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Abstract 33 

Background: Whole-genome doubling (WGD) is prevalent in cancer and drives tumor 34 

development and chromosomal instability. Driver mutations in mitotic cell cycle genes and 35 

cell cycle upregulation have been reported as the major molecular underpinnings of WGD 36 

tumors. However, the underlying genomic signatures and regulatory networks involved in 37 

gene transcription and kinase phosphorylation remain unclear. Here, we aimed to 38 

comprehensively decipher the molecular landscape underlying WGD tumors.  39 

Methods: We performed a pan-cancer proteogenomic analysis and compared 10 cancer 40 

types by integrating genomic, transcriptomic, proteomic, and phosphoproteomic datasets 41 

from the Clinical Proteomic Tumor Analysis Consortium (CPTAC). We also integrated the 42 

cancer dependency data of each cancer cell line and the survival properties of each cancer 43 

patient to propose promising therapeutic targets for patients with WGD.  44 

Results: Our study delineated distinct copy number signatures characterizing WGD-positive 45 

tumors into three major groups: highly unstable genome, focal instability, and tetraploidy. 46 

Furthermore, the analysis revealed the heterogeneous mechanisms underlying WGD across 47 

cancer types with specific structural variation patterns. Upregulation of the cell cycle and 48 

downregulation of the immune response were found to be specific to certain WGD tumor 49 

types. Transcription factors (TFs) and kinases exhibit cancer-specific activities, emphasizing 50 

the need for tailored therapeutic approaches.  51 

Conclusion: This study introduces an integrative approach to identify potential TF targets for 52 

drug development, highlighting BPTF as a promising candidate for the treatment of head and 53 

neck squamous cell carcinoma. Additionally, drug repurposing strategies have been 54 

proposed, suggesting potential drugs for the treatment of WGD-associated cancers. Our 55 

findings offer insights into the heterogeneity of WGD and have implications for precision 56 

medicine approaches for cancer treatment. 57 

 58 
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Background 61 

Whole-genome doubling (WGD) is prevalent across cancer subtypes, promoting tumor 62 

development and generating chromosomal instability (CIN). WGD plays an important role in 63 

tumorigenesis by cushioning the deleterious mutations and rapidly accumulating genetic 64 

abnormalities. However, WGD is also associated with tolerance to genomic instability, which 65 

leads to cell death 
1-3

. Previous studies have investigated the genomic alterations associated 66 

with WGD, revealing that TP53 mutations and defects in the E2F-mediated G1 arrest are 67 

common in WGD-positive tumors 
1
. Moreover, gene expression studies have highlighted the 68 

enrichment of genes involved in cellular proliferation, mitotic spindle formation, and DNA 69 

repair, whereas inflammatory pathways are downregulated in WGD-positive tumors 
2
. These 70 

findings depict the overall pan-cancer characteristics of WGD; however, the role of WGD can 71 

be highly heterogeneous 
2,4-7

.  72 

Recent proteomic studies have delineated novel mechanisms underlying diverse 73 

cancer subtypes 
8
. These investigations have revealed associations between certain 74 

multiomic subtypes that are indicative of WGD. For example, in head and neck squamous 75 

cell carcinoma (HNSCC), a distinct molecular subtype has been characterized by high CIN and 76 

upregulated cell cycle pathways at both the proteome and phosphoproteome levels 
9
. 77 

Similar WGD-associated subtypes have been detected in non-small cell lung cancer (NSCLC), 78 

endometrial cancer, breast cancer (BRCA), colon cancer, and glioblastoma (GBM) 
10-14

. 79 

Despite mounting evidence implicating WGD-related subtypes across multiple cancers, a 80 

pan-cancer multiomics investigation focusing on WGD remains elusive.  In addition, the 81 

proteomic features and kinase activities governing WGD in cancer are yet to be elucidated. 82 

Furthermore, the development of therapeutic strategies that specifically target WGD-83 

positive tumors remains an unmet need.  84 

  In this study, we aimed to conduct a pan-cancer proteogenomic analysis to delineate 85 

the genomic and proteomic landscapes of WGD across ten types of cancer by integrating 86 

genomic, transcriptomic, proteomic, and phosphoproteomic data sets. Our objective was to 87 

characterize the molecular pathways, transcription factor (TF) regulation, and kinase 88 

phosphorylation networks enriched in association with the WGD. Finally, we explored the 89 

potential drug targets and repositioning strategies for patients with WGDs. 90 

 91 
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Results 93 

Pan-cancer analysis to identify CN signatures underlying WGD 94 

We sought to explore the proteogenomic features associated with WGD by analyzing 95 

comprehensive genomic, transcriptomic, proteomic, and phosphoproteomic datasets 96 

obtained from the Clinical Proteomic Tumor Analysis Consortium (CPTAC) (Figure 1A). The 97 

dataset comprised 1,060 patients representing 10 types of cancer: breast cancer (BRCA) 
12

, 98 

clear cell renal cell carcinoma (CCRCC) 
15

, colon adenocarcinoma (COAD) 
13

, glioblastoma 99 

(GBM) 
14

, high-grade serous carcinoma (HGSC) 
16,17

, head and neck squamous cell carcinoma 100 

(HNSCC) 
9
, lung adenocarcinoma (LUAD) 

11
, lung squamous cell carcinoma (LSCC) 

10
, 101 

pancreatic ductal adenocarcinoma (PDAC) 
18

, and uterine corpus endometrial carcinoma 102 

(UCEC) 
12

. By determining the WGD status of each sample, we observed a bimodal 103 

distribution of patients, indicating the existence of two distinct groups of cancers 104 

irrespective of the cancer type (Figure 1B). Consistent with previous estimates, 105 

approximately 42% of the tumors (440 of 1,060 samples) exhibited at least 1 occurrence of 106 

WGD during their evolutionary process
1,2

. We also identified substantial variability in the 107 

occurrence of WGD across different tumor types, with HGSC showing the highest prevalence 108 

(83%, 65/78 samples) and PDAC showing the lowest (9.4%, 13/139 samples) (Figure 1C).  109 

Mutation signature analyses demonstrated that WGD was associated with specific 110 

copy number signatures (Table S1B). Based on the 25 CN signature values of the WGD-111 

positive samples, different cancer types exhibited varying combinations of CN signatures, 112 

suggesting that the underlying mechanisms of WGD might be distinct across cancer types 113 

(Figure 1D). In patients with LSCC, those with WGD showed significant enrichment for CN7 114 

(FDR = 3.11x10
-5

), indicating chromothripsis amplification, as well as for CN15 (FDR = 115 

2.87x10
-2

), signifying chromosomal loss-of-heterozygosity (LOH) with twice-genome-116 

doubling (Figure S1A; Table S1B). Similarly, patients with HNSCC showed significant 117 

enrichment of CN15 in WGD-positive samples (FDR = 4.63x10
-6

). Patients with LUAD showed 118 

enrichment of the CN7 signature (FDR = 5.39x10
-4

). WGD in BRCA and HGSC correlated 119 

significantly with CN11, a signature of focal LOH, with two WGD events (BRCA, FDR=1.71x10
-

120 

5
; HGSC, FDR=2.68x10

-13
), suggesting that WGD in these malignancies occurred within a 121 

focally unstable genomic context. A majority of WGD samples from CCRCC, COAD, GBM, 122 

PDAC, and UCEC were found to be significantly enriched for CN2 (FDR < 0.05), indicating 123 

tetraploidy. Based on these observations, we defined three distinct WGD status in LSCC, 124 
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LUAD, and HNSCC as “WGD type 1,” that in BRCA and HGSC as “WGD type 2,” and that in 125 

CCRCC, COAD, GBM, PDAC, and UCEC as “WGD type 3.” The WGD status was present in a 126 

coherent grouping of samples, wherein cancer types with similar CN signatures exhibited 127 

spatial proximity (Figure 1E).  128 

We further evaluated the driver mutations associated with WGD in each tumor type. 129 

Despite previous reports suggesting an enrichment of TP53 mutations in WGD tumors across 130 

diverse cancers 
1,2

, we identified a significant enrichment of TP53 mutations exclusively in 131 

the WGD-positive samples of BRCA, COAD, UCEC, and LUAD (p < 0.05; Fisher’s exact test) 132 

(Figure 1F; Table S1C). Although no common gene mutations were identified, we observed 133 

that over 100 mutations were significantly enriched in association with WGD in LSCC, LUAD, 134 

and HNSCC (WGD type 1), whereas other cancer types exhibited fewer than 15 significant 135 

gene mutations associated with WGD. As a highly unstable genome has been linked to a 136 

higher tumor mutational burden (TMB) 
19,20

, we speculated that the TMB would be higher in 137 

WGD type 1. We found significantly higher TMB in WGD-positive samples than in WGD-138 

negative samples across 10 cancer types (p = 3.12x10
-4

; Wilcoxon rank-sum test) (Figure 139 

S1A), and in LSCC, LUAD, HNSCC, and BRCA when compared across individual cancer types (p 140 

< 0.05; Wilcoxon rank-sum test) (Figure S1B). WGD-positive samples in COAD exhibited 141 

significantly lower TMB than WGD-negative samples (p = 2.13x10
-4

; Wilcoxon rank-sum test). 142 

Nevertheless, TP53 and APC mutations remained significantly enriched in samples with WGD 143 

in COAD (TP53, p = 1.75x10
-3

; APC, p = 2.31x10
-2

; Fisher’s exact test) (Figure 1F). This is 144 

consistent with the findings of prior investigations suggesting an association between APC 145 

mutations and aneuploidy in COAD 
21-23

. These observations imply that genomic instability is 146 

a catalyst for WGD in LSCC, LUAD, and HNSCC, whereas TP53 and APC mutations may serve 147 

as primary drivers of WGD in COAD. In summary, our findings revealed distinct CN signatures 148 

of WGD, allowing us to define three types of WGD. 149 
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 150 

Figure 1. Copy number signatures associated with WGD 151 

(A) Schematic representation of the multi-omics datasets collected for each cancer type and 152 

the subsequent analysis pipeline. BRCA, breast cancer; CCRCC, Clear cell renal cell carcinoma; 153 

COAD, colon adenocarcinoma; GBM, Glioblastoma; HGSC, High-grade serous carcinoma; 154 

HNSCC, Head and neck squamous cell carcinoma; LSCC, Lung squamous cell carcinoma; 155 

LUAD, Lung adenocarcinoma; PDAC, Pancreatic ductal adenocarcinoma; UCEC, Uterine 156 

corpus endometrial carcinoma. (B) Distribution of the WGD fraction within the CPTAC cohort, 157 

displaying a bimodal pattern. (C) Prevalence of WGD by cancer type. (D) Heatmap based on 158 

copy number signature exposure values in samples with WGD. Copy number signatures were 159 
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derived from the Catalogue Of Somatic Mutations In Cancer (COSMIC). (E) UMAP plot based 160 

on signature exposure values of single-base-substitution, double-base-substitution, indel, 161 

and copy number alteration. Each dot indicates samples and is colored based on WGD 162 

fraction (top) and cancer types (bottom). (F) Dot plot depicting differentially mutated genes 163 

in WGD in each cancer type. The position of each dot along the x-axis and the color of the 164 

dots indicate signed p-values obtained from Fisher’s exact test. Only the top three significant 165 

genes were labeled in each cancer type, except for COAD and PDAC, for which only two and 166 

one significant genes, respectively, were noted. In LUAD, PTPRN, GRIN2B, ANPEP, and 167 

ADGRE1 genes exhibited the same p-values, and TP53 was additionally labeled. 168 

 169 

 170 

Enrichment of distinct pathways in WGD in each cancer type  171 

Previous studies have reported activation of the cell cycle pathway and inactivation of the 172 

immune response pathway in tumors with WGD 
1,2,24,25

. Given the various CN signatures 173 

underlying WGD across cancer types, we conducted a sample-level pathway enrichment test 174 

with 1,060 samples and examined the biological pathways enriched in WGD (Figure 2A). 175 

Overall, WGD-positive tumors were significantly affected by several pathways (Table S2A), 176 

which were subsequently categorized into four major pathway groups: cell motility, immune 177 

response, cell cycle, and metabolism. WGD type 1 tumors, characterized by a highly unstable 178 

genome, showed significant upregulation of the cell cycle and downregulation of immune 179 

response pathways (Figure 2B and 2C), which is consistent with previous reports 
1,2,24,25

. In 180 

contrast, WGD type 2 tumors showed significant enrichment in the dTTP metabolism 181 

pathway, which is responsible for DNA synthesis and maintenance 
26,27

 (p < 0.01; Wilcoxon 182 

rank-sum test), and the DNA endoreduplication pathway, a known mechanism inducing 183 

WGD 
28,29

 (p < 0.05; Wilcoxon rank-sum test) (Figure 2SA and 2SB). Among other cancer 184 

types, WGD tumors in COAD showed significant activation of the Wnt signaling pathway, 185 

possibly attributed to APC mutation, in line with the findings of previous studies 
30-32

 (p = 186 

2.09x10
-3

; Wilcoxon rank-sum test) (Figure 2SC). These results emphasize that upregulation 187 

of the cell cycle and downregulation of the immune response are specific to WGD type 1 188 

tumors, suggesting diverse functional attributes of WGD across distinct cancer types. 189 
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 190 

Figure 2. Pathway enrichment in WGD-positive tumors 191 

(A) Normalized enrichment scores (NES) of pathways related to cell motility, immune 192 

response, cell cycle, and metabolism in WGD-positive tumors. Pathways exhibiting 193 

significance (FDR < 0.05) and a log fold-change greater than 0.25 are shown. (B–C) Boxplot 194 

comparing NES score of cell cycle pathway (HALLMARK_E2F_TARGETS) and immune 195 

response pathway (GOBP_IMMUNE_RESPONSE) between WGD-positive and WGD-negative 196 

tumors in individual cancer types. 197 

 198 

 199 

WGD-specific TFs as potential therapeutic targets  200 

To identify potential therapeutic targets for treating WGD across various tumor types, we 201 

first estimated TF activity using the TF-target gene interaction network database 
33

 and the 202 

gene expression levels of target genes (see Methods). Out of the 1,134 TFs analyzed, the E2F 203 

family and MYC TFs showed significant activation (FDR < 0.05) in pan-cancer WGD tumors, 204 

indicating the role of cell cycle regulation in WGD pathophysiology 
34,35

 (Figure 3A; Table 205 

S3A). In contrast, the TFs that were significantly downregulated in the WGD-positive tumors 206 

were predominantly associated with immune response pathways. While different TFs were 207 

activated in WGD-positive tumors across different cancer types (Figure 3B), E2F1, E2F2, E2F3, 208 

E2F4, and MYC were common TFs with significant activation in five cancer types (LSCC, LUAD, 209 

HNSCC, BRCA, and PDAC) that showed upregulation of the cell cycle pathway (Figure 2B). 210 

Since many TFs have been deemed as ‘undruggable’ due to their structural 211 

complexities and a lack of tractable binding sites 
36,37

, we introduced an integrative 212 
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framework to prioritize WGD-activated TFs as putative therapeutic targets (Figures 3C and 213 

3SA–I; Table S3C).  Among the 99 TFs that exhibited significant activation in each tumor type 214 

(FDR < 0.1), we first selected TFs that were detected in CPTAC proteomics data with high 215 

confidence (FDR < 0.01). We then filtered TFs exhibiting significantly upregulated protein 216 

expression in WGD-positive tumors compared to WGD-negative tumors. We found that the 217 

protein expression of IRX2, GLI2, E2F4, and TFDP1 in LSCC, E2F3 in LUAD, BPTF, REST, and 218 

SFPQ in HNSCC, and SREBF2 (also known as SREBP2) in BRCA was significantly upregulated 219 

(FDR < 0.05, integrated hypothesis test) (Figure 3D). The cancer dependencies of these TFs in 220 

each cancer cell line were then evaluated by comparing the dependencies between cells 221 

with and without WGD. Among the nine TFs that showed significant upregulation at the 222 

protein level, four TFs including IRX2 in LSCC and BPTF, REST, and SFPQ in HNSCC exhibited 223 

significantly decreased viability in cells with WGD upon CRISPR-mediated depletion (p < 0.1, 224 

Wilcoxon rank-sum test) (Figure 3E). Finally, we selected the TFs with high protein 225 

expression levels that were associated with poor prognosis. We found a significant 226 

association between high BPTF protein expression and unfavorable prognosis in HNSCC (p = 227 

0.017, log-rank test) (Figure 3F). BPTF is reported as a co-factor of c-MYC leading to c-MYC-228 

driven proliferation and G1 to S progression 
38

, and we also observed significant activation of 229 

MYC in HNSCC (FDR = 5.66x10
-3

). Our findings suggest that deactivating BPTF in patients with 230 

WGD-positive HNSCC could slow down cancer cell proliferation, which may ultimately 231 

benefit patient survival.  232 

Several TFs did not meet the criteria outlined in our integrative framework; however,  233 

they remain potential candidates for further consideration as therapeutic targets. In LSCC, 234 

GLI2 showed both significant activation (FDR = 9.37x10
-2

) and upregulation at both mRNA 235 

and protein levels (mRNA, FDR = 1.71x10
-8

, Wald test; protein, FDR = 1.72x10
-3

, integrated 236 

hypothesis test) (Figure S3B; Table S3C). As GLI2 is known to promote cell proliferation and 237 

cancer cell survival by upregulating the expression of antiapoptotic proteins in LSCC 
39

, 238 

degrading GLI2 may be a promising strategy for the treatment of patients with LSCC 239 

harboring WGD. Additionally, TFDP1 and TFDP2, which are partner proteins of the E2F family 240 

crucial for the G1 to S phase transition 
40,41

, were identified as potential therapeutic targets 241 

for WGD-positive samples in LSCC, HNSCC, PDAC, and HGSC, in which these TFs were 242 

significantly activated (FDR < 0.1) (Figure S3A, S3B, S3E, and S3I). In LUAD, E2F3 showed 243 

significant activation (FDR = 3.60x10
-4

) and upregulation at both mRNA and protein levels 244 
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(mRNA, FDR = 3.16x10
-5

, Wald test; protein, FDR = 1.83x10
-3

, integrated hypothesis test) 245 

(Figure S3C). Therefore, E2F3 inhibitors such as Edifoligide could be a potential treatment for 246 

LUAD in patients with WGD. Furthermore, in BRCA, SREBF2 showed significant activation 247 

(FDR = 8.67x10
-2

) along with upregulated protein expression (FDR = 2.42x10
-2

, integrated 248 

hypothesis test) (Figure S3D). Targeting SREBF2 could be effective for WGD-positive BRCA 249 

samples since SREBF2 is known to regulate the synthesis of cholesterol which is crucial for 250 

cancer cell viability in breast cancer cells 
42-44

. Taken together, our integrative framework 251 

incorporated protein expression, cancer dependency, and association with patient survival 252 

to delineate effective therapeutic targets among significantly activated TFs. Based on our 253 

analysis, we propose that BPTF could potentially serve as a therapeutic target for WGD-254 

positive samples in HNSCC, thereby improving patient prognosis. 255 

 256 

Figure 3. Deciphering potential therapeutic targets among activated TFs in WGD 257 

(A) Dot plot depicting estimated TF scores in WGD-positive versus WGD-negative tumors 258 

across pan-cancer analysis. The top and bottom five TFs, ranked by TF score, are labeled. (B) 259 
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Significantly upregulated TFs in WGD in each tumor type. The tiles are colored based on the 260 

TF estimation score, and TFs meeting the criteria of FDR < 0.05 and TF score > 3 are denoted 261 

with asterisks. (C) Schematic diagram showing the filtering processes to identify effective 262 

therapeutic targets. The number of TFs or the name of TFs remaining after each step is 263 

indicated on the right.  (D) Volcano plots of differentially expressed proteins among 264 

significant TFs in WGD-positive tumors compared to WGD-negative tumors. (E) Boxplots 265 

comparing log2 cell viability between WGD-positive and WGD-negative cells after depleting 266 

genes with CRISPR in each cancer cell line. (F) Kaplan–Meier curve of overall survival based 267 

on protein expression levels of BPTF in HNSCC. 268 

 269 

 270 

Drug repurposing strategies to target key kinases in WGD 271 

As kinases are one of the well-known druggable proteins 
37,45

, we next questioned whether 272 

we can suggest treatment strategies by deciphering kinase activities in WGD and matching 273 

appropriate drugs targeting these kinases. To estimate kinase activities in the WGD in each 274 

tumor type, we utilized a kinase-substrate interaction database 
46

 and phosphoprotein 275 

expression data of substrates (see Methods). Consistently, we observed that cancer types 276 

with upregulated cell cycle pathways exhibited CDK1 and CDK2 activation (FDR < 0.1) (Figure 277 

4A; Table S4A). The protein expression of these cyclin-dependent kinases was also 278 

significantly upregulated (FDR < 0.05, integrated hypothesis test) (Figure 4B). Apart from cell 279 

cycle regulation, kinases involved in the DNA damage response and hypoxia-induced 280 

autophagy were significantly activated in some tumors. CSNK2A1, which phosphorylates key 281 

components of DNA damage and repair pathways 
47

, was significantly activated in LSCC and 282 

LUAD (LSCC, FDR = 7.62x10
-5

; LUAD, FDR = 1.05x10
-3

) (Figure 4A; Table S4A). Additionally, in 283 

LSCC, PAK4 showed significant activation in WGD (FDR = 6.70x10
-3

). It is known to promote 284 

proliferation and suppress apoptosis 
48,49

, and its overexpression has been linked to poor 285 

prognosis in NSCLC 
50

. In BRCA, both PRKAA2 (also known as AMPK2) and ULK1 were 286 

significantly activated (PRKAA2, FDR = 8.34x10
-2

; ULK1, FDR = 3.21x10
-2

). PRKAA2 induces 287 

autophagy during glucose starvation by phosphorylating ULK1 
51,52

. These results imply that 288 

although WGD can drive tumorigenesis by accelerating cell proliferation, it can also induce 289 

DNA damage and hypoxia, necessitating kinase activation to inhibit apoptosis, as previously 290 

noted 
1-3

.  291 

Next, we sought to identify putative drug targets for kinases with upregulated 292 

expression in WGD using protein-protein and protein-drug interactions 
53

 (see Methods). 293 

Our analysis revealed that nintedanib was the most promising treatment for WGD in LSCC 294 
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and LUAD, as it interacts with a majority of significantly activated kinases in these cancers 295 

(Figure 4C; Table S4B). Nintedanib is a small-molecule tyrosine kinase inhibitor that is used 296 

for NSCLC patients along with docetaxel after the first line of chemotherapy 
54

. For WGD in 297 

COAD, bosutinib and ruxolitinib were suggested to target PLK1 kinase, a pivotal regulator of 298 

mitotic events frequently overexpressed in colon cancers 
55-58

. These drugs have been 299 

reported to induce apoptosis in colon cancer cells 
59,60

. Sunitinib was recommended as the 300 

most suitable drug for BRCA patients with WGD, supported by its efficacy in BRCA reported 301 

in some studies 
61,62

, although caution is advised when applying it to metastatic breast 302 

cancer patients 
63

. Overall, our findings unraveled cancer-type-specific kinase activations in 303 

WGD contributing to cell proliferation, DNA damage response, and hypoxia-driven 304 

autophagy. Based on these findings, we proposed FDA-approved drugs for treating patients 305 

with WGD in each tumor type. 306 

 307 

Figure 4. Drug repurposing strategies to target key kinases in WGD 308 
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(A) Kinases with significant upregulation of expression in association with WGD in each 309 

tumor type. The tiles are colored based on the kinase estimation score, and kinases showing 310 

significant upregulation are denoted with asterisks. (B) Dot plot depicting differentially 311 

expressed proteins among significantly upregulated kinases in WGD-positive tumors 312 

compared to WGD-negative tumors. Kinases with significant upregulation of protein 313 

expression (FDR < 0.05 and log2-fold-change > 0), as well as activation (FDR < 0.1), have 314 

been labeled. (C) Drug repurposing network for key kinases associated with WGD in each 315 

tumor type.  316 

 317 

 318 

Discussion 319 

Our study elucidated the proteogenomic characteristics of WGD in a cancer-type-specific 320 

manner. CN signatures were used to characterize WGD tumors into three major groups: 321 

WGD type 1, with a highly unstable genome (LSCC, LUAD, and HNSCC); type 2, with focal 322 

instability (BRCA and HGSC); and type 3, with tetraploidy (CCRCC, COAD, GBM, PDAC, and 323 

UCEC). This classification seems to align with cancer-specific profiles of structural variation 
64

. 324 

Triple-negative breast cancer and ovarian cancer are enriched in an SV class, characterized 325 

by a high burden of deletions, duplications, and templated insertion chains. LSCC and HNSCC 326 

are characterized by an enriched breakage fusion bridge cycle, which is a mechanism of 327 

chromosomal instability 
65

. The presence of CN7 and CN15 signatures underscores the 328 

occurrence of WGD in a genomically unstable environment at the chromosomal level 
66

.  329 

While the etiology of CN18 remains unknown, we observed its enrichment in WGD-330 

positive BRCA and GBM. CN18 has been linked to TP53 mutation in BRCA 
66

, and our study 331 

demonstrates a significant enrichment of TP53 mutation in WGD-positive BRCA samples. 332 

This implies CN18 in BRCA may be a WGD signature driven by TP53 mutation. Additionally, 333 

CN18 has been associated with hypoxia, which is known to induce polyploid giant cancer 334 

cells with stem-like phenotypes in GBM 
67,68

. As a hypoxic condition in GBM has been linked 335 

to advanced tumor stage and invasion 
69

, CN18 in GBM may imply hypoxia-driven WGD with 336 

an invasive cell state.  337 

In recent studies, WGD tumors have been predominantly characterized by an 338 

upregulated cell cycle and a downregulated immune response 
1,2,24,25

. However, our study 339 

demonstrated that this pattern is specific to WGD type 1 (LSCC, LUAD, and HNSCC) and does 340 

not entirely represent other types of WGD-positive tumors. For these cancer types, 341 

significant activation of E2F and MYC seemed to regulate the cell cycle pathway in WGD-342 
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positive tumors. Instead, the activities of TFs and kinases were more cancer-type-specific 343 

than consistent across WGD types.  344 

Our study has important therapeutic implications for WGD tumors. Given the 345 

challenges of targeting undruggable TFs 
36,37,45

, we introduced an integrative approach to 346 

identify putative TF targets for new drug development, requiring high protein expression 347 

levels, increased cancer dependency, and poorer prognosis in patients with WGD. Based on 348 

these criteria, we identified BPTF as a promising target for treating patients with HNSCC 349 

harboring WGD. For kinases associated with WGD, we employed a drug repurposing strategy 350 

using search algorithms to identify the most suitable drugs targeting these kinases. Drug 351 

repositioning is a cost-effective approach for identifying effective treatments without the 352 

need for extensive time or resources for new drug development 
70

. We found nintedanib for 353 

LSCC and LUAD, bosutinib and ruxolitinib for COAD, and sunitinib for BRCA were 354 

recommended as potential drugs for treating WGD patients. Further studies are warranted 355 

to evaluate the efficacy of drugs targeting WGD-specific TFs and of repurposed drugs in 356 

patient cohorts with WGD. This additional investigation is essential for advancing precision 357 

medicine approaches tailored to WGD-associated cancers. 358 

 Despite our comprehensive analysis, there are limitations within our study. For 359 

cancer types included in CPTAC phase 2 (BRCA, COAD, and HGSC), whole-exome sequencing 360 

data were utilized to infer WGD, a method potentially less precise than whole-genome 361 

sequencing. In addition, our research covered only 1,060 samples across 10 tumor types, 362 

indicating the necessity for larger-scale proteogenomic investigations to fully understand 363 

WGD characteristics in various cancers. Future studies should consider employing single-cell 364 

and spatial proteomics to gain insights into the cellular dynamics and properties of WGD 365 

tumor cells. Furthermore, the effectiveness of BPTF inhibitors in WGD-positive HNSCC, 366 

among other drugs for WGD-positive tumors, requires further validation. Despite these 367 

limitations, our study on the proteogenomic landscape of WGD across cancers could provide 368 

therapeutic insights for treating WGD-related subtypes in individual tumor types, supporting 369 

the groundwork for future research endeavors. 370 

  371 
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Methods 406 

Data collection and preprocessing 407 

We obtained genomic, transcriptomic, global proteomic, and phosphoproteomic data from 408 

the Clinical Proteomic Tumor Analysis Consortium. The mutation annotation format file for 409 

each sample and the segment-level copy number variant (CNV) text file for the samples in 410 

CPTAC phase-3 (comprising clear cell renal cell carcinoma [CCRCC], GBM, HNSCC, lung 411 

squamous cell carcinoma [LSCC], lung adenocarcinoma [LUAD], pancreatic ductal 412 

adenocarcinoma [PDAC], and uterine corpus endometrial carcinoma [UCEC]) were 413 

downloaded from the GDC data portal (https://portal.gdc.cancer.gov). Transcriptomic data 414 

were downloaded from the GDC data portal. Global proteomic and phosphoproteomic data 415 

were downloaded from LinkedOmics (https://www.linkedomics.org/). 416 

To standardize the global phosphoprotein data across various cancer types, we 417 

initially normalized the data using z-scores. Subsequently, global proteins and 418 

phosphoproteins with > 30% missing values in each cancer-type sample were excluded, 419 

followed by k-nearest neighbor imputation with k=5 to address missing values. 420 

 421 

CNV calling and WGD detection 422 

As segment-level CN data for BRCA, COAD, and HGSC were unavailable, we acquired BAM 423 

files from the GDC data portal and performed the CNV calling process. FACETS v0.16.0 
71

 was 424 

employed to discern allele-specific CN information. The input for FACETS consisted of paired 425 

tumor-normal BAM files and a VCF file containing common and germline polymorphic sites 426 

downloaded from https://www.ncbi.nlm.nih.gov/variation/docs/human_variation_vcf/. 427 

Using major CN and minor CN data derived from segment-level CNV data, we defined 428 

samples as “WGD-positive” if over 50% of their autosomal genome exhibited a major CN 429 

greater than or equal to two 
1
.  430 

 431 

Mutational signature analysis 432 

We conducted a mutational signature analysis using the COSMIC signature database v3 
72

 433 

and R package Sigminer v2.1.5 
73

. Non-negative matrix factorization was employed to 434 

determine the number of signature groups or factorization ranks. This involved creating a 435 

tumor-by-component matrix with 50 runs and checking the ranks ranging from 2 to 12. Each 436 

signature was identified using the COSMIC signature with the highest cosine similarity. 437 
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Subsequently, hierarchical clustering was performed, and the samples were assigned to one 438 

of the signatures based on the consensus matrix. 439 

 440 

Analysis of differential expression  441 

To discern the differentially expressed genes between WGD-positive and WGD-negative 442 

samples, we employed the “DESeq” function from the DESeq2 R package 
74

. The raw count 443 

data were used for the generation of a DESeqDataSet using the “DESeqDataSetFromMatrix” 444 

function. Following a variance stabilizing transformation and the exclusion of data points 445 

with a mean raw count less than 50, we conducted the differential expression analysis 446 

utilizing the “DESeq” function, which is grounded in the negative binomial distribution. The 447 

DEG analysis was performed using the following formula: 448 

������ �  ~  
��. ������ 

To detect the differential expression of global and phospho-proteins in the WGD 449 

samples, we employed an integrated hypothesis testing method following the methodology 450 

proposed by Hwang et al 
75

. Briefly, we performed t-tests, median difference tests, and 451 

Wilcoxon tests and combined the p-values from the statistical tests using Stouffer's method. 452 

This approach enhances the accuracy of identifying true-positive data elements compared 453 

with traditional methods when applied to biological data. 454 

 455 

Gene set enrichment analysis 456 

We conducted a gene set enrichment analysis to elucidate the activated biological pathways 457 

in each sample. The “zscore” function from the R package GSVA 
76

 was utilized for analyzing 458 

transcriptome, global proteome, and phospho-proteome data. Pathways from various 459 

databases, including hallmark (“h.all.v2023.1.Hs.symbols.gmt.txt”), KEGG 460 

(“c2.cp.kegg.v2023.1.Hs.symbols.gmt.txt”), Reactome 461 

(“c2.cp.reactome.v2023.1.Hs.symbols.gmt.txt”), GO (“c5.go.v2023.1.Hs.symbols.gmt.txt”), 462 

and Wikipathway (“c2.cp.wikipathways.v2023.1.Hs.symbols.gmt.txt”) sourced from MSigDB 463 

were incorporated into the gene set variation analysis. Subsequently, we performed a t-test 464 

between WGD-positive tumors and WGD-negative tumors to identify significantly regulated 465 

pathways in the context of WGD. 466 

 467 

Estimation of transcription factor and kinase activity 468 
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We used the data corresponding to transcription factor (TF)-target interactions from 469 

CollecTRI 
77

 to estimate TF activity. The log-2-fold change values derived from the analysis of 470 

differentially expressed genes (DEGs) served as inputs for the identification of TF activity in 471 

WGD-positive samples. For estimating kinase activity, we employed kinase-substrate 472 

interactions sourced from OmniPathR 
46

. The log-2-fold change values obtained from the 473 

analysis of differentially expressed phosphorylated proteins were used as inputs to identify 474 

the kinase activity in WGD-positive samples. Subsequently, we employed the “run_mlm” 475 

function within the decoupleR R package 
33

 to infer both TF and kinase activities, with the 476 

minimum size of regulons set to 1. 477 

 478 

Cancer dependency and druggability analysis 479 

For the comparison of cancer dependencies between WGD-positive and WGD-negative cells, 480 

we downloaded “CRISPR (DepMap Public 23Q2+Score, Chronos),” “RNAi 481 

(Achilles+DRIVE+Marcotte, DEMETER2),” and “Aneuploidy” data for each cancer cell line 482 

from DepMap (https://depmap.org/portal/). We subset the cell lines with annotated 483 

genome doubling statuses. Cell lines with one or more instances of genome doubling were 484 

classified as WGD-positive, whereas those without genome doubling were categorized as 485 

WGD-negative. We conducted a one-sided Wilcoxon rank-sum test to assess whether the 486 

WGD-positive cells exhibited lower viability than the WGD-negative cells. To evaluate the 487 

druggability of each TF, we used the DGIdb (v5.0.5) 
78

. TFs lacking interactions with drugs 488 

were deemed “undruggable,” those with interactions with FDA-approved drugs were 489 

designated as “FDA-approved,” and those interacting with known drugs but not with FDA-490 

approved ones were labeled as “druggable.” 491 

 492 

Survival analysis 493 

The Kaplan–Meier estimation model was used to perform survival analysis. The survival 494 

duration of the patients and death events were used as inputs for the analysis. To identify 495 

the TFs associated with poor prognosis, we compared survival curves between samples with 496 

the top 50% and bottom 50% protein expression for each significantly activated TF in WGD 497 

(false discovery rate [FDR] < 0.1). 498 

 499 

Drug repurposing network analysis 500 
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DrugSt. One (v1.2.0) 
53

 was used to build the drug repurposing network. Significantly 501 

upregulated kinases (FDR < 0.1) in the WGD for each tumor type were used as inputs for the 502 

search algorithms. NeDRex (v2.21.0) was used for protein-protein and protein-drug 503 

interaction searches. For the protein-protein interaction network, we used a multi-Steiner 504 

algorithm, setting the number of trees to five, tolerance to five, and hub penalty to 0.5. For 505 

the protein-drug interaction network, we used a harmonic centrality algorithm, setting the 506 

hub penalty to 0.5 and the result size to 50 and excluding indirect and non-approved drugs. 507 

  508 
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Supplemental tables 509 

Table S1.xlsx: Sample overview and copy number signatures associated with WGD 510 

Table S2.xlsx: Enriched pathways in WGD 511 

Table S3.xlsx: Activated transcription factor in WGD and their druggability 512 

Table S4.xlsx: Activated kinases in WGD and drug repurposing network 513 
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Supplemental figures 515 

 516 
Figure S1. Tumor mutation burden in WGD  517 

(A) Violin plot comparing tumor mutation burden between WGD-positive and WGD-negative 518 

tumors across 10 cancer types. (B) Boxplots comparing tumor mutation burden between 519 

WGD-positive and WGD-negative tumors within each cancer type. 520 

  521 
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 522 

 523 
Figure S2. Pathway enrichment in WGD-positive tumors 524 

(A-C) Boxplot comparing Normalized enrichment scores (NES) score of dTTP metabolism 525 

pathway (GOBP_DTTP_METABOLIC_PROCESS), DNA endoreduplication pathway 526 

(GOBP_DNA_ENDOREDUPLICATION), and Wnt signaling pathway 527 

(HALLMARK_WNT_BETA_CATENIN_SIGNALING) between WGD-positive and WGD-negative 528 

tumors in individual cancer types. 529 

  530 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 18, 2024. ; https://doi.org/10.1101/2024.04.16.24305805doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.16.24305805
http://creativecommons.org/licenses/by-nc/4.0/


531 
 Figure S3. Activated TFs in WGD in each cancer type 532 

(A-I) Significantly upregulated TFs in WGD in each cancer type are shown. Significant 533 

features are indicated as an asterisk (TF score, FDR < 0.05; DEG, FDR < 0.05; DEP, FDR < 0.05; 534 

CRISPR, p < 0.1; RNAi, p < 0.1; Prognosis, p <0.05). 535 

 536 

537 
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