disorder. discordant loci were associated with postnatally expressed synaptic mechanisms underlying the
discordant loci were associated with postnatally expressed synaptic mechanisms underlying the
disorder. disorder.
The present study was designed to replicate and extend our prior pleiotropic meta-analysis,

utilizing substantially larger input GWAS for schizophrenia, cognitive task performance, and $\begin{array}{c} \n\frac{1}{2} & \frac{1}{2} \\ \n\frac{1}{2} & \frac{1}{$ The present study and the present study is understood to replice the present study is understanding to replicate and total attainment than were available in our prior report¹⁰. Moreover, in the current varion, we applied utilizing substantially larger input GWAS for statistic margins larger interpretational attainment than were available in our prior report¹⁰. Moreover, in the current investigation, we applied a novel, more powerful meta educational attainment than were available in our prior report²⁰. Moreover, in the current
investigation, we applied a novel, more powerful meta-analytic approach to pleiotropy, the
Locus Exploration and Interpretation u Increases Exploration, and Interpretation using Optimal test' (PLEIO)¹⁸. This methodology permits a direct assessment of the directional associations among these phenotypes. Based on our prior report, we anticipate the i Locus Exploration and Interpretation using Optimal test' (PLEIO)²⁰. This methodology permits a direct
assessment of the directional associations among these phenotypes. Based on our prior report, we
anticipate the identi anticipate the identification of novel loci previously unreported in discovery GWAS datasets.
Additionally, post-GWAS annotation of these pleiotropically identified loci is expected to extend
beyond neurodevelopmental and Additionally, post-GWAS annotation of these pleiotropically identified loci is expected to exte
beyond neurodevelopmental and synaptic pathways, offering deeper insights into the biologi
mechanisms underpinning these assoc beyond neurodevelopmental and synaptic pathways, offering deeper insights into the biological
mechanisms underpinning these associations (Figure 1). beyond the sympath and sympathy $\frac{1}{2}$ of $\frac{1}{2}$ of $\frac{1}{2}$ of the biological mechanisms underpinning these associations (Figure 1). mechanisms underpinning these associations (Figure 1).

4

Building on previous findings, our current study integrates the latest GWAS on schizophrenia

(N= 53,386 cases and 77,258 controls; GWAS mean χ^2 =2.0126; total SNPs = 7,659,767)², and cognitive

function (N=373,617; (N= 53,386 cases and 77,258 controls; GWAS mean χ^2 =2.0126; total SNPs = 7,659,767)², and cognitive
function (N=373,617; GWAS mean χ^2 =2.11; total SNPs = 8,050,310)¹¹ to deepen our understanding of
its genetic function (N=373,617; GWAS mean χ^2 =2.11; total SNPs = 8,050,310)¹¹ to deepen our understanding of
its genetic underpinnings. We chose to utilize the educational attainment data set from Lee et al., 201
(N=766,345; m its general of N=766,345; mean GWAS χ^2 =2.647; total SNPs=10,101,242)¹⁹, rather than the most recent study of
3M individuals²⁰, which could potentially introduce bias into our pleiotropy analyses due to imbalance
3 >3M individuals²⁰, which could potentially introduce bias into our pleiotropy analyses due to imbalance
in sample size and power relative to the schizophrenia and cognitive GWASs. All the GWASs used here
are generated fr in sample size and power relative to the schizophrenia and cognitive GWASs. All the GWASs used here

In the current study, we applied rigorous quality control (QC) to each set of summary statistics are generated from populations of European ances by

In the current study, we applied rigorous quality

utilizing the MungeSumstat tool²¹, which we have optir $\frac{1}{2}$ In the current study, which we have optimized as a Python wrapper (accessible via

In the MungeSumstat tool²¹, which we have optimized as a Python wrapper (accessible via

In the employed the default QC parameters of Mu GitHub). We employed the default QC parameters of MungeSumstats²¹, which include removing non-
biallelic SNPs and strand-ambiguous SNPs, ensuring consistent direction of reported SNP effects, and
ensuring that all varian GitHub). We employed the default QC parameters of MungeSumstats²¹, which include removing non-
biallelic SNPs and strand-ambiguous SNPs, ensuring consistent direction of reported SNP effects, and
ensuring that all varian bialtelic SNPs and statistic SNPs and stranged and for standard errors. These QC procedures
resulted in the retention of 6,803,445 SNPs common to all three phenotypes, with INFO scores greate
than 0.3 and minor allele freq ensuring that all variants have non-zero effect sizes and/or standard errors. These QC procedures
resulted in the retention of 6,803,445 SNPs common to all three phenotypes, with INFO scores gre
than 0.3 and minor allele f than 0.3 and minor allele frequencies above 0.01 (See Supplementary Information).
Two core considerations guided our approach to pleiotropic meta-analysis across the three

than 1.3 and minor allele frequencies above 1.3 and projectionally information).
Two core considerations guided our approach to pleiotropic meta-analysis ac
GWAS summary statistics: (i) We required a method that can accoun $\begin{array}{c}\n\frac{1}{2} \\
\frac{1}{2} \\
\frac{1$ GWAS summary statistics: (i) We required a method that can account for cryptic sample overlap ac
GWAS to prevent statistical inflation during meta-analytic procedures; and (ii) we required an appro
that could account for S GWAS to prevent statistical inflation during meta-analytic procedures; and (ii) we required an approach
that could account for SNPs with allelic effects of opposite signs across phenotypes, as our primary aim
was to identi that could account for SNPs with allelic effects of opposite signs across phenotypes, as our primary aim
was to identify "Discordant" as well as "Concordant" SNPs. To our knowledge, only two methods exist
was to identify " that count account for SNPs in SNPs with alleling across phenotypes, as our primary and
was to identify "Discordant" as well as "Concordant" SNPs. To our knowledge, only two methods exist
5 was to identify "Discordant" as well as well as well as well as \mathcal{C}_0 , \mathcal{C}_1 , \mathcal{C}_2 , \mathcal{C}_3 , \mathcal{C}_4

that adequately support study objectives: ASSET (Association analysis based on subsets)²² and PLEIO
(Pleiotropic Locus Exploration and Interpretation using Optimal test)¹⁸. PLEIO overcomes limitations
associated with f (Pleiotropic Locus Exploration and Interpretation using Optimal test)¹⁹. PLEIO overcomes limitations
associated with fixed-effect model approaches by employing a random-effect model to capture gene
correlations and herit correlations and heritabilities across trait pairs¹⁸. Relative to ASSET, PLEIO is more computationally
efficient and provides greater power in simulations across a range of different heritabilities¹⁸. Linkage
disequili efficient and provides greater power in simulations across a range of different heritabilities¹⁸. Linkage
disequilibrium score regression (LDSC) implemented within PLEIO estimates genetic covariance and
environmental cor disequilibrium score regression (LDSC) implemented within PLEIO estimates genetic covariance and

Consistent with our earlier study, we reversed the effect direction per variant for schizophrenia Consistent with our earlier study, we reversed the effect direction per variant for s
to align with the interpretation of allelic effects on cognition and education¹⁰; in other wo $\frac{1}{2}$ with the interpretation of allelic effects on cognition and education¹⁰; in other words,
sed risk for schizophrenia was coded by positive allelic effects, just as higher scores on cognitive
rformance and educational atta to align with the interpretation of allelic effects on cognition and education¹⁰; in other words,
decreased risk for schizophrenia was coded by positive allelic effects, just as higher scores on (
task performance and ed decreased risk for schizophrenia was consider and ansied therein, yield as in our school can take the explanation
task performance and educational attainment are coded with positive allelic effects. By applying PLEIO,
we i the state of variants, concordant and discordant, defined as in our prior study⁸. In the
notation that follows, the symbol **a** indicates variant subsets with the same effect direction across the
traits, and the symbol | we identified two subsets of variants, concordant and discordant, defined as in our prior study^o. In the notation that follows, the symbol **a** indicates variant subsets with the same effect direction across the traits, a notation that follows, the symbol $|$ represents traits whose effect sizes exhibit the opposite direction compared to
the other two traits. Thus, the concordant subset includes variants with the same effect direction (i.e. the other two traits. Thus, the concordant subset includes variants with the same effect direction (i.e.,
scz $\mathbb B$ edu $\mathbb B$ cog, after reversal of sign for schizophrenia). By contrast, the discordant subset includes
th $\texttt{ncz} \boxtimes \texttt{d}$ edu $\boxtimes \texttt{cog}$, after reversal of sign for schizophrenia). By contrast, the discordant subset includes three distinct sets of variants: (i) edu $\boxtimes \texttt{cog} \mid \texttt{scz}$ (schizophrenia outliers, i.e., sam script of three distinct sets of variants: (i) edu \mathbb{Z} cog | scz (schizophrenia outliers, i.e., same allele is associated
with an increase in cognitive ability, educational attainment, and schizophrenia risk); (ii) sc with an increase in cognitive ability, educational attainment, and schizophrenia risk); (ii) scz **Z cog | edu**
(education outliers, i.e., variants associated with an increase in schizophrenia risk and reduced (education outliers, i.e., variants associated with an increase in schizophrenia risk and reduced
cognitive ability, but increased educational attainment); and (iii) scz \mathbb{D} edu | cog (cognition outliers, i.e.,
varia (educational attainment); and (iii) scz \mathbb{D} edu | cog (cognition outlog cognition) outlog variants associated with an increase in schizophrenia risk and reduced educational attainment in an increase in schizophrenia variants associated with an increase in schizophrenia risk and reduced educational attainment but
6 variants associated with an increase in schizophrenia risk and reduced educational attainment but

increased cognitive ability). Independent genome-wide significant loci (p<5x10⁻⁸) were identified using
the Functional Mapping and Annotation (FUMA) pipeline²³ (See Data Availability). We excluded the
MHC region (chr6 MHC region (chr6:25000000-3500000) from further analysis due to its complex LD patterns, opting to

After harmonization in FUMA (see supplementary methods), we identified three distinct sets of genome-wide significant loci (Figure 2): (i) 347 independent loci with exclusively concordant genome- $\frac{1}{2}$ wide significant loci were discordant (Supplementary Table 2); and (iii) 151 "dual" loci, containing both wide significant SNPs (Supplementary Table 1); (ii) 270 independent genomic loci in which all genome-
wide significant loci were discordant (Supplementary Table 2); and (iii) 151 "dual" loci, containing both
concordant and variant set is novel, ostensibly due to the increased power of the larger input GWAS sample sizes. Next, concordant and discordant variants (Supplementary Methods; <u>Supplementary Table 3</u>). The 'dual'
variant set is novel, ostensibly due to the increased power of the larger input GWAS sample sizes. Next,
we compared these res conciant set is novel, ostensibly due to the increased power of the larger input GWAS sample sizes.
We compared these results with our prior report⁸, where we reported only Concordant (89 loci) an
Discordant (65 loci) wi variant set in they settled, and to the increased power of the included power of the larger input GWAS and
we compared these results with our prior report⁸, where we reported only Concordant (89 loci) and
Discordant (65 Discordant (65 loci) with earlier and more modestly sampled versions of the input GWAS.

To identify novel loci emerging from our PLEIO meta-analysis, we merged the loci reported for schizophrenia, cognitive task performance, and educational attainment in the original input GWAS To identical attainment in the original input GWAS
Tons, along with loci obtained from our pleiotropic meta-analysis using the "merge" option in
Is²²⁴. (We first employed FUMA to map significant variants to loci for educ schizophrenia, cognitive task performance, and educational attainment in the original input Control
publications, along with loci obtained from our pleiotropic meta-analysis using the "merge" option
"bedtools"²⁴. (We fir publications, along with locations, along the "merget" of the "merget" of the "meta-analysis" of "meta-analysis" of "meta-analysis" of "meta-analysis" of "meta-analysis" option ince the "merginal publication lacked compar 'bedtools'²⁴. (We first employed FUMA to map significant variants to loci for education since the
original publication lacked comparable locus information.) This process yielded 739 genome-wide
significant (p < 5x10⁻⁸) significant $(p < 5x10^{-8})$ loci emerging from the pleiotropic meta-analysis, as well as 280 loci for
schizophrenia, 432 for education, and 292 for cognitive task performance; these numbers differ sli
from the original repor schizophrenia, 432 for education, and 292 for cognitive task performance; these numbers differ slightly
from the original reports due to the merging of partially overlapping loci in bedtools (see schizophrenia, 423 for education, and 292 for cognitive task performance; these numbers different slightly
from the original reports due to the merging of partially overlapping loci in bedtools (see
7 from the original reports due to the merging of partially overlapping loci in bedtools (see

Supplementary Methods). A Venn diagram of these results is presented in Figure 3, revealing that 166
PLEIO loci are not being identified in any of the three input GWASs. By contrast, several loci remained
specific to the i specific to the input GWASs and did not reach genome-wide significance in the pleiotropic meta-
analysis (schizophrenia: 94; education: 46; cognitive task performance: 52), presumably indicating that
these loci were specif these loci were specific to one phenotype and not pleiotropic.
Comparing results with our earlier pleiotropic meta-analytic study⁸, we identified 110 novel

these loci were specific to one phenotype and not pleistic to phenote
Comparing results with our earlier pleiotropic meta-and
loci. Notably, 89 of these loci (comprising 80.9%) were validate $\frac{1}{2}$ Comparing results with our earlier pleiotropic meta-analytic study
tably, 89 of these loci (comprising 80.9%) were validated as signific
datasets for the analyzed traits, underscoring the efficacy of pleiotr
enetic loci^{2,} ,
ant in subsequent, larger
opic analysis in uncoverin
1t GWAS data for do the state locit. Notably, 199 of the shall very preservative as significant in subsequent, angles

do the set of the shall very density, underscoring the efficacy of pleiotropic analysis in uncovering

novel genetic loc novel genetic loci^{2,11,19}. In the present report, we employed the most recent GWAS data for
schizophrenia and cognitive task performance, leaving us without newer studies for direct
comparisons. Nevertheless, we can cros novel genetic loci^{2,11,13}. In the present report, we employed the most recent GWAS data for
schizophrenia and cognitive task performance, leaving us without newer studies for direct
comparisons. Nevertheless, we can cros comparisons. Nevertheless, we can cross-reference a more recent study on educational att
with sample sizes nearly three times larger than our input GWAS¹⁹. Because the complete s
statistics of the recent education GWAS a with sample sizes nearly three times larger than our input GWAS¹⁹. Because the complete summary
statistics of the recent education GWAS are not available in the public domain, we have used the with sample sizes nearly three times larger than our input GWAS²⁵. Because the complete summary
statistics of the recent education GWAS are not available in the public domain, we have used the
restricted summary statisti statistics of the recent education of the recent education and public domain, we have used the
restricted summary statistics for the complete additive autosomal GWAS that contains clumped r
for 8,618 variants with P < 1x10 for 8,618 variants with P < 1x10⁻⁵ (Sample size = 3,037,499). To conduct the look-up, we checked if any
loci identified from our analysis overlap with 20kb upstream or downstream of any reported variants. for 8,618 variants with P < 1x10 ° (Sample size = 3,037,499). To conduct the look-up, we checked if any
loci identified from our analysis overlap with 20kb upstream or downstream of any reported variants.
Among the 166 nov Among the 166 novel loci identified, 111 (66.86%) were confirmed in the latest educational GWAS,
validating the PLEIO methodology's effectiveness and highlighting its increased capacity for discoverin
novel genetic loci ac validating the PLEIO methodology's effectiveness and highlighting its increased capacity for discove
novel genetic loci across phenotypes (Supplementary Table 4). It is important to note that we
exclusively considered vari validating the PLEIO methodology's effectiveness and highlighting its increased capacity for discovering
novel genetic loci across phenotypes (<u>Supplementary Table 4</u>). It is important to note that we
exclusively considere exclusively considered variants achieving genome-wide significance (adjusted $P < 1.28 \times 10^{-8}$) to compatibility with our dataset. exclusively considered variants achieving genome-wide significance (adjusted P < 1.28x10°) to ensure
compatibility with our dataset.
. compatibility with our dataset.

 MAGMA (version 1.10) (Multi-marker Analysis of GenoMic Annotation)²⁵ gene set analysis was
conducted to identify specific biological processes underpinning Concordant, Discordant and 'Dual'
variant sets. Variants were an conducted to identify specific to the subsequentify specific biological processes. Variant sets. Variants were annotated to gene regions, setting boundaries 35 kb upstream and 10 kk
downstream to include likely regulatory downstream to include likely regulatory regions associated with each gene, as suggested by previous
publications^{4,26–28}. Following annotation, gene-based genome-wide association (MAGMA-GBGWA)
analysis was conducted using publications^{4,26–28}. Following annotation, gene-based genome-wide association (MAGMA-GBGWA)
analysis was conducted using the SNP-wise mean method to compute the p-value for each gene. The
gene-based results were subseque analysis was conducted using the SNP-wise mean method to compute the p-value for each gene. The
gene-based results were subsequently entered into the MAGMA competitive gene set analysis. Gene
sets from MsigDb C5 collection analysis was conducted into the MAGMA competitive gene set analysis. Gene
sets from MsigDb C5 collection (GO-basic obo file released on 2023-07-27) that contain all the Gene
Ontology gene sets²⁹ (GO Biological Process on gene-based results were subsequently entered into the MAGMA compenses gene set analysis results and the Gene
Sets from MsigDb C5 collection (GO-basic obo file released on 2023-07-27) that contain all the Gene
Ontology gene ontology gene sets²⁹ (GO Biological Process ontology, GO Cellular Component ontology, GO Molecul
Function ontology) were utilized as annotations for gene set analysis. We excluded genes within
chromosome X or Y or extend Ontology gene sets²⁵ (GO Biological Process ontology, GO Cellular Component ontology, GO Molecular
Function ontology) were utilized as annotations for gene set analysis. We excluded genes within
chromosome X or Y or exte Function ontology) were utilized as annotations for gene set analysis. We excluded genes within
chromosome X or Y or extended MHC region. Any gene set that contained less than 10 genes was also
excluded (See Supplementary excluded (See Supplementary Methods). Competitive gene set analyses were performed separately for
Concordant, Discordant, and Dual variants against 7,353 gene sets (See Data Availability).

MAGMA competitive gene set analysis for the concordant loci revealed 30 GO annotations enriched at FDR<0.05 (Supplementary Table 5). Results were broadly consistent with our previous $\begin{array}{c} \n\bullet & \bullet \\ \n\bullet & \bullet \n\end{array}$ MATEMA COMPEDIMATION AT THE CONCORDING CONSTRICT TO AND CONSTRICTS
d at FDR<0.05 (Supplementary Table 5). Results were broadly consistent with our previous
ation that concordant loci were enriched for transcriptional regul endoptervation that concordant loci were enriched for transcriptional regulation pathways and
neurodevelopmental genes⁸. With the current study's enhanced power, we could identify multiple
regulatory pathways implicated over the urodevelopmental genes⁸. With the current study's enhanced power, we could identify m
regulatory pathways implicated at concordant loci beyond the chromatin regulation discusse
prior report. These include a broa neurodevelopmental genes°
regulatory pathways implica
prior report. These include a
 . With the current study's enhanced power, we could identify multiple RNA
ted at concordant loci beyond the chromatin regulation discussed in our
broader range of gene sets involved with chromosome organization, regulatory pathways implicated at concordant loci beyond the chromatin regulation discussed in our
prior report. These include a broader range of gene sets involved with chromosome organization, prior report. These include a broader range of gene sets involved with chromosome organization,

9

chromatin formation, and methylation. Additionally, we identified significant gene sets regulating the
spliceosome, which has emerged as a critical focus of abnormalities in neuropsychiatric disorders³⁰.
The present resu

spliceosome, which has emerged as a critical focus of abnormalities in neuropsychiatric disorders³⁰.
The present results also provided additional details on the nature of neurodevelopmental
processes implicated by concor $\frac{1}{2}$ processes implicated by concordant genes, including macro-level processes such as head development
as well as cellular processes of neurogenesis. Notably, two FDR-significant gene sets specifically
implicated forebrain dev processes implications, y concordant genes, including macro-level processes can across pecifically
as well as cellular processes of neurogenesis. Notably, two FDR-significant gene sets specifically
implicated forebrain dev as well as cellular processes of neurogenesis of neurogenesis, μ and μ and μ and μ and μ and μ and μ implicated forebrain development. As the forebrain develops into the cerebral cortex,
neurodevelopme implicate formulation of schizophrenia have long focused on this process³¹. Corteurated for evidence demonstrate that illness-related cognitive impairment in schizophrenia is
neurodevelopmental in origin and long predate neurodevelopmental models of schizophrenia have long focused on this process³¹. Converging lines of
evidence demonstrate that illness-related cognitive impairment in schizophrenia is
neurodevelopmental in origin and long evidence demonstrate in origin and long predates overt symptomatology^{32,33}. Forebr
abnormalities may provide a genetic basis for the increased rate of craniofacial abn
patients with schizophrenia, which are sometimes als abnormalities may provide a genetic basis for the increased rate of craniofacial abnormalities in
patients with schizophrenia, which are sometimes also observed in their first-degree relatives³⁴.
Indeed, it has been sugg patients with schizophrenia, which are sometimes also observed in their first-degree relatives³⁴.
Indeed, it has been suggested that refined measurement of craniofacial dysmorphology may rep
a readily accessible index of patients with schizophrenia, which are sometimes also observed in their first-degree relatives³⁴.
Indeed, it has been suggested that refined measurement of craniofacial dysmorphology may rep
a readily accessible index of Indeed, it has been suggested that refined interactions of craniofacial dystrictions, represent
a readily accessible index of neurodevelopmental abnormalities in schizophrenia^{35,36}. Additionally, very
recent studies have a readily accessible index of neurodevelopmental abnormalities in schizophrenia³³,³⁵. Additionally, very
recent studies have recapitulated gene expression abnormalities in schizophrenia using forebrain
organoids derive recent stem cells of patients with schizophrenia³⁴.
MAGMA competitive gene set analysis at discordant loci revealed 19 GO annotations enric

MAGMA competitive gene set analysis at discordant loci revealed 19 GO annotations enriched
at FDR<0.05 (Supplementary Table 5). As in our prior study⁸, the discordant subset demonstrated $rac{1}{2}$.
MAGMA (Supplementary Table 5). As in our prior study⁸, the discordant subset demonstrated
ant enrichment in synaptic pathways, especially the postsynaptic density, which has emerged a
s the strongest gene set emerging at FDR<0.05 (<u>Supplementary Table 5</u>). As in our prior study^o, the discordant subset demonstrated
significant enrichment in synaptic pathways, especially the postsynaptic density, which has emerg
perhaps the strongest ge shipperhaps the strongest gene set emerging from schizophrenia GWAS². The present results suggest that
these pathways are distinct from those causing the cognitive deficits related to schizophrenia and are perhaps the strongest gene set emerging from schizophrenia GWAS². The present results suggest that
these pathways are distinct from those causing the cognitive deficits related to schizophrenia and are
1 t pathways are distinct from those causing the communities relation to schizophrenia and are $\frac{1}{2}$

instead associated with the counter-intuitive positive genetic correlation of schizophrenia with
educational attainment. As noted in our prior report⁸, these results do not point towards a subset of educational attainment. As noted in our prior report", these results do not point towards a subset of
schizophrenia patients marked by high educational attainment but rather may indicate an inverted-U
function: post-synapt function: post-synaptic processes that underlie successful academic performance may also lead to
illness if taken too far.

With the enhanced power of the present study, we identified several novel gene sets enriched in the discordant loci, most notably several involved in neurodevelopment specific to the $\ddot{ }$ hindbrain/cerebellum. While hindbrain development has not been a primary focus in schizophrenia
research, abnormalities in the mature cerebellum have been identified using both structural and in the discordant loci, most notably several involved in neurodevelopment persincing in schi
hindbrain/cerebellum. While hindbrain development has not been a primary focus in schi
research, abnormalities in the mature cere research, abnormalities in the mature cerebellum have been identified using both structural and
functional MRI³⁷. Traditionally linked to motor control, the cerebellum is increasingly recognized for
involvement in cognit functional MRI³⁷. Traditionally linked to motor control, the cerebellum is increasingly recognized t
involvement in cognitive and emotional functions³⁸. Identification of cerebellar abnormalities, in
conjunction with s functional MRI³⁷. Traditionally linked to motor control, the cerebellum is increasingly recognized for its
involvement in cognitive and emotional functions³⁸. Identification of cerebellar abnormalities, in
conjunction involvement in cognitive and emotional functions³⁰. Identification of cerebellar abnormalities, in
conjunction with synaptic deficits, suggests a previously under-appreciated role for metabotropic
delta ionotropic⁴⁰ gl conjunction with synaptic deficits, suggests a previously under-appreciated role for metabotropic $^{\circ}$ and
delta ionotropic 40 glutamate receptors in the illness process.
Several additional gene sets were enriched in d

delta ionotropic $^{\circ}$ glutamate receptors in the illness process.
Several additional gene sets were enriched in discorda
future study. The regulation of the Notch signaling pathway p $\frac{1}{2}$ Several additional gene sets interestinated in discordant lock, pointing to make the targets rest
study. The regulation of the Notch signaling pathway plays a pivotal role in governing cell fate
ns during neurodevelopment decisions during neurodevelopment but is increasingly understood as subserving learning processes i
mature neurons⁴¹. The unfolded protein response pathway maintains homeostasis within the
endoplasmic reticulum (ER), in mature neurons⁴¹. The unfolded protein response pathway maintains homeostasis within the
endoplasmic reticulum (ER), in response to ER stress⁴²; molecular evidence of dysfunction in this
system has recently been obser endoplasmic reticulum (ER), in response to ER stress⁴²; molecular evidence of dysfunction in this system has recently been observed in postmortem brains of patients with schizophrenia⁴³. system has recently been observed in postmortem brains of patients with schizophrenia³³.
Alternative of patients with schizophrenia³³.
Alternative of patients with schizophrenia³³.

In gene set enrichment analysis for "dual" loci, pathways related to translation initiation were
the primary significant result (Supplementary Table 5). Intriguingly, one of the genes driving this
association was *EIF3C*, association was *EIF3C*, which neighbors (and is often included in) the schizophrenia-associated conumber variant at distal 16p11.2⁴⁴. The translation initiation pathway is fundamental to many biological processes, as th association was Energy minimizing, and is often included in) are comes procedulated in position number variant at distal 16p11.2⁴⁴. The translation initiation pathway is fundamental to many biological processes, as the e number variant at distal 16p11.2⁴⁴. The translation initiation pathway is fundamental to many
biological processes, as the effective operation of diverse cell types hinges on the precise and **regulation of mRNA translati** biological processes, as the effective operation of the effective operation of mRNA translation of mRNA translation to proteins. Neurons, characterized by their highly polarized
morphology, particularly depend on the spati morphology, particularly depend on the spatial organization of mRNA translation machinery⁴⁵.
Moreover, temporal control of mRNA translation is pivotal for neurons responding promptly to
environmental changes by modifying morphology, particularly depend on the spatial organization of mRNA translation machinery"⁵.
Moreover, temporal control of mRNA translation is pivotal for neurons responding promptly to
environmental changes by modifying Moreover, temporal control interaction is proceed to make the trap promal prompt, the
environmental changes by modifying synaptic protein composition; this process is essential to
experience-dependent long-term synaptic pl experience-dependent long-term synaptic plasticity⁴⁶. A recent study directly investigated the
translational control of protein synthesis in olfactory neurosphere-derived (ONS) cells drawn fr
patients with schizophrenia translational control of protein synthesis in olfactory neurosphere-derived (ONS) cells drawn from
patients with schizophrenia and controls. The study found 48 differentially expressed eIF2 pathway
proteins and mRNA transc patients with schizophrenia and controls. The study found 48 differentially expressed eIF2 pathway
proteins and mRNA transcripts associated with schizophrenia; additionally, mTOR and eIF4 signalin
pathways, known regulator proteins and mRNA transcripts associated with schizophrenia; additionally, mTOR and eIF4 signaling
pathways, known regulators of protein synthesis, were implicated⁴⁷. Thus, our finding that translation
related gene sets pathways, known regulators of protein synthesis, were implicated⁴⁷. Thus, our finding that translatio
related gene sets are enriched at the "dual" loci highlights the need for more studies to understand t
role of protein related gene sets are enriched at the "dual" loci highlights the need for more studies to understand the
role of protein translation in schizophrenia.

role of protein translation in schizophrenia.
Finally, we utilized the publicly accessible BrainSpan dataset⁴⁸ to analyze temporal gene
Antronic parts the publicly accessible BrainSpan dataset⁴⁸ to analyze temporal gen Finally, we utilized the publicly acces
expression patterns concerning the three se Finally, we utilized the publicly accessible BrainSpan dataset⁺⁸ to analyze temporal gene
ion patterns concerning the three sets of pleiotropic loci. We hypothesized that genes at
dant loci, primarily involved in neurode expression primarily involved in neurodevelopment, would peak in expression prenatally. In
contrast, genes linked to adult synaptic regulation (discordant genes) would be more active durin
later developmental stages. We tr contrast, genes linked to adult synaptic regulation (discordant genes) would be more active during
later developmental stages. We transformed neurodevelopmental stages into weeks to uncover n
intricate gene expression prof contrast, genes linked to adult symptom regulation (discordant genes) would be more during analogies
later developmental stages. We transformed neurodevelopmental stages into weeks to uncover mo
intricate gene expression p Intricate gene expression profiles over time. As hypothesized, we found substantial time by locus-type
intricate gene expression profiles over time. As hypothesized, we found substantial time by locus-type
1. intricate gene expression profiles over time. As hypothesized, we found substantial time by locus-type

interaction effects among gene sets, with discordant genes demonstrating an upward slope over time
relative to concordant genes (Concordant vs Discordant, b = 1.92×10^{-4} , s.e. 4.79×10^{-5} , p = 6.41×10^{-5})
(Figu relative to concordant genes (Concordant vs Discordant, b = 1.92x10⁻⁺, s.e. 4.79x10⁻⁻, p = 6.41x10⁻⁻)
(**Figure 4**). Somewhat surprisingly, genes at the dual loci demonstrated an even greater downward
slope relative slope relative even to concordant genes at the dual lock demonstrated an even greater downward
slope relative even to concordant genes (Concordant vs Dual, b = 2.45x10⁻⁴, s.e. = 4.76x10⁻⁴, p =
3.14x10⁻⁷; Discordant slope relative even to concordant genes (Concordant vs Dual, b = 2.45x10⁻⁺, s.e. = 4.76x10⁻⁺, p =
3.14x10⁻⁷; Discordant v Dual, b = 4.37x10⁻⁴, s.e. = 5.47x10⁻⁵, p = 3.63x10⁻¹⁵). However, the main e
for develop for developmental weeks was not statistically significant for any of the three sets of genes individually
(Concordant, b = -6.49x10⁻⁵, s.e. = 2.5x10⁻⁴ p = 0.796; Discordant, b = 0.000138, s.e. = 0.000243, p =
0.572: D (Concordant, b = -6.49x10⁻⁵, s.e. = 2.5x10⁻⁴ p = 0.796; Discordant, b = 0.000138, s.e. = 0.000243, p = 0.572; Dual, b = -0.000375, s.e.= 0.000238, p = 0.124).
In conclusion, our investigation has yielded several key f (Concordant, b = -6.49x10 $^{\circ}$, s.e. = 2.5x10 $^{\circ}$ p = 0.796; Discordant, b = 0.000138, s.e. = 0.000243, p = 0.572; Dual, b = -0.000375, s.e.= 0.000238, p = 0.124).
In conclusion, our investigation has yielded several

0.572; Dual, and the set of your treaterly process.
In conclusion, our investigation has yielded severation prior report⁸ on the pleiotropic relationship between seducational attainment. First, applying pleiotropic anal In cont⁸ on the pleiotropic relationship between schizophrenia, cognitive task performance, and
In conclusion and attainment. First, applying pleiotropic analysis enabled us to harness the collective powe
Iple GWAS datas prior report° on the pleiotropic relationship between schizophrenia, cognitive task performance, and
educational attainment. First, applying pleiotropic analysis enabled us to harness the collective power
of multiple GWAS educational attains of multiple GWAS datasets for enhanced locus discovery. Second, our findings reaffirm the divergence
between forebrain neurodevelopmental pathways and synaptic regulation in schizophrenia. While
these p of multiple CMA and carried constrained in the anti-on-process, second, our multiple continuities an organizat
between forebrain neurodevelopmental pathways and synaptic regulation in schizophrenia. While
these pathways ha between for the two memoral pathways and sympths regulation in sthis pin that thus
these pathways have previously emerged as the primary results from gene set analysis of common
and rare⁴⁹ genetic variation in schizophre these pathways have previously emerged as the primary results from gene set analysis of common⁻
and rare⁴⁹ genetic variation in schizophrenia, our work indicates that these can be parsed with resp
to their endophenotyp $\frac{1}{2}$ and rare⁴⁹ genetic variation in schizophrenia, our work indicates that these can be parsed with respect
to their endophenotypic manifestations. The larger sample sizes in the current report permit us to
expand and refine to their expand and refine these pathways, newly demonstrating roles for altered gene splicing at concord:
loci and notch signaling at discordant loci. Third, identifying newly emergent gene set categories
related to cereb expand and notch signaling at discordant loci. Third, identifying newly emergent gene set categories
related to cerebellar development at discordant loci and translational initiation factors at dual loci
provides clues to related to cerebellar development at discordant loci and translational initiation factors at dual loc
provides clues to schizophrenia pathophysiology and potential treatment targets not previously
reported in genetics lite provides clues to schizophrenia pathophysiology and potential treatment targets not previously
reported in genetics literature. provides clues to schild pathophysiology and potential traditional tragets in previously
reported in genetics literature. reported in genetics literature.

Our pleiotropic integration of psychiatric GWAS with endophenotypic GWAS was designed to
parse biological mechanisms underlying schizophrenia. While our primary results contribute to our
understanding of the etiopathophysi understanding of the etiopathophysiology of the disorder, pointing towards novel treatment targets,
we propose that the resulting data may, in the future, have potential clinical applicability in the form of
more refined p understanding of the etaspointspy of the disorder, pointing to the disordered treatment targets,
we propose that the resulting data may, in the future, have potential clinical applicability in the form
more refined polygen we propose the resultion of the resultion of the resulting the resulting the resulting those terms of the resulting that been successfully developed in recent studies of Type 2 diabetes (T2D), in which the genetic heteroge more remined polygenic risk scores (PRS) reflecting inter an amore risk space pathways. Featured repproach
has been successfully developed in recent studies of Type 2 diabetes (T2D), in which the genetic
heterogeneity of t haterogeneity of that complex disease has been parsed into several dissociable biological proces
(e.g., lipodystrophy, insulin synthesis, hepatic lipid metabolism, etc.)⁵⁰. The model, as proposed b
Udler⁵¹ and McCarth (e.g., lipodystrophy, insulin synthesis, hepatic lipid metabolism, etc.)⁵⁰. The model, as proposed by
Udler⁵¹ and McCarthy⁵², is not that there are multiple distinct subtypes of T2D, but rather that the
observed dia Udler⁵¹ and McCarthy⁵², is not that there are multiple distinct subtypes of T2D, but rather that the
observed diagnostic entity is comprised of several underlying dimensions and that any individual Udler^{s+} and McCarthy^{s+}, is not that there are multiple distinct subtypes of T2D, but rather that the
observed diagnostic entity is comprised of several underlying dimensions and that any individual
diagnosed with T2D h observed with T2D has some combination of risk along these dimensions. Each dimension of risk
quantifiable by subsets of SNPs drawn from the overall PRS for T2D, corresponding to genetic reg
relevant to the underlying biol diagnose with T2D has somewhat the combination of risk along these anti-timent along the genetic region
quantifiable by subsets of SNPs drawn from the overall PRS for T2D, corresponding to genetic region
relevant to the un quant to the underlying biological processes, and a patient's PRS profile along these various
dimensions can more accurately differentiate outcomes in T2D⁵⁰. Recent endophenotype studies in
schizophrenia have been guided dimensions can more accurately differentiate outcomes in T2D⁵⁰. Recent endophenotype studi
schizophrenia have been guided by a categorical approach to the identification of 'biotypes,' su
subtype of psychosis marked by c schizophrenia have been guided by a categorical approach to the identification of 'biotypes,' such as a
subtype of psychosis marked by cognitive deficits⁵³ and distinct brain dysmorphism⁵⁴. While the
present results ar subtype of psychosis marked by cognitive deficits⁵³ and distinct brain dysmorphism⁵⁴. While the
present results are consistent with the evidence of such endophenotypic manifestations in some
individuals with schizophre subtype of psychosis marked by cognitive deficits⁵³ and distinct brain dysmorphism⁵⁴. While the
present results are consistent with the evidence of such endophenotypic manifestations in some
individuals with schizophre individuals with schizophrenia, our approach suggests that these represent dimensions of abnorn
rather than distinct subgroups of patients.
. individuals with schizophrenia, our approach subgroups of patients.

The second distinct subgroups of patients. rather than distinct subgroups of patients.

Figures

Figure 1. Study strategy and workflow

using 'mungesumstats,' (ii) PLEIO pleiotropy meta-analysis, (iii) FUMA GWAS annotation and (iv) using 'mungesumstats,' (ii) i LEIO pleiotropy meta-analysis, (iii) FUMA GWAS annotation and (iv)
MACMA gene est enclusie and further decumination analytic and column e

Figure 2: Miami plot of PLEIO meta-analysis results
Top panel: visualization of variant subsets derived from -blup recalibrated effect size directions: (i) Top panel: visualization of variant subsets derived from –blup recalibrated effect size directions: (i) Complete pleiotropic meta-analysis results from the PLEIO tool, NPR: novel loci (orange), Not Complete pleiotropic meta-analysis results from the PLEIO tool, NPR: novel loci (orange), Not Previously Reported; Novel index variants reaching genome-wide significance 5x10- are represented
--- klask data as black dots. l:

ALL NPR

PLEIO meta-analysis + Novel Regions/SNPs

Figure 3: Venn Diagram Comparing Significant PLEIO Loci to Significant Loci from Input GWASs Pleio_meta: results from PLEIO meta-analysis; SCZ_PGC3: Schizophrenia GWAS input (PGC Pleio_meta: results from PLEIO meta-analysis; SCZ_PGC3: Schizophrenia GWAS input (PGC)
Celtice legacio Meglino Cassua²). Educate - Education CMAC¹⁹, CTD, Lang. Cassitive technology Schizophrenia Working Group); Edu_Lee: Education GWAS ; CTP_Lam: Cognitive task performance
CWAS¹¹ $GWAS¹¹$.

Figure 4. Brainspan Temporal Gene Expression Profiles
Top panel: Brainspan gene expression profiles for 'Concordant' genes. Middle panel: Brainspan gene Top panel: Brainspan gene expression profiles for 'Concordant' genes. Middle panel: Brainspan gene e expression profiles for 'Discordant' genes. Bottom panel: Brainspan gene expression profiles for 'Du genes. x-axis: Development time in Weeks. y-axis: standardized (z-scores) of normalized gene expression values in BrainSpan. ual'

- Data and Code Availability
1. GWAS summary statistics for pleiotropy analysis and gene set analysis
	-
	- a. GWAS: gs://pleiotropy-proj-1/02-interim-
testing/MTAG_PLEIO/PLEIO_EDU_Cog_SCZ_Idsc_vcf/PLEIO_Output
b. FUMA: gs://pleiotropy-proj-1/02-interim-
testing/Post_GWAS_Anlalysis/FUMA_results/PLEIO.PLEIO_FUMA_job240552
c. MAGM testing/MTAG_PLEIO/PLEIO_EDU_Cog_SC
b. FUMA: gs://pleiotropy-proj-1/02-interim-
testing/Post_GWAS_Anlalysis/FUMA_resu
c. MAGMA: gs://pleiotropy-proj-1/NoMHC_
d. Summary statistics and other auxiliary file
manuscript The Human Section of the Cognation Correction of the NTAGEAN SECTION At the sting/Post_GWAS_Anlalysis/FUMA_results/PLEIO_PLEIO_FUMA_jo
testing/Post_GWAS_Anlalysis/FUMA_results/PLEIO_PLEIO_FUMA_jo
MAGMA: gs://pleiotropy-pro
	-
	- b. Fumanga, practicle, projections and testing/Post_GWAS_Anlalysis/FUMA_rest
c. MAGMA: gs://pleiotropy-proj-1/NoMHC_
d. Summary statistics and other auxiliary file
manuscript
nub links
a. https://github.com/mlamcogent/coge MAGMA: gs://pleiotropy-proj-1/NoMHC_Extended_25Mb_35Mb
Summary statistics and other auxiliary files to be made available upon accepta
manuscript
links
https://github.com/mlamcogent/cogent-data-curation/tree/main
r availabl c. Mariananga, *pparamepy-proj-1/10000-*
d. Summary statistics and other auxiliary files to be made available u
manuscript
nub links
a. https://github.com/mlamcogent/cogent-data-curation/tree/main
licly available GWAS summ
- -
	- -
- manuscript

manuscript

uub links

a. https://github.com/mlamcogent/cogent-data-curation/tree/main

licly available GWAS summary statistics

a. SSGAC https://thessgac.com

b. Cognitive Task Performance (Lam et al., 2022)
 2. Github links

a. https://github.com/mlamcogent/cogent-data-curation/tree/main

3. Publicly available GWAS summary statistics

a. SSGAC https://thessgac.com

b. Cognitive Task Performance (Lam et al., 2022)

https://stor 3. Publicly available GWAS summary statistics

a. SSGAC https://thessgac.com

b. Cognitive Task Performance (Lam et

https://storage.googleapis.com/bro:

1/03 quality control sumstatsqc/0

1 CognitiveTaskPerformance.tsv.gz 1/03 quality control sumstatsqc/07 Data Release GWAS Catalog 01/Lam et al 202 a. SSGAC https://thessgac.com
b. Cognitive Task Performance (Lam et
https://storage.googleapis.com/broa
1/03 quality control sumstatsqc/07
<u>1 CognitiveTaskPerformance.tsv.gz</u>
c. PGC3 https://pgc.unc.edu/for-resear https://storage.googleapis.com/broad instituted:

1/03 quality control sumstatsgc/07 Data Re

1 Cognitive Task Performance.tsv.gz

c. PGC3 https://pgc.unc.edu/for-researchers/dov

nformatic Tools & Resources

a. Bedtools h 1 CognitiveTaskPerformance.tsv.gz
PGC3 https://pgc.unc.edu/for-researchers/download-results/
rmatic Tools & Resources
Bedtools <u>https://github.com/arq5x/bedtools2?tab=readme-ov-file</u>
Mungesumstats https:/<u>/github.com/neuro</u>
	- Manuel Christmann Control PGC3

	PGC3 https://pgc.unc.edu/for-resea

	matic Tools & Resources

	Bedtools https://github.com/arq5x/

	Mungesumstats https://github.com

	PLEIO https://github.com/cuelee/plu

	MSigDB https://www.gse
- 4. Bioinformatic Tools & Resources
- a. Bedtools <u>https://github.co</u>
b. Mungesumstats <u>https://g</u>
c. PLEIO <u>https://github.com</u>
d. MSigDB <u>https://www.gse</u>
e. BrainSpan <u>https://www.b</u>
	- a. Bedtools <u>https://github.com/arq5x/bedtools2?tab=readme-ov-file</u>
b. Mungesumstats <u>https://github.com/neurogenomics/MungeSumsta</u>
c. PLEIO <u>https://github.com/cuelee/pleio</u>
d. MSigDB https://www.gsea-msigdb.org/gsea/msig b. Mungesumstats https://github.com/neurogenomics/MungeSumstats
	- c. PLEIO https://github.com/cuelee/pleio
	- b. Mungesumstats <u>insperience in proteince proteined</u>

	c. PLEIO <u>https://github.com/cuelee/pleio</u>

	d. MSigDB <u>https://www.gsea-msigdb.org/gsea/msigdb/</u>

	e. BrainSpan <u>https://www.brainspan.org/</u>
 Acknowledgments
	-

Acknowledgments

e. BrainSpan <u>https://www.brainspan.org/</u>
Acknowledgments
This work was supported by the National Institute of Mental Health of the National Institute
(NIH) under award no. R01MH117646 (T.L., principal investigator). The c d. Marting Controllers (1996)

e. BrainSpan https://www.brainspan.org/
 Acknowledgments

vas supported by the National Institute of Mental Health (1996)

r award no. R01MH117646 (T.L., principal investigator). The e. Bramspan <u>Inspan, Economia Image Incomedig</u>
Acknowledg
Institute of M
Inty of the authors and does not necessarily r $\begin{array}{c} 1 \\ 1 \\ 2 \end{array}$ The Number award no. RO1MH117646 (T.L., principal investigator). The content is solely the
responsibility of the authors and does not necessarily represent the official views of the NIH.
Competing interests responsibility of the authors and does not necessarily represent the official views of the NIH.
Competing interests
The authors declare no competing interests.

Competing interests

responsibility of the authors must be a constructed with represent the children in the child

Competing interests

The authors declare no competing interests. The authors declare no competing interests.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.04.16.24305885;](https://doi.org/10.1101/2024.04.16.24305885) this version posted April 16, 2024. The copyright holder for this preprint

References

1. Charlson, F.J., Ferrari, A.J., Santomauro, D.F., Diminic, S., Stockings, E., Scott, J.G., McGrath, J.J., and

Whiteford, H.A. (2018). Global Epidemiology and Burden of Schizophrenia: Findings From the Global
Burden of Disease Study 2016. Schizophr. Bull. 44, 1195–1203.
2. Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagiotaropoulou, Burden of Disease Study 2016. Schizophr. Bull. 44, 1195–1203.
2. Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagiotaropoulou, G., Awasthi, S., Bigdeli, T.B., Bryois, J., Cho
2. Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagio 2. Trubetskoy, V., Pardiñas, A.F., Qi, T., Panagiotaropoulou, G., .
C.-Y., Dennison, C.A., Hall, L.S., et al. (2022). Mapping genomic
biology in schizophrenia. Nature 604, 502–508.
3. Schizophrenia Working Group of the Psy 2. Trubetskop, V., Paramas, V., Panagio and premery 19, Panasiny 19, 19, 20, 19, 20, 20, 20, 20, 20, 20, 20, 2
2. Y., Dennison, C.A., Hall, L.S., et al. (2022). Mapping genomic loci implicates genes and synaptic
biology in

C.-Y., Dennison, C.-C., Dennison, C.-C., Mapping generation and particular properties generation, Thene
Biology in schizophrenia Working Group of the Psychiatric Genomics Consortium (2014). Biological insigh
from 108 schiz

biology in schizopmental trasaire 604, 502–506.
3. Schizophrenia Working Group of the Psychiat
from 108 schizophrenia-associated genetic loci.
4. Pardiñas, A.F., Holmans, P., Pocklington, A.J.,
Bishop, S., Cameron, D., Ham 3. Schizophrenia associated genetic loci. Nature 511, 421–427.
3. Pardiñas, A.F., Holmans, P., Pocklington, A.J., Escott-Price, V., Ripke, S., Carrera, N., Legge, S.E.,
3. Bishop, S., Cameron, D., Hamshere, M.L., et al. (2 from 1008 schiff generalised generalised traditionals.
108 A. Pardiñas, A.F., Holmans, P., Pocklington, A.J., Escott-Price, V., Ripke,
108 Bishop, S., Cameron, D., Hamshere, M.L., et al. (2018). Common schizo
15. Ripke, S.

4. Bishop, S., Cameron, D., Hamshere, M.L., et al. (2018). Common schizophrenia alleles are enriched mutation-intolerant genes and in regions under strong background selection. Nat. Genet. 50, 381.
5. Ripke, S., O'Dushlain Bishop, S., Cameron, S., Cameron, O., Champers, O., Champers, Champers, Champers, Nat. Genet. 50, 381–389
B. Ripke, S., O'Dushlaine, C., Chambert, K., Moran, J.L., Kähler, A.K., Akterin, S., Bergen, S.E., Collins,
A.L., Cr 5. Ripke, S., O'Dushlaine, C., Chambert, K., Moran, J.L., Kähler, A.K., Akterin, S., Bergen, S.E., Collins,
A.L., Crowley, J.J., Fromer, M., et al. (2013). Genome-wide association analysis identifies 13 new risk
loci for s A.L., Crowley, J.J., Fromer, M., et al. (2013). Genome-wide association analysis identifies 13 new risk
loci for schizophrenia. Nat. Genet. 45, 1150–1159.
6. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) C

loci for schizophrenia. Nat. Genet. 45, 1150–1159.
6. Schizophrenia Psychiatric Genome-Wide Association Study (GWAS) Consortium (2011). Genome-
wide association study identifies five new schizophrenia loci. Nat. Genet. 43,

1999 - Martin Finland, Martin 1999
1999 - Schizophrenia Psychiatric Genome-Wide Associa
1999 - Wide association study identifies five new schizoph
1998, 1150, 1150–1159. 11500–1159. 11500
1998, M.P., 1999. ISBN 1999. 11500 Wide association study in the mate of the study in the sense is soligical.
T. Schijven, D., Kofink, D., Tragante, V., Verkerke, M., Pulit, S.L., Kahn, R.S., Veldink, J.H.
Boks, M.P., and Luykx, J.J. (2018). Comprehensive p

8. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium (2015). Psychiatric Boks, M.P., and Luykx, J.J. (2018). Comprehensive pathway analyses of schizophrenia risk loci point to dysfunctional postsynaptic signaling. Schizophr. Res. 199, 195–202.
8. Network and Pathway Analysis Subgroup of Psychia dysfunctional postsynaptic signaling. Schizophr. Res. 199, 195–202.
8. Network and Pathway Analysis Subgroup of Psychiatric Genomics Consortium (2015). Psychiatric
genome-wide association study analyses implicate neuronal, dystandard postsynaptic signaling. Schizophr. Nor. 2007, 2007, 2011.

8. Network and Pathway Analysis Subgroup of Psychiatric Genomics

genome-wide association study analyses implicate neuronal, immur

Neurosci. 18, 199–20

8. Neurosci. 18, 199–209.
8. Neurosci. 18, 199–209.
9. Schork, A.J., Won, H., Appadurai, V., Nudel, R., Gandal, M., Delaneau, O., Revsbech Christiansen, I
Hougaard, D.M., Bækved-Hansen, M., Bybjerg-Grauholm, J., et al. (20 genome-wide association study analyses implies to an entity, intuities in pathways. Then
Neurosci. 18, 199–209.
9. Schork, A.J., Won, H., Appadurai, V., Nudel, R., Gandal, M., Delaneau, O., Revsbech Christiansen
Hougaard, 9. Schork, A.J., Won, H.,
Hougaard, D.M., Bækve
study of shared risk acro
neurodevelopment. Nat
10. Lam, M., Hill, W.D., 9. Schork, A.J., Won, H., Appadurai, V., Nudel, R., Gandal, M., Delaneau, O., Revsbech Christiansen, M.,

Hougaard, D.M., D.M., Benedard, M.M., D.M., Neurosci. 22, 353-361.
Hourodevelopment. Nat. Neurosci. 22, 353-361.
10. Lam, M., Hill, W.D., Trampush, J.W., Yu, J., Knowle stady of shared risk across 22, 353–361.
neurodevelopment. Nat. Neurosci. 22, 353–361.
10. Lam, M., Hill, W.D., Trampush, J.W., Yu, J., Knowles, E., Davies, G., Stahl, E., Huckins,
D.C., Djurovic, S., et al. (2019). Pleiot neurodevelopment. Nat. Neurosci. 23, 302–302.
10. Lam, M., Hill, W.D., Trampush, J.W., Yu, J., Kn
D.C., Djurovic, S., et al. (2019). Pleiotropic Meta-*l*
Differentiates Roles of Early Neurodevelopmenta
105, 334–350.
11. La D.C., Djurovic, S., et al. (2019). Pleiotropic Meta-Analysis of Cognition, Education, and Schizophrenia
Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. Am. J. Hum. Genet.
105, 334–350.
Huang,

Differentiates Roles of Early Neurodevelopmental and Adult Synaptic Pathways. Am. J. Hum. Genet.
105, 334–350.
11. Lam, M., Chen, C.-Y., Hill, W.D., Xia, C., Tian, R., Levey, D.F., Gelernter, J., Stein, M.B., Hatoum, A.:
H 2005, 334–350.
105, 334–350.
11. Lam, M., Chen, C.-Y., Hill, W.D., Xia, C., Tian, R., Levey, D.F., Gelernter, J., Stein, M.B., Hatoum, A.
Huang, H., et al. (2022). Collective genomic segments with differential pleiotropic 11. Lam, M., Channel
11. Lam, M., Channel
cognitive dime Huang, H., et al. (2022). Collective genomic segments with differential pleiotropic patterns between
cognitive dimensions and psychopathology. Nat. Commun. 13, 6868.
20 H_{H} cognitive dimensions and psychopathology. Nat. Commun. 13, 6868. cognitive dimensions and psychopathology. Nat. Commun. 13, 6868.

and Vita, A. (2022). Cognitive dysfunction in schizophrenia: An expert group paper on the current state
of the art. Schizophr Res Cogn 29, 100249.
13. McCutcheon, R.A., Keefe, R.S.E., and McGuire, P.K. (2023). Cognitive im

of the art. Schizophr Res Cogn 29, 100249.
13. McCutcheon, R.A., Keefe, R.S.E., and McGuire, P.K. (2023). Cognitive impairment in schizophrenia:
aetiology, pathophysiology, and treatment. Mol. Psychiatry 28, 1902–1918.
14.

of the art consequence cognes, 2002, 2002
13. McCutcheon, R.A., Keefe, R.S.E., and M
aetiology, pathophysiology, and treatment
14. Bansal, V., Mitjans, M., Burik, C.A.P., Lir
Ripke, S., de Vlaming, R., et al. (2018). Gend
 13. McCutcheon, Anti-A., And McCutcheon, R.A., Chen, P. 1991–1991.
14. Bansal, V., Mitjans, M., Burik, C.A.P., Linnér, R.K., Okbay, A., Rietveld, C.A., Begemann, M., Bonn, S.
14. Bansal, V., Mitjans, M., Burik, C.A.P., Lin aethology, pamaphysiology, and distributed mentricy sinds year, 2012–2021
14. Bansal, V., Mitjans, M., Burik, C.A.P., Linnér, R.K., Okbay, A., Rietveld, C.A
Ripke, S., de Vlaming, R., et al. (2018). Genome-wide association Ripke, S., de Vlaming, R., et al. (2018). Genome-wide association study results for educational
attainment aid in identifying genetic heterogeneity of schizophrenia. Nat. Commun. 9, 3078.
15. Koch, E., Rosenthal, B., Lundq

Riphe, S., de Vlaming, M., 2014, 2012, 2014 the Vlaming Riphenia. Nat. Commun. 9, 3078.
15. Koch, E., Rosenthal, B., Lundquist, A., Chen, C.-H., and Kauppi, K. (2020). Interactome overl
between schizophrenia and cognition.

attainment are in reentifying genetic increageneity of schizophrenia. New community yever
15. Koch, E., Rosenthal, B., Lundquist, A., Chen, C.-H., and Kauppi, K. (2020). Interactome ove
between schizophrenia and cognition. 15. Anti-Experiment, 2013, March, E., Rosenthal, B., Rosenthal, P., M., C.-2., M. C.-2., M. Pierret overlap
16. Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D.C., Starr, J.M., Djurovic, S., Melle, I., Sun
K., Chr between schizophrenia and segminom schizophrenicer. 222, 222, 17
16. Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D.C., Starr, J.N
K., Christoforou, A., et al. (2014). Molecular genetic evidence for over
ability K., Christoforou, A., et al. (2014). Molecular genetic evidence for overlap between general cognitive
ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Mol.
Psychiatry 19, 168–17

ability and risk for schizophrenia: a report from the Cognitive Genomics consorTium (COGENT). Mol.
Psychiatry 19, 168–174.
17. Smeland, O.B., Frei, O., Kauppi, K., Hill, W.D., Li, W., Wang, Y., Krull, F., Bettella, F., Eri ability 19, 168–174.
Psychiatry 19, 168–174.
17. Smeland, O.B., Frei, O., Kauppi, K., Hill, W.D., Li, W., Wang, Y., Krull, F., Bettella, F., Eriksen, J.A.,
Witoelar, A., et al. (2017). Identification of Genetic Loci Jointl 17. Smeland, O.B., Frei, (
17. Smeland, O.B., Frei, (
Witoelar, A., et al. (2017
Cognitive Traits of Verba
Psychiatry 74, 1065–107
18. Lee, C.H., Shi, H., Pas Witoelar, A., et al. (2017). Identification of Genetic Loci Jointly Influencing Schizophrenia Risk and the Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAP
Psychiatry 74, 1 Cognitive Traits of Verbal-Numerical Reasoning, Reaction Time, and General Cognitive Function. JAMA
Psychiatry 74, 1065–1075.
18. Lee, C.H., Shi, H., Pasaniuc, B., Eskin, E., and Han, B. (2021). PLEIO: a method to map and

Psychiatry 74, 1065–1075.
18. Lee, C.H., Shi, H., Pasaniuc, B., Eskin, E., and Han, B. (2021). PLEIO: a method to map and interpret
pleiotropic loci with GWAS summary statistics. Am. J. Hum. Genet. *108*, 36–48.
19. Lee, J

Prychiatry 74, 2000
18. Lee, C.H., Shi, H., Pasan
pleiotropic loci with GWAS
19. Lee, J.J., Wedow, R., Ok
Sidorenko, J., Karlsson Linn
genome-wide association s pleiotropic loci with GWAS summary statistics. Am. J. Hum. Genet. 108, 36–48.
19. Lee, J.J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Viet, T.A., Bowers, P.,
Sidorenko, J., Karlsson Linnér, R., et a pleis lipeis let the Cammar, statistics. Among the Live 20, 2014
19. Lee, J.J., Wedow, R., Okbay, A., Kong, E., Maghzian, O., Zacher, M., Nguyen-Y
Sidorenko, J., Karlsson Linnér, R., et al. (2018). Gene discovery and polyg Sidorenko, J., Karlsson Linnér, R., et al. (2018). Gene discovery and polygenic prediction from a
genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50,
1112–1121.
20. Okbay, A.

genome-wide association study of educational attainment in 1.1 million individuals. Nat. Genet. 50,
1112–1121.
20. Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S.M., Sidorenko, J., Kweon, H.,
Goldman 20. Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S.M., Sidorenko, J., Kweon, H., 20. Okbay, A
Goldman, G.
between fan
449.
21. Murphy, 20. Okbay, A., Wu, Y., Wang, N., Jayashankar, H., Bennett, M., Nehzati, S.M., Sidorenko, J., Kweon, H.,

Goldman, G., Gjorgjieva, T., et al. (2022). Polygenic prediction of educational attainment within and between families from genome-million and place and many colors from the million individuals.
21. Murphy, A.E., Schilder, B.M., and Skene, N.G. (2021). MungeSumstats: a Bioconductor package for
the standardization and quali 21. N
the s
4596
22. B
Cons

the standardization and quality control of many GWAS summary statistics. Bioinformatics 37, 4593–4596.
22. Bhattacharjee, S., Rajaraman, P., Jacobs, K.B., Wheeler, W.A., Melin, B.S., Hartge, P., GliomaScan
Consortium, Yeag the standardization and quality control of many control of manufary control of manufarity control.
22. Bhattacharjee, S., Rajaraman, P., Jacobs, K.B., Wheeler, W.A., Melin, B.S., Hartge, P., GliomaScan
Consortium, Yeager, 1994
22. Bh
Conso
power
traits. 22. Bonsortium, Yeager, M., Chung, C.C., Chanock, S.J., et al. (2012). A subset-based approach improves
power and interpretation for the combined analysis of genetic association studies of heterogeneous
traits. Am. J. Hum. power and interpretation for the combined analysis of genetic association studies of heterogeneous
traits. Am. J. Hum. Genet. 90, 821–835.
 power and interpretation for the combined analysis of the combined analysis of the combined analysis of $\frac{1}{2}$ of the combined analysis of $\frac{1}{2}$ of the combined analysis of the combined analysis of the combined ana traits. Am. J. Hum. Genet. 90, 821–835.

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.04.16.24305885;](https://doi.org/10.1101/2024.04.16.24305885) this version posted April 16, 2024. The copyright holder for this preprint

annotation of genetic associations with FUMA. Nat. Commun. 8, 1826.
24. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic
features. Bioinformatics 26, 841–842.
25. de Leeuw

annotation of general accommunity and total transmitter of actions.
24. Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of util
features. Bioinformatics 26, 841–842.
25. de Leeuw, C.A., Mooij, J.M., Heskes features. Bioinformatics 26, 841–842.
25. de Leeuw, C.A., Mooij, J.M., Heskes, T., and Posthuma, D. (2015). MAGMA: generalized gene-set
analysis of GWAS data. PLoS Comput. Biol. 11, e1004219.
26. Network and Pathway Analys

analysis of GWAS data. PLoS Comput. Biol. 11, e1004219.
26. Network and Pathway Analysis Subgroup of the Psych
Corrigendum: Psychiatric genome-wide association study
histone pathways. Nat. Neurosci. 18, 926. 25. Martin Commission (MAS data, PLoS Comput, Biol. 11, e1004219.
26. Network and Pathway Analysis Subgroup of the Psychiatric Genomics Consortium (2015).
27. Sey, N.Y.A., Hu, B., Mah, W., Fauni, H., McAfee, J.C., Rajaraja analysis of ENTRE analysis Comput. ELEN 23, 2022.2023
26. Network and Pathway Analysis Subgroup of the Psychi
Corrigendum: Psychiatric genome-wide association study
histone pathways. Nat. Neurosci. 18, 926.
27. Sey, N.Y.A.

Corrigendum: Psychiatric genome-wide association study analyses implicate neuronal, immur
histone pathways. Nat. Neurosci. 18, 926.
27. Sey, N.Y.A., Hu, B., Mah, W., Fauni, H., McAfee, J.C., Rajarajan, P., Brennand, K.J., Corrigendum: Py Andru genome-mile association study analyses implicate its association histone pathways. Nat. Neurosci. 18, 926.
27. Sey, N.Y.A., Hu, B., Mah, W., Fauni, H., McAfee, J.C., Rajarajan, P., Brennand, K.J., Akb Materic pantroyer thermoeders of 2011
27. Sey, N.Y.A., Hu, B., Mah, W., Fauni, H.,
Won, H. (2020). A computational tool (H-N
by incorporating brain chromatin interacti
28. Singh, T., Walters, J.T.R., Johnstone, M
Blackwood

Won, H. (2020). A computational tool (H-MAGMA) for improved prediction of brain-disorder risk genes
by incorporating brain chromatin interaction profiles. Nat. Neurosci. 23, 583–593.
28. Singh, T., Walters, J.T.R., Johnsto Won, Muslem brain interaction profiles. Nat. Neurosci. 23, 583–593.
28. Singh, T., Walters, J.T.R., Johnstone, M., Curtis, D., Suvisaari, J., Torniainen, M., Rees, E., Iyegbe, C.,
Blackwood, D., McIntosh, A.M., et al. (201 by incorporating brain and interaction profiles. The contribution of rate of the Blackwood, D., McIntosh, A.M., et al. (2017). The contribution of rare variants to rise in individuals with and without intellectual disabili Blackwood, D., McIntosh, A.M., et al. (2017). The contribution of rare variants to risk of schizophrenia
in individuals with and without intellectual disability. Nat. Genet. 49, 1167–1173.
29. Gene Ontology resource.

30. Bhattacharya, A., Vo, D.D., Jops, C., Kim, M., Wen, C., Hervoso, J.L., Pasaniuc, B., and Gandal, M.J.
(2023). Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for
neuropsychiatric disorders in individuals with and with a matematic changing, with a since $\frac{1}{2}$, $\frac{$ 20. Bhattacharya, A., Vo, D.D.
(2023). Isoform-level transcri
neuropsychiatric disorders in
31. Murray, R.M., Jones, P., C
neurodevelopmental schizop (2023). Isoform-level transcriptome-wide association uncovers genetic risk mechanisms for
neuropsychiatric disorders in the human brain. Nat. Genet. 55, 2117–2128.
31. Murray, R.M., Jones, P., O'Callaghan, E., Takei, N., a

neuropsychiatric disorders in the human brain. Nat. Genet. 55, 2117–2128.
31. Murray, R.M., Jones, P., O'Callaghan, E., Takei, N., and Sham, P. (1992). Genes, viruses an
neurodevelopmental schizophrenia. J. Psychiatr. Res. neuropsychiatric disoration the human brain heat sensatory 2227–2221.
31. Murray, R.M., Jones, P., O'Callaghan, E., Takei, N., and Sham, P. (1992). (
neurodevelopmental schizophrenia. J. Psychiatr. Res. 26, 225–235.
32. Bo

31. Murray, Murry, Pressylvy, Pressing, Pressylvy, Murres, Pressing, Pressey, Murres, Murres, Murres, Pressey
132. Bora, E. (2015). Neurodevelopmental origin of cognitive impairment in schizophrenia. Psyc
133. Kahn, R.S.,

neurodevelopmental schizophrenia. In Pyshidar Res. 20, 220
32. Bora, E. (2015). Neurodevelopmental origin of cognitive impairr
Med. 45, 1–9.
33. Kahn, R.S., Sommer, I.E., Murray, R.M., Meyer-Lindenberg, A., V
O'Donovan, M. 33. Kahn, R.S., Sommer, I.E., Murray, R.M., Meyer-Lindenberg, A., Weinberger, D.R., Cannon, T.D., O'Donovan, M., Correll, C.U., Kane, J.M., van Os, J., et al. (2015). Schizophrenia. Nat Rev Dis Primer
15067.
34. Xu, T., Ch Med. 45, 1–9.
33. Kahn, R.S., Sommer, I.E., Murray, R.M., Meyer-Lindenberg, A., Weinberger, D.R., Cannon, T.D.,
O'Donovan, M., Correll, C.U., Kane, J.M., van Os, J., et al. (2015). Schizophrenia. Nat Rev Dis Primer:
15067.

O'Donovan, M., Correll, C.U., Kane, J.M., van Os, J., et al. (2015). Schizophrenia. Nat Rev Dis Primer
15067.
34. Xu, T., Chan, R.C.K., and Compton, M.T. (2011). Minor physical anomalies in patients with
schizophrenia, una O'DONOVAN, M., CHAR, 2023, M.M., CARA, 2011). Minor physical anomalies in patients with
34. Xu, T., Chan, R.C.K., and Compton, M.T. (2011). Minor physical anomalies in patients with
schizophrenia, unaffected first-degree r

e24129.
35. Katina, S., Kelly, B.D., Rojas, M.A., Sukno, F.M., McDermott, A., Hennessy, R.J., Lane,
P.F., Bowman, A.W., and Waddington, J.L. (2020). Refining the resolution of craniofacial 34. Schizophrenia, unaffected first-degree relatives, and healthy controls: a meta-analysis. PLoS C
24129.
35. Katina, S., Kelly, B.D., Rojas, M.A., Sukno, F.M., McDermott, A., Hennessy, R.J., Lane, A., W
P.F., Bowman, A.W schizophrenia, unaffected first-degree relatives, and health, controls anothermina, state and μ
e24129.
35. Katina, S., Kelly, B.D., Rojas, M.A., Sukno, F.M., McDermott, A., Hennessy, R.J., Lane, A., Whelan,
P.F., Bowma 35. Katin
P.F., Bow
dysmorp
113243. 9. F., Bowman, A.W., and Waddington, J.L. (2020). Refining the resolution of craniofacial
dysmorphology in bipolar disorder as an index of brain dysmorphogenesis. Psychiatry Res. 291,
113243. P.F., Bowman, A.W., and Waddington, J.L. (2020). Refining the resolution of chaince
dysmorphology in bipolar disorder as an index of brain dysmorphogenesis. Psychiatry Re
113243. dysmorphology in bipolar disorder as an index of brain dysmorphogenesis. Psychiatry Res. 291, $\frac{1}{2}$

It is made available under a [CC-BY-NC-ND 4.0 International license](http://creativecommons.org/licenses/by-nc-nd/4.0/) . **(which was not certified by peer review)** is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. medRxiv preprint doi: [https://doi.org/10.1101/2024.04.16.24305885;](https://doi.org/10.1101/2024.04.16.24305885) this version posted April 16, 2024. The copyright holder for this preprint

are minor physical anomalies part of the syndrome of schizophrenia? Schizophr. Bull. 35, 425–436.
37. Moberget, T., and Ivry, R.B. (2019). Prediction, psychosis, and the cerebellum. Biol. Psychiatry Cogn.
Neurosci. Neuroim are minor physical anomalies part of the syndrome of sume prinsmit comes pin sameley, the the syndromality C
37. Moberget, T., and Ivry, R.B. (2019). Prediction, psychosis, and the cerebellum. Biol. Psychiatry C
Neurosci.

Neurosci. Neuroimaging 4, 820–831.
38. Zang, Y., and De Schutter, E. (2023). Recent data on the cerebellum require new models and
theories. Curr. Opin. Neurobiol. 82, 102765.
39. Nicoletti, F., Di Menna, L., Iacovelli, L., Neurosci. Neuronnuging 4, 922–922.
38. Zang, Y., and De Schutter, E. (202:
theories. Curr. Opin. Neurobiol. 82, 1
39. Nicoletti, F., Di Menna, L., lacovel
(2023). GPCR interactions involving m
pathophysiology and treatment 39. Nicoletti, F., Di Menna, L., Iacovelli, L., Orlando, R., Zuena, A.R., Conn, P.J., Dogra, S., and Joffe
39. Nicoletti, F., Di Menna, L., Iacovelli, L., Orlando, R., Zuena, A.R., Conn, P.J., Dogra, S., and Joffe
(2023). 112211222, 2022
39. Nicoletti, F., Di Menna, L., lacovelli, L., Or
(2023). GPCR interactions involving metabot
pathophysiology and treatment of CNS disor
40. Naur, P., Hansen, K.B., Kristensen, A.S., D
Egebjerg, J., Gajhed

(2023). GPCR interactions involving metabotropic glutamate receptors and their relevance to the pathophysiology and treatment of CNS disorders. Neuropharmacology 235, 109569.
40. Naur, P., Hansen, K.B., Kristensen, A.S., D (2023). Grading and treatment of CNS disorders. Neuropharmacology 235, 109569.
20. Naur, P., Hansen, K.B., Kristensen, A.S., Dravid, S.M., Pickering, D.S., Olsen, L., Vestergaard, B.,
20. Naur, P., Hansen, K.B., Kristensen 40. Naur, P., Hansen, K.B., Kristensen, A.S., Dravid, S.M., Pickering, D.S., Olsen, L., Vestergaard, B., Egebjerg, J., Gajhede, M., Traynelis, S.F., et al. (2007). lonotropic glutamate-like receptor delta2 bi
D-serine and

Egebjerg, J., Gajhede, M., Traynelis, S.F., et al. (2007). lonotropic glutamate-like receptor delta2 binds
D-serine and glycine. Proc. Natl. Acad. Sci. U. S. A. 104, 14116–14121.
41. Salazar, J.L., Yang, S.-A., and Yamamot Egebyerg, J., Gajdene, Proc. Natl. Acad. Sci. U. S. A. 104, 14116–14121.
D-serine and glycine. Proc. Natl. Acad. Sci. U. S. A. 104, 14116–14121.
41. Salazar, J.L., Yang, S.-A., and Yamamoto, S. (2020). Post-Developmental R 2020 - Procent and grypther the transformation of the U.S. (2020). Post-Developme
41. Salazar, J.L., Yang, S.-A., and Yamamoto, S. (2020). Post-Developme
the Nervous System. Biomolecules 10,.
42. Kim, P. (2024). Understand

the Nervous System. Biomolecules 10,.
42. Kim, P. (2024). Understanding the Unfolded Protein Response (UPR) Pathway: Insights into
Neuropsychiatric Disorders and Therapeutic Potentials. Biomol. Ther. 32, 183–191.
43. Kim, 112. Kim, P. (2024). Understanding the UNeuropsychiatric Disorders and Therapology
43. Kim, P., Scott, M.R., and Meador-Witesponse (UPR) in the dorsolateral prefit
Psychiatry 26, 1321–1331. 12. Kim, P., Carach, M.R., and Meador-Woodruff, J.H. (2021). Dysregulation of the unfolded proteins and Therapeutic Potentials. Biomol. Ther. 32, 183–191.
43. Kim, P., Scott, M.R., and Meador-Woodruff, J.H. (2021). Dysregu Neuropsychiatric Disorders and Meador-Woodruff, J.H. (2021). Dysregulation of the universponse (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizop Psychiatry 26, 1321–1331.
44. Guha, S., Rees, E.,

response (UPR) in the dorsolateral prefrontal cortex in elderly patients with schizophrenia. Mol.
Psychiatry 26, 1321–1331.
44. Guha, S., Rees, E., Darvasi, A., Ivanov, D., Ikeda, M., Bergen, S.E., Magnusson, P.K., Cormica response (VPR) 1981-0331.
The dorselaty 26, 1321–1331.
And Guha, S., Rees, E., Darvasi, A., Ivanov, D., Ikeda, M., Bergen, S.E., Magnusson, P.K., Cormican,
Morris, D., Gill, M., et al. (2013). Implication of a rare deletio Presidently 26, 2022
44. Guha, S., Rees, E., Darv
Morris, D., Gill, M., et al. (2
Psychiatry 70, 253–260.
45. Kapur, M., Monaghan,
A Matter of Life and Death 44. Guharma, S., Gill, M., et al. (2013). Implication of a rare deletion at distal 16p11.2 in schizophrenia. JAN
Psychiatry 70, 253–260.
45. Kapur, M., Monaghan, C.E., and Ackerman, S.L. (2017). Regulation of mRNA Translat

Morris, D., 2013–200.
Psychiatry 70, 253–260.
45. Kapur, M., Monaghan, C.E., and Ackerman, S.L. (2017). Regulation of mRNA Translation in Neurons-
A Matter of Life and Death. Neuron 96, 616–637.
46. Costa-Mattioli, M., Sos Psychiatry *70, 253–260.*
45. Kapur, M., Monaghan, C.E., and Ackerman, S.L. (2017). Regulation of mRNA Translation in Neurons-
46. Costa-Mattioli, M., Sossin, W.S., Klann, E., and Sonenberg, N. (2009). Translational contro

Cagney, G., Mackay-Sim, A., et al. (2015). Reduced protein synthesis in schizophrenia patient-derived A MARTER OF LIFE AND LEART REAPTREY, CLEART
46. Costa-Mattioli, M., Sossin, W.S., Klann, E., and
lasting synaptic plasticity and memory. Neuron 61
47. English, J.A., Fan, Y., Föcking, M., Lopez, L.M.,
Cagney, G., Mackay-Si 47. English, J.A., Fan, Y., Föcking, M., Lopez, L.M., Hryniewiecka, M., Wynne, K., Dicker, P., Matigian, N.,
Cagney, G., Mackay-Sim, A., et al. (2015). Reduced protein synthesis in schizophrenia patient-derived
olfactory c 17. English, J.A., J.A., J.A., H.M., J., Föcking, M., J., P., M., M., M., M., M., M., M., J., J., T., M., J., M., G., Mackay-Sim, A., et al. (2015). Reduced protein synthesis in schizophrenia patient-derived olfactory cell

48. Miller, J.A., Ding, S.-L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall, J.J., olfactory cells. Transl. Psychiatry 5, e663.
48. Miller, J.A., Ding, S.-L., Sunkin, S.M., Smith, K.A., Ng, L., Szafer, A., Ebbert, A., Riley, Z.L., Royall, J.J.,
Aiona, K., et al. (2014). Transcriptional landscape of the p onderer, there reader i, manning and a
48. Miller, J.A., Ding, S.-L., Sunkin, S.M., Sr
Aiona, K., et al. (2014). Transcriptional lan Aiona, K., et al. (2014). Transcriptional landscape of the prenatal human brain. Nature *508,* 199–206.
Z.3.
23 A_{α} , A_{α} ,

Bromet, E.J., et al. (2022). Rare coding variants in ten genes confer substantial risk for schizophrenia.
Nature 604, 509–516.
50. DiCorpo, D., LeClair, J., Cole, J.B., Sarnowski, C., Ahmadizar, F., Bielak, L.F., Blokstra, Nature 604, 509–516.
Bo. DiCorpo, D., LeClair, J., Cole, J.B., Sarnowski, C., Ahmadizar, F., Bielak, L.F., Blokstra, A., Bottinger,
E.P., Chaker, L., Chen, Y.-D.I., et al. (2022). Type 2 Diabetes Partitioned Polygenic Scor Nature 604, 509–516.

50. DiCorpo, D., LeClair, J., Cole, J.B., Sarnowski, C., Ahmadizar, F., Bielak, L.F., Blokstra, A., Bottinger,

E.P., Chaker, L., Chen, Y.-D.I., et al. (2022). Type 2 Diabetes Partitioned Polygenic Sc 5. P., Chaker, L., Chen, Y.-D.I., et al. (2022). Type 2 Diabetes Partitioned Polygenic Scores Associate Windisease Outcomes in 454,193 Individuals Across 13 Cohorts. Diabetes Care 45, 674–683.
51. Udler, M.S. (2019). Type

Disease Outcomes in 454,193 Individuals Across 13 Cohorts. Diabetes Care 45, 674–683.
51. Udler, M.S. (2019). Type 2 Diabetes: Multiple Genes, Multiple Diseases. Curr. Diab. Rep. 19, 55.
52. McCarthy, M.I. (2017). Painting Disease Outcomes in 1992 Individuals Across 2014-1944 2020 2021
1931. Udler, M.S. (2019). Type 2 Diabetes: Multiple Genes, Multiple Diseases. Curr. Diab. Re
193. McCarthy, M.I. (2017). Painting a new picture of personalise

52. McCarthy, M.I. (2017). Painting a new picture of personalised medicine for diabetes. Diabetolog
60, 793–799.
53. Clementz, B.A., Sweeney, J.A., Hamm, J.P., Ivleva, E.I., Ethridge, L.E., Pearlson, G.D., Keshavan, N
and 53. Clementz, B.A., Sweeney, J.A., Hamm, J.P., Ivleva, E.I., Ethridge, L.E., Pearlson, G.D., Keshavan, M.S
53. Clementz, B.A., Sweeney, J.A., Hamm, J.P., Ivleva, E.I., Ethridge, L.E., Pearlson, G.D., Keshavan, M.S
and Tamm 1999.
53. Clementz,
and Tamming
Am. J. Psychia
54. Koen, J.D.
Tamminga, C.

53. Clementa, B.A., (2016). Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers.
Am. J. Psychiatry 173, 373–384.
54. Koen, J.D., Lewis, L., Rugg, M.D., Clementz, B.A., Keshavan, M.S., Pearlson, G.D., and Tamminga, Ca. (2014). Individually 12 Damin Crypton Distinct Program Distinct Promanding
Am. J. Psychiatry 173, 373–384.
54. Koen, J.D., Lewis, L., Rugg, M.D., Clementz, B.A., Keshavan, M.S., Pearlson, G.D., Sweeney, J Amarry 2007, 2008
54. Koen, J.D., Lewis, L., Rugg, M
Tamminga, C.A., and Ivleva, E.I.
based on brain structure: finding
phenotypes (B-SNIP). Sci. Rep. 1. Tamminga, C.A., and Ivleva, E.I. (2023). Supervised machine learning classification of psychosis biot
based on brain structure: findings from the Bipolar-Schizophrenia network for intermediate
phenotypes (B-SNIP). Sci. Rep Tamminga, C.A., and Ivitation, C.A., $(2-2\pi)$, Δp protocommutation classification of psychology based on brain structure: findings from the Bipolar-Schizophrenia network for intermediate phenotypes (B-SNIP). Sci. Rep. $\mathsf{phenotypes}\left(\mathsf{B-SNIP}\right)\right)\mathsf{Sci}\limits$. Rep. 13, 12980. phenotypes (B-SNIP). Sci. Rep. 13, 12980.