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Abstract 26 

Multi-ancestry statistical fine-mapping of cis-molecular quantitative trait loci (cis-molQTL) aims to improve the 27 

precision of distinguishing causal cis-molQTLs from tagging variants. However, existing approaches fail to reflect 28 

shared genetic architectures. To solve this limitation, we present the Sum of Shared Single Effects (SuShiE) model, 29 

which leverages LD heterogeneity to improve fine-mapping precision, infer cross-ancestry effect size correlations, 30 

and estimate ancestry-specific expression prediction weights. We apply SuShiE to mRNA expression measured in 31 

PBMCs (n=956) and LCLs (n=814) together with plasma protein levels (n=854) from individuals of diverse 32 

ancestries in the TOPMed MESA and GENOA studies. We find SuShiE fine-maps cis-molQTLs for 16% more genes 33 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305836doi: medRxiv preprint 

NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.

https://doi.org/10.1101/2024.04.15.24305836
http://creativecommons.org/licenses/by-nc-nd/4.0/


 2 

compared with baselines while prioritizing fewer variants with greater functional enrichment. SuShiE infers highly 34 

consistent cis-molQTL architectures across ancestries on average; however, we also find evidence of 35 

heterogeneity at genes with predicted loss-of-function intolerance, suggesting that environmental interactions 36 

may partially explain differences in cis-molQTL effect sizes across ancestries. Lastly, we leverage estimated cis-37 

molQTL effect-sizes to perform individual-level TWAS and PWAS on six white blood cell-related traits in AOU 38 

Biobank individuals (n=86k), and identify 44 more genes compared with baselines, further highlighting its benefits 39 

in identifying genes relevant for complex disease risk. Overall, SuShiE provides new insights into the cis-genetic 40 

architecture of molecular traits. 41 

Introduction 42 

Characterizing the functional consequences of genetic variation remains a crucial task in deciphering the 43 

mechanisms underlying complex disease risk1,2. To this end, cis-molecular quantitative trait loci (cis-molQTL) 44 

mapping seeks to identify genetic variants associated with genomically proximal molecular features measured 45 

across diverse cellular, tissue, and environmental contexts3–14. However, due to linkage disequilibrium (LD), it is 46 

challenging to distinguish causal cis-molQTLs from tagging variants within a genomic region3,5. Statistical fine-47 

mapping aims to resolve precisely this issue15–19, yet pervasive LD signals limit the resolution of these approaches. 48 

Previous efforts have demonstrated that leveraging the heterogeneity of LD and minor allele frequency (MAF) 49 

across diverse ancestries improves the precision of statistical fine-mapping and therefore enhances our biological 50 

understanding of complex diseases20–25 and molecular traits26–32. 51 

While existing multi-ancestry fine-mapping frameworks have been proposed for the analysis of complex traits and 52 

diseases30,33–41, they have several limitations in the context of large-scale cis-molQTL data. First, many approaches 53 

do not model the correlation of causal variant effect sizes across ancestries or assume that they are a-priori 54 

independent across ancestries, which fails to reflect shared or similar genetic architectures33,35,37,38. Second, 55 

existing multi-ancestry approaches scale poorly, which precludes their application to thousands of molecular traits 56 
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commonly measured in cis-molQTL studies33,35,40. Third, current fine-mapping approaches lack ancestry-specific 57 

effect size estimates33,35,37, which neglects their potential use in post-Genome-wide Association Studies (GWASs) 58 

frameworks (e.g., Transcriptome- and Proteome-wide Association Studies (TWASs/PWASs)42–47. Last, while recent 59 

approaches address some of these limitations, existing software implementations are capable of analyzing only 60 

two ancestries, which excludes datasets consisting of ever-increasing diverse ancestries39.  61 

Here, we describe the Sum of Shared Single Effects (SuShiE) approach to fine-map genetic variants shared across 62 

diverse ancestries for thousands of molecular traits. SuShiE integrates genotypic and molecular data from multiple 63 

ancestries to identify cis-molQTLs while modeling and learning the covariance structures of shared/non-shared 64 

signals. SuShiE leverages four key insights. First, SuShiE improves fine-mapping precision of the shared cis-molQTLs 65 

by leveraging LD across different ancestries. Second, it estimates ancestry-specific effect sizes at shared cis-66 

molQTLs. Third, it infers the prior effect size correlation across ancestries to shed light on genetic similarities and 67 

differences. Lastly, SuShiE is implemented using a scalable variational inference algorithm that runs seamlessly on 68 

CPUs, GPUs, or tensor-processing units (TPUs). 69 

Through extensive simulations, we show that SuShiE outputs higher posterior inclusion probabilities (PIPs) at 70 

causal cis-molQTLs, outputs smaller credible set sizes, and exhibits better calibration compared with current 71 

approaches15,38. Using bulk mRNA expression levels measured in peripheral blood mononuclear cells (PBMCs) and 72 

lymphoblastoid cell lines (LCLs) together with protein abundance measured in plasma, we fine-map 36,911 73 

molecular phenotypes across American European, African, and Hispanic ancestries from TOPMed-MESA48,49 74 

(nmRNA=956 and nprotein=814) and GENOA26  (nmRNA=854). SuShiE fine-maps significantly more cis-molQTLs with 75 

smaller credible sets and greater enrichment in relevant functional annotations compared with existing methods. 76 

In addition, SuShiE infers shared genetic architecture of cis-molQTL in significantly heritable genes and shows the 77 

heterogeneity across ancestries of signals associated with multiple measures of loss-of-function (LOF) intolerance. 78 

Last, we integrate ancestry-specific cis-molQTL effects inferred by SuShiE with six white blood cell-related traits 79 

to perform individual-level TWAS and PWAS in the All of Us Biobank (average n=86,345)50 and observe that SuShiE-80 
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based prediction models identified 44 additional associated genes compared with the baseline approach. Overall, 81 

our approach sheds light on understanding the genetic cis-architecture of molecular data across multiple 82 

ancestries. 83 

Results 84 

SuShiE overview 85 

Here, we briefly introduce the SuShiE model (for a detailed description, see Methods and Supplementary Note). 86 

SuShiE assumes cis-molQTLs are present in all ancestries (defined as shared cis-molQTLs) while allowing for effect 87 

sizes at causal cis-molQTLs to covary across ancestries a-priori, in contrast to previous multi-ancestry 88 

approaches15,33,35,37,38. These assumptions provide enough flexibility to model a variety of cis-genetic architectures 89 

across ancestries, including cases when effects are present only in a subset of ancestries. For instance, when 90 

effects are observed only in a subset of ancestries, prior variances can be shrunk towards zero to effectively allow 91 

for ancestry-specific causal cis-molQTLs.  92 

Focusing on the 𝑖!" out of 𝑘 ancestries, SuShiE models the normalized levels of a molecular trait 𝒈#	 measured in 93 

𝑛#	 individuals as a linear combination of 𝑝 genotyped variants 𝑿# 	as  94 

𝒈#	 = 𝑿#	 )*𝜸% ⋅ 𝑏#,%

'

%()

.	+	𝝐#	, 95 

where 𝐿 is the number of shared effects, 𝜸%  is a 𝑝 × 1 binary vector selecting the 𝑙!" causal cis-molQTL shared 96 

across ancestries, 𝑏#,%  is the 𝑙!"  effect size in the 𝑖!"  ancestry, and environmental noise distributed as 97 

𝝐#	~𝑁(𝟎, 𝜎*#,+	𝑰,!) (Fig. 1A). Following previous work15,51,52, we place a Multi(1, 𝝅) prior over 𝜸%  where 𝝅 is a 98 

𝑝 × 1  vector representing prior probability for each SNP to be shared cis-molQTLs; however, unlike existing 99 

approaches33,35,37,38, we organize ancestry-specific effect sizes under a multivariate normal prior [𝑏),% 	, . . . , 𝑏-,%] ∼100 

𝑀𝑉𝑁(𝟎, 𝑪%) where 𝑪%  is the 𝑙!" 𝑘 × 𝑘 prior effect size covariance matrix. To perform scalable inference, we use a 101 
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variational Bayesian approach and compute, for each of the 𝐿 shared effects, the posterior probability of a shared 102 

causal cis-molQTL (𝜶%), the ancestry-specific posterior effect sizes, and covariances, in addition to prior effect-size 103 

correlations (Fig. 1B) inferred through a procedure analogous to Empirical Bayes. Through learning prior effect-104 

size correlations, SuShiE can quantify genes’ heterogeneity in cis-molQTL effects across ancestries.  105 

SuShiE constructs a 90% credible set for each of the 𝐿 effects along with a posterior inclusion probability (PIP) for 106 

each SNP to be putative causal cis-molQTL (see Methods). SuShiE is implemented in an open-source command-107 

line Python software with JAX (see Methods and Code Availability) using Just-In-Time compilation to achieve high-108 

speed inference that runs seamlessly on CPUs, GPUs, or TPUs at https://github.com/mancusolab/sushie. 109 

SuShiE outperforms other methods in realistic simulations 110 

First, to recapitulate the benefits of multi-ancestry study design33,35,37–41, we performed simulations varying the 111 

number of contributing ancestries under a fixed total sample size (see Methods). As the number of ancestries 112 

increased, SuShiE produced higher PIPs at causal cis-molQTLs, smaller credible set sizes, and better calibration 113 

(Fig. S1), reaffirming that increasing genetic diversity refines fine-mapping results compared with expanding the 114 

sample size of a single ancestry. Next, we evaluated the performance of SuShiE in simulations by varying different 115 

parameters and compared against three baselines: SuShiE-Indep (i.e., SuShiE assuming no a-priori correlation of 116 

effect sizes across ancestries), meta-SuSiE (i.e., a meta-analysis on single-ancestry SuSiE), and SuSiE (i.e., SuSiE 117 

performed over data aggregated across ancestries; see Methods). For all simulations, SuShiE output higher PIPs 118 

at causal cis-molQTLs (~0.06 on average; all P<3.1e-4; Fig. 2A, S2), smaller credible set sizes (~0.73 on average; 2 119 

out of 3 comparisons P<0.05; Fig. 2B, S3), and better calibration (~0.08 on average; all P<1.51e-7; Fig. 2C, S4). 120 

SuShiE similarly outperformed competing methods under simulations with differential power (Fig. S5) and genetic 121 

architectures across ancestries (Fig. S6). Next, we evaluated the ability of SuShiE to infer prior effect size 122 

correlations from data (see Methods). SuShiE accurately estimated primary effect size correlations (Fig. 2D) with 123 
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higher-order effects having diminishing accuracies. This result was likely due to decreasing statistical power, as 124 

evidenced by simulations under increased sample sizes (Fig. 2D, S7). 125 

Next, we assessed the robustness of SuShiE when there exist genetic variants causal for only a subset of ancestries 126 

in addition to shared causal cis-molQTLs (see Methods). As the number of ancestry-specific cis-molQTLs increased, 127 

the performance of all approaches decreased compared with previous simulations. However, SuShiE continued 128 

producing higher PIPs at shared causal cis-molQTLs (Fig. S8A), smaller credible set sizes (Fig. S8B), and better 129 

calibrated credible sets (Fig. S8C), demonstrating SuShiE’s robustness when ancestry-specific cis-molQTLs are 130 

present. We also evaluated performance in simulations where the number of causal effects (i.e., 𝐿) differs from 131 

the number specified at inference and observed that SuShiE similarly outperformed alternative approaches (Fig. 132 

S9). 133 

Last, we evaluated the use of SuShiE-derived ancestry-specific effect sizes in cis-molQTL data as a means to predict 134 

the genetic component of gene expression for downstream TWAS42–44. Briefly, we performed simulations under a 135 

model in which gene expression mediates disease risk and compared SuShiE predictions with commonly used 136 

approaches for prediction-based TWAS (e.g., LASSO53, Elastic Net54, and gBLUP55) to identify susceptibility genes 137 

(see Methods). SuShiE-derived prediction models more accurately recapitulated gene expression levels compared 138 

with existing approaches and exhibited higher statistical power for TWAS with various study sample sizes and 139 

proportion of trait heritability mediated by gene expression (Fig. 2E-F, S10).  140 

Overall, SuShiE outperforms existing approaches in realistic parameter settings, remains robust under model 141 

misspecifications, and improves statistical power in post-GWAS analyses. 142 

SuShiE identifies more functionally relevant cis-molQTL signals  143 

Having verified that SuShiE outperforms other methods under realistic simulations, we next sought to perform 144 

fine-mapping on 36, 911 molecular phenotypes from diverse ancestries. Specifically, from the Trans-Omics for 145 

Precision Medicine program Multi-Ethnic Study of Atherosclerosis48,49 (TOPMed-MESA), we analyzed mRNA 146 
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expression data of 21,747 genes measured in PBMCs (visit-1; n=956) and protein expression data of 1,274 genes 147 

measured in plasma (visit-1; n=854) for American European, African, and Hispanic ancestries (EUR, AFR, and HIS), 148 

together with mRNA expression data of 13,890 genes measured in LCLs (n=814) for EUR and AFR from the Genetic 149 

Epidemiology Network of Arteriopathy study26 (GENOA; see Methods; Table S1). 150 

Focusing on 1Mb windows for each gene (i.e., cis-region), SuShiE fine-mapped cis-molQTLs for 21,088 phenotypes 151 

(e/pGenes), representing an average increase of 3,378 (16%) compared with existing methods (i.e., SuShiE-Indep, 152 

Meta-SuSiE, and SuSiE; all P<2.94e-110; see Methods). For example, SuShiE fine-mapped 21% more e/pGenes 153 

compared to single-ancestry SuSiE followed by meta-analysis (i.e., Meta-SuSiE; P=7.01e-238), again highlighting 154 

the benefit of multi-ancestry study design. SuShiE-based credible sets maintained higher average PIPs (~0.07 on 155 

average) and higher frequency of cis-molQTLs with PIPs > 0.9 (~0.02 on average), as well as smaller credible sets 156 

in most cases (~6.24 on average; Table S2). We found the performance advantage slightly diminished in TOPMed-157 

MESA protein and GENOA mRNA datasets, likely due to lower statistical power. Using the number of credible sets 158 

identified after purity pruning (see Methods), SuShiE estimated most (90.4%) molecular phenotypes to exhibit 1-159 

3 cis-molQTL signals (Fig. 3A) with PIPs localizing near the transcription start site (TSS; Fig. 3B), consistent with 160 

previous studies3,4,26,56,57. 161 

To characterize the regulatory function of identified cis-molQTL signals, we performed enrichment analysis using 162 

PIPs with 89 genomic functional annotations (see Methods). We observed that PIPs inferred by SuShiE were 163 

enriched in 83/89 annotations across all three datasets, with the highest enrichment occurring in promoter 164 

regions (Table S3). For example, PIPs were enriched in 4/5 candidate cis-regulatory elements (cCREs) from 165 

ENCODE Registry v358 (Fig. 3C) and in all 10 cell-type/tissue-specific cCREs using single-nucleus(sn) or single-cell(sc) 166 

ATAC-Seq59,60 (Fig. S11). Importantly, PIPs inferred by SuShiE were more enriched across functional annotations 167 

compared with those computed from existing fine-mapping methods (all P<8.13e-3; Table S4), highlighting 168 

SuShiE’s ability to better prioritize functionally relevant cis-molQTLs. Next, to explore how potential regulatory 169 

function may differ among cis-molQTLs contributing to the same gene, we repeated the above analyses using per-170 
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effect posterior probabilities (𝛼% ), rather than overall inclusion probabilities (i.e., PIPs). First, the initial three 171 

shared effects were similarly localized near the TSS (Fig. S12) and were more enriched in promoter regions 172 

compared to the PIP-based analyses (Fig. S13; Table S5), echoing the previous finding that most genes are 173 

regulated by 1-3 cis-molQTLs3,4,26,57. Second, we found cis-molQTLs with weaker effects were further away from 174 

the TSS on average (Fig. S14), likely due to statistical power. For example, we observed the expected distance to 175 

TSS for the initial three shared effects was 84.7kb compared with 144.5 kb for the remaining shared effects (i.e., 176 

from L=6 to L=10; P=8.39e-113).  177 

Last, we sought to validate our fine-mapping results by applying SuShiE on molecular phenotypes from three 178 

independent datasets: mRNA expression measured in PBMCs of EUR, AFR, and HIS ancestries from TOPMed-179 

MESA48,49 (visit-5, ten-year after visit-1; n=875), mRNA expression measured in LCLs (n=462) of EUR and Yoruba 180 

(YRI) ancestries from GEUVADIS study61, and protein expression measured in plasma of EUR ancestry (N=3,301; 181 

single-ancestry SuSiE) from INTERVAL study5 (see Methods; Table S1). First, we confirmed SuShiE identifies 4,361 182 

(21%; all P<2.89e-112) more e/pGenes on average compared with existing methods while obtaining higher 183 

average PIPs (~0.07 on average), smaller credible set sizes (~6.54 on average), and more cis-molQTLs with PIPs > 184 

0.9 (~0.04 on average) for TOPMed-MESA visit-5 and GEUVADIS (Table S6). Second, focusing on 20,502 e/pGenes 185 

identified by SuShiE that were also measured in validation datasets, 34% (41%, 32%, and 13% for TOPMed-MESA 186 

visit-5, INTERVAL, and GEUVADIS, respectively) cis-molQTLs replicated in the validation datasets with an average 187 

cosine similarity of 0.70 (0.72, 0.63, and 0.45 for the three mentioned studies; P<2e-200 for all), which increased 188 

to 73% and 0.75 respectively after conditioning on significantly heritable genes and the primary signal (see 189 

Methods). The diminished replication performance of GEUVADIS likely resulted from a combination of 190 

significantly reduced sample sizes, admixture differences between African YRI and American Africans in GENOA, 191 

and genotyping differences (see Methods). Furthermore, SuShiE exhibited similar replication ratios and cosine 192 

similarities compared to existing methods, suggesting the higher number of e/pGenes identified by SuShiE were 193 

not likely due to false positives (Table S7; see Methods). 194 
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Overall, by jointly modeling multi-ancestry data, SuShiE identifies additional cis-regulatory mechanisms for 195 

molecular traits. 196 

SuShiE identifies putative eQTL for URGCP 197 

Here, we showcase a putative eQTL for URGCP, a gene on chromosome 7 that has been implicated in tumor growth 198 

and progression62–66. SuShiE fine-mapped a single SNP in TOPMed-MESA mRNA (rs2528382; GRCh38: 7:43926148; 199 

PIP=0.94; Fig. 4A), while alternative methods did not produce credible sets for this gene. Importantly, SuShiE 200 

replicated rs2528382 in TOPMed-MESA visit-5 mRNA data. We found rs2528382 was reported as significant in 201 

whole blood eQTL data from the eQTLGen Consortium4, the Study of African Americans, Asthma, Genes, and 202 

Environments (SAGE), and the Genes-Environments and Admixture in Latino Asthmatics (GALA II) study31, further 203 

supporting its role in regulating URGCP expression levels.  Investigating the functional consequences of rs2528382 204 

using genomic annotations, we found rs2528382 represents a non-coding exon variant within the 5’ UTR67, and 205 

localizes within a proximal enhancer region (pELS), as evidenced by strong signals of H3K27ac in PBMCs58 falling 206 

within 2kb of the TSS (Fig. 4B). Lastly, through snATAC-seq59 and scATAC-seq60, we found rs2528382 localizes 207 

within an open chromatin accessibility region measured in different cell types, such as PBMCs, naive T cells, naive 208 

B cells, cytotoxic NK cells, and monocytes. Altogether, these results suggest that rs2528382 regulates URGCP 209 

expression levels in PBMCs through disruption of regulatory activity.  210 

SuShiE reveals heterogeneity of cis-molQTL effect sizes at the loss-of-function intolerant genes 211 

After validating cis-molQTLs identified by SuShiE, we next sought to characterize genetic architectures of 212 

molecular traits across ancestries. First, we computed cis-SNP heritability for all e/pGenes of each ancestry and 213 

observed 87% significant heritable genes (in at least one ancestry) across studies (Fig. S15), which resulted in 214 

highly correlated estimates across ancestries (Fig. S16). Next, using SuShiE-derived estimates of cis-molQTL 215 

correlation across ancestries (see Methods), we found highly consistent effect-size correlations on average (0.81, 216 
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0.86, and 0.87 for EUR-AFR, EUR-HIS, and AFR-HIS, respectively), which further increased when focusing on genes 217 

whose heritabilities are significant in all ancestries (0.94, 0.98 and 0.99, respectively; 9,885 genes; 46.9%; Figs. 218 

S17-S18). Altogether, these results further affirm previous results20,21,23,68–74 demonstrating primarily shared 219 

genetic architectures for molecular traits across ancestries. 220 

Despite this evidence, we observed a long tail of heterogeneous effect sizes (i.e., SuShiE-estimated effect size 221 

correlation <1), suggesting the presence of ancestry-specific cis-molQTL effects (Fig. S19), which is consistent with 222 

previous multi-ancestry cis-molQTL studies27,31,72. To characterize this apparent heterogeneity across ancestries, 223 

we correlated the estimated correlation signals with multiple measures of constraint (pLI75, LOEUF76, EDS77, RVIS78, 224 

and shet
79) and found highly significant associations (Table 1; see Methods). Overall, genes with lower effect-size 225 

correlations across ancestries exhibited higher intolerance to loss-of-function mutations on average. For example 226 

using TOPMed-MESA mRNA dataset, we observed an average cis-molQTL effect size correlation of 0.81 (when L=1; 227 

SE=0.02) between EUR and AFR individuals at genes that exhibited pLI >0.9, which increased to 0.86 (when L=1; 228 

SE=0.01) when focusing on genes with pLI <0.1. Genes with high constraint exhibited lower estimates of cis-SNP 229 

heritability on average (Table S8), which may result in apparent heterogeneity arising from low statistical power. 230 

Given this, we re-analyzed putative relationships using estimated covariances, only primary signals (L=1), and 231 

bootstrapped standard errors and found broadly consistent results (Table 1). In addition, we observed our results 232 

were robust to adjusting for Wright’s fixation index (Fst; Table 1; see Methods), suggesting 233 

heterogeneity/constraint associations are not driven solely by allele frequency differences across ancestries.  234 

To investigate the relationship between cis-molQTLs identified by SuShiE and gene constraint, we first observed 235 

inverse associations between the number of fine-mapped cis-molQTLs per gene and constraint (Fig. S20), 236 

consistent with several previous studies showing the depletion of cis-molQTLs for high constraint genes56,77,80. 237 

However, we also observed positive associations between expected cis-molQTLs’ distance to TSS and constraint, 238 

affirming previous results that high constraint genes tended to have more complex regulatory regions56,77 (Fig. 239 

S21; see Methods). In addition, we correlated gene enrichment scores from ENCODE58 cCREs with constraint 240 
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scores. We found that putative causal cis-molQTLs for high constraint genes tended to be enriched for distal 241 

enhancers (dELS) and depleted for promoter (PLS) and proximal enhancers (pELS) compared with weakly 242 

constrained genes, consistent with several previous studies56,77 (Fig. S22). We found these associations remained 243 

significant after accounting for Fst, suggesting average allele frequency differences across ancestries cannot solely 244 

explain the observed heterogeneity. 245 

Overall, SuShiE recapitulates the findings of primarily shared genetic architectures of molecular traits and show 246 

that effect size heterogeneity is consistent with gene LOF intolerance. 247 

Posterior cis-molQTL effect sizes improve T/PWAS power in white blood cell traits 248 

Lastly, to showcase the downstream benefits of SuShiE, we performed TWAS and PWAS42–44 on six white blood-249 

cell-related traits in AOU biobank50 (average n=86,336; Table S9). First, we assessed the predictive performance 250 

of SuShiE-based weights compared to alternative expression-prediction methods. Specifically, SuShiE obtained 251 

better cross-validation estimates (cv-𝑟*) compared to SuShiE-Indep, Meta-SuSiE, SuSiE, Elastic Net and gBLUP (2 252 

out of 5 comparisons P<0.05) and comparable estimates relative to LASSO (P=0.64; Fig. S23A). When focusing on 253 

genes with estimated cis-molQTL effect size correlation <0.9 across ancestries, we find SuShiE consistently 254 

outperformed other approaches (4 out of 6 comparisons P<0.05; Fig. S23B), suggesting the benefits in modeling 255 

and learning the prior effect size covariances. We observed significantly decreased prediction performance when 256 

evaluating cross-ancestry prediction (e.g., predicting mRNA expression of AFR using EUR weights; see Methods; 257 

P=1.71e-53; Fig. S24), consistent with previous works22,27,36,81 and further motivating ancestry-matched analyses. 258 

Given this, we predicted the expression levels of 20,515 genes (mRNA) and 573 proteins using ancestry-matched 259 

SuShiE cis-molQTL prediction weights from the above analyses and AOU genotypes. Overall, we identified 221 260 

T/PWAS significant associations in white blood count (WBC), eosinophil count (EOS), and monocyte count (MON; 261 

Table S10; Fig. S25). Of these associations, ~90% were identified in WBC due to substantially increased statistical 262 

power (i.e., 21,476 more participants on average). We found no significant associations in lymphocyte count (LYM), 263 
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neutrophil count (NEU), and basophil count (BAS), likely due to low detected cell counts, similar to previous 264 

studies36,82 that identified fewer associations compared to models based on WBC. 265 

Consistent with our simulation results (Fig. 2F), SuShiE demonstrated higher T/PWAS chi-square statistics and 266 

identified 44 more T/PWAS associations compared to results driven by SuSiE prediction weights (Fig. 5A). In 267 

addition, we observed that the SuShiE T/PWAS signals associated with multiple measures of LOF intolerance 268 

(Table S11), in contrast to previous work demonstrating that high LOF intolerance genes are typically depleted in 269 

TWAS models due to weak eQTL signals56,77,80 (Fig. 5B; see Methods). We found less support for a relationship 270 

between SuSiE-based TWAS signals and LOF intolerance (P=9.21e-10; Table S11), further demonstrating SuShiE’s 271 

advantage. To validate our results,  we compared our TWAS statistics with multiple independent white blood cell-272 

related TWASs31,36,82–84. Overall, we found SuShiE-based TWAS replicated at rates similar to SuSiE, suggesting that 273 

its improved power is unlikely due to false positives and further highlighting its benefit in identifying disease-274 

related genes. 275 

Overall, our work has shown that by jointly modeling the molecular data across different ancestries while allowing 276 

effect sizes to differ, SuShiE outputs more accurate cis-molQTL prediction weights, thus boosting the downstream 277 

statistical power for integrative analyses with GWASs. 278 

Discussion 279 

Here, we present the Sum of Shared Single Effect approach (SuShiE), a novel approach for multi-ancestry SNP fine-280 

mapping of molecular traits using a scalable variational approach. SuShiE assumes the joint cis-molQTL effects 281 

arise as a linear combination of per-ancestry effect sizes across shared causal variants. Through extensive 282 

simulations, SuShiE first improved the fine-mapping precision in disentangling the causal cis-molQTLs from tagging 283 

SNPs by leveraging LD heterogeneity across diverse ancestries. Second, SuShiE accurately learned prior effect size 284 

correlations across ancestries employing a procedure analogous to Empirical Bayes. Third, SuShiE estimated 285 

ancestry-specific cis-molQTL prediction weights, boosting findings in the post-GWAS framework (e.g., TWAS and 286 
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PWAS), compared to the baselines that did not model effect size covariance across ancestries or ignored ancestry 287 

altogether. We applied SuShiE to 36,911 molecular phenotypes of diverse ancestries from three datasets: mRNA 288 

and protein expression from TOPMed-MESA and mRNA expression from GENOA. SuShiE fine-mapped 16% more 289 

genes on average compared to the existing methods, exhibiting smaller credible set sizes and higher enrichment 290 

in relevant functional annotations. SuShiE inferred highly correlated cis-molQTL effect sizes across ancestries on 291 

average in significantly heritable genes, reflecting primarily shared cis-molQTL architectures. In addition, we 292 

observed cis-molQTL effect size heterogeneity across ancestries associated with multiple constraint 293 

measurements, consistent with environmental interactions may partially drive differences in effect sizes across 294 

ancestries. Last, we performed TWAS and PWAS on six white blood cell-related traits from AOU biobank using 295 

SuShiE-derived ancestry-specific cis-molQTL prediction weights and identified 44 more significant genes compared 296 

to the existing method. We also observed that SuShiE T/PWAS signals are associated with multiple measures of 297 

LOF intolerance, further showing the benefit of multi-ancestry approaches in identifying genes relevant to 298 

complex disease risk. 299 

Next, we describe caveats in our real data analysis. First, SuShiE approximates ancestry as a discrete category, 300 

allowing us to model cis-molQTL effect sizes using a multivariate normal distribution (see Methods). While this 301 

simplifies modeling and inference tasks, we emphasize that this is a heuristic approach that neglects the complex 302 

and shared demographic histories underlying all humans. Indeed, recent work has demonstrated the importance 303 

of viewing genetic ancestries as a continuous spectrum rather than discrete categories85. Relatedly, previous 304 

studies33,35,37–41 and our simulation results (Fig. S1) have shown that increasing the number of ancestries within a 305 

multi-ancestry framework improves fine-mapping precision. However, SuShiE and similar frameworks perform 306 

inference on variants present after filtering on MAF thresholds (e.g., 1%) within each ancestry. As a result, this 307 

requirement can exclude cis-molQTLs from analysis due to small sample sizes within an ancestry, suggesting a 308 

trade-off in practice between increasing overall sample size versus excluding informative genetic variants. For 309 

instance, we obtained mRNA expression data measured in EUR (n=402), AFR (n=175), HIS (n=277), and East Asian 310 
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ancestry (EAS; n=96) individuals from TOPMed MESA study visit-1. From two-ancestry fine-mapping (EUR and AFR) 311 

to three-ancestry (+HIS), we filtered an additional 29 SNPs per gene on average. However, this number increased 312 

to 501 SNPs by including the additional 96 participants of EAS ancestry. As a result, we opted to not include EAS 313 

participants in our analysis in order to maximize the genetic variants analyzed. Modeling genetic ancestry 314 

continuously can potentially avoid this type of cis-molQTL loss, thus improving the fine-mapping precision with a 315 

larger sample size. 316 

Second, we note that our data consist of African- (AFR) and Hispanic-American (HIS) individuals, which contain 317 

recent admixture events. To account for complex diversity within ancestries, we included genotyping PCs as a 318 

covariate in our models. Several works have suggested that admixture can be sufficiently corrected for using global 319 

ancestry information (i.e., genotyping PCs) in association testing73,86–91, especially when causal effect sizes are 320 

largely consistent across ancestries86,87,89 (Fig. S16-S18). On the other hand, accounting for local ancestry may 321 

increase the associating testing power when causal effects are highly different across ancestries86,87,92 or aid fine-322 

mapping in post-GWAS analysis87,89,93, which can be one of the future directions for SuShiE.  323 

Third, we observed significant associations between gene LOF intolerance and several SuShiE-estimated metrics, 324 

including effect size heterogeneity across ancestries, the number of cis-molQTLs, cis-molQTL distance to TSS, and 325 

functional enrichments. The relationship remained significant after adjusting for Fst, suggesting allele frequency 326 

differences across ancestries are not sufficient to fully explain estimated heterogeneity. As a result, we 327 

hypothesized that cis-molQTL effect size heterogeneity could be in part due to gene-by-environment (GxE) 328 

interactions69,77,94–96. Highly constrained genes exhibit more complex regulatory landscapes with fewer cis-329 

molQTLs (or apparent cis-molQTLs due to smaller effect sizes)56,77. As a result, these genes may be less resilient to 330 

environmental perturbations77, which may induce effect-size heterogeneity across different ancestries. On the 331 

other hand, it is possible that our Fst estimates are underpowered to detect subtle allele frequency differences 332 

across ancestries. Therefore, these associations may provide indirect evidence for natural selection partially 333 

driving cis-molQTL effect size heterogeneity across ancestries. To explicitly investigate the role of selection in 334 
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molecular differences across ancestries, we likely require a more principled modeling procedure based in 335 

population genetics together with higher-resolution molecular data measured in diverse ancestries56,80,97–100. For 336 

instance, recent work has shown the promise of using single-cell data to demonstrate how selection impacts genes 337 

expressed differentially across ancestries101.  338 

Fourth, SuShiE assumes causal cis-molQTLs are shared across ancestries. Our simulations show that SuShiE 339 

remains robust when ancestry-specific cis-molQTLs are present (Fig. S8). However, in situations where there exist 340 

shared cis-molQTLs but ancestries have different sample sizes, SuShiE may prioritize shared cis-molQTLS along 341 

with SNPs tagged in LD of the ancestry with larger sample sizes, evidenced through simulations (Fig. S5B). However, 342 

through our case study in URGCP (Fig. 4), we observed relatively higher signals in AFR but not in EUR and HIS, 343 

despite AFR having the smallest sample size, suggesting this limitation may be minimal overall. 344 

Lastly, in our T/PWAS analysis, we selected six white blood-cell related traits to best match PBMC and LCL contexts. 345 

However, alternative cell-types not included in our analyses may better capture relevant contexts. For example, 346 

PBMCs and LCLs do not contain neutrophils, basophils, and eosinophils, and LCLs additionally do not include 347 

monocytes, which may result in a loss in statistical power. As single-cell RNA-seq datasets become more 348 

available102, one possible direction would be to perform TWAS in fine-grained cellular contexts and backgrounds. 349 

In addition, after predicting expression levels using ancestry-matched weights for each individual, we performed 350 

individual-level T/PWAS by concatenating the predicted expression levels across ancestries rather than perform 351 

ancestry-specific TWAS followed by meta-analysis103. The premise of the meta-analysis approach is that 352 

researchers obtain ancestry-specific GWAS and then integrate with corresponding eQTL weights. Because the 353 

causal genes for complex traits are likely shared across ancestries20,21,23,36,68–74, a regression framework with 354 

individual-level data concatenated across ancestries (the largest sample size) can maximize power. 355 

We briefly discuss potential directions for future work. First, recent studies have shown that incorporating 356 

functional annotation in the prior distribution can improve the fine-mapping precision33,79,104. SuShiE currently 357 

employs a uniform distribution for prior causal probability. Including functionally-informed priors is likely to 358 
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improve its performance further. Second, SuShiE fine-maps individual-level molecular and genotypic data in a 359 

prespecified locus flanking the TSS and TES regions of a gene. In theory, users can apply SuShiE on individual-level 360 

complex trait data, however, this likely will require additional analyses (e.g., pre-specifying GWAS significant loci) 361 

and care in controlling for genome-wide backgrounds and population structure. In addition, the limited 362 

accessibility to the individual-level complex trait data allows the extension of SuSiE-like models to be compatible 363 

with summary statistics38,39,41,51, which typically requires external LD reference panels. As more cis-molQTL 364 

summary statistics are available to the community4,102, we foresee a potential demand to implement this 365 

compatibility in SuShiE. Last, SuShiE currently cannot model molecular data in their original read-count format, 366 

which is usually transformed to a continuous scale (i.e., inverse normal transformation). Extending SuShiE to a 367 

GLM-like model naturally would encompass this scenario and present an exciting direction for SuShiE. 368 

Overall, SuShiE, together with its application on large-scale molecular data of diverse ancestries, identifies more 369 

cis-regulatory mechanisms and reveals its genetic architecture. We anticipate considerable demand for our 370 

approach in the genetics field characterized by forthcoming multi-ancestry and multi-omics research. 371 

Online Methods  372 

Sum of Shared Single Effects Model 373 

Here, we describe the statistical model underlying SuShiE (see Supplementary Note for a detailed description). 374 

SuShiE assumes cis-molQTLs are present in all ancestries, defined as shared cis-molQTLs while allowing for effect 375 

sizes at causal cis-molQTLs to covary across ancestries a-priori. For the 𝑖!" of total 𝑘 ancestries, SuShiE models the 376 

centered and standardized levels of a molecular trait 𝒈#	measured in 𝑛#	 individuals as a linear combination of 𝑝 377 

genotyped variants 𝑿# 	as 378 

𝒈# = 𝑿#𝜷# + 𝝐# 	 379 
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where 𝜷# 	is a 𝑝	 × 1 vector of ancestry-specific cis-molQTL effects, and 𝝐# 	~	𝑁(0, 𝜎#,+* 𝑰,!) is environmental noise. 380 

In addition, we model 𝜷# = ∑ 𝜷#,%'
%()  as the sum of 𝐿 effects 𝜷#,% = 𝜸% ∙ 𝑏#,%   where 𝜸%  is a 𝑝	 × 1 binary vector 381 

indicating which variant is the shared cis-molQTL for the 𝑙!" effect while allowing ancestry-specific effect sizes 𝑏#,%. 382 

Furthermore, we model 𝜸% 	~	Multi(1, 𝝅) where 𝝅 is a 𝑝	 × 1 vector representing prior probability for each SNP 383 

to be a cis-molQTL, and model 𝑏% = O𝑏),% 	⋯	𝑏#,% 	⋯	𝑏-,%	P	~𝑁(𝟎, 𝑪%) where 384 

𝑪#,#",% = Q
𝜎#,.,%* if	𝑖 = 𝑖/

𝜌#,#",%𝜎#,.,%𝜎#",.,% otherwise, 385 

𝑪%  is the 𝑙!" prior 𝑘 × 𝑘 effect size covariance matrix with 𝜎#,.,%*  as variance, and 𝜌%  as correlation.  386 

Variational inference of model parameters 387 

To infer the cis-molQTL effects, we seek to estimate the posterior distribution of Pr(𝜷), . . . , 𝜷-|𝐃𝐚𝐭𝐚) =388 

Pr(𝜷), . . . , 𝜷- 	|	𝒈), . . . , 𝒈- , 𝑿), . . . , 𝑿- , 𝑪, 𝝅, 𝜎),+* , . . . , 𝜎-,+* )  where 𝑪 = {𝑪), … , 𝑪'} . We regard 𝜷∗  as latent 389 

variables, 𝒈∗, and 𝑿∗, as observed data, and 𝑪, 𝝅, and 𝜎∗,+*  are the hyperparameters. However, inferring the exact 390 

distributions of latent variables is computationally intractable due to non-conjugacy with the prior distribution. 391 

Therefore, we seek a surrogate distribution 𝑄(𝜷), . . . , 𝜷-), which minimizes the Kullback–Leibler (KL) divergence 392 

with Pr(𝜷), . . . , 𝜷-|𝐃𝐚𝐭𝐚). Specifically, we have: 393 

𝐷1'c𝑄(𝜷), . . . , 𝜷-)	||	Pr(𝜷), . . . , 𝜷-|𝐃𝐚𝐭𝐚)d	 394 

= log	 Pr	(𝒈), … , 𝒈-|	𝑿), … , 𝑿- , 𝑪, 𝝅, 𝜎),+* , … , 𝜎-,+* ) 395 

−𝐸[	log	Pr(𝜷), . . . , 𝜷- , 𝒈), . . . , 𝒈- 	|	𝑪, 𝝅, 𝜎),+* , … , 𝜎-,+* ) 	− 	log	𝑄(𝜷), 𝜷*)] 396 

where the first term is the log evidence, and the expectation term is the evidence lower bound (ELBO). Since the 397 

log evidence is constant with respect to model variables, minimizing the KL divergence is equivalent to maximizing 398 

the ELBO. Furthermore, to limit the universe of possible forms that the surrogate distribution 𝑄(𝜷), . . . , 𝜷-) may 399 

take, we impose an additional mean-field assumption105. Namely, SuShiE assumes that each of the 𝐿  shared 400 

effects 𝛽%  are mutually independent under 𝑄: 401 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.15.24305836doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.15.24305836
http://creativecommons.org/licenses/by-nc-nd/4.0/


 18 

𝑄(𝜷), . . . , 𝜷-) = ∏ 𝑄(𝜷),% , . . . , 𝜷-,%)'
%() = ∏ 𝑄(𝒃%|𝜸%)𝑄(𝜸%)'

%() . 402 

Therefore, to approximate the posterior distributions 𝑄(∙) for latent variables 𝒃%,2  (a 𝑘 × 1 vector) and 𝜸%,2  (a 403 

scaler) at SNP 𝑗 ∈ [1, 𝑝] of  𝑙!" shared effect, we need to compute the expectation of complete data log-likelihood 404 

𝐿(𝜷), . . . , 𝜷- , 𝒈), . . . , 𝒈- 	|	𝑪, 𝝅, 𝜎),+* , … , 𝜎-,+* ) (i.e., the joint distribution) while holding other variables constant. 405 

Through the principles of coordinate-ascent variational inference (CAVI)105, we can identify each 𝑄(∙)  surrogate 406 

as, 407 

𝑄c𝒃%,2 	|	𝜸%,2 = 1d 	= 𝑁c𝒃%,2 	m	𝝁%,2 , 𝚺%,2) 408 

𝑄c𝜸%,2 = 1d ∝ softmax(log𝝅2 − log	𝑁c𝝁%,2 	|	𝟎, 𝚺%,2d) 409 

𝑄(𝜸%) = Multic𝜸% 	m	1, 𝜶%)	 410 

where 𝝁%,2 ∈ ℝ
-×)  and 𝚺%,2 ∈ ℝ-×-  are the corresponding posterior mean and covariance, and 𝜶% ∈ ℝ4×)  is 411 

each SNP’s posterior probability to explain the 𝑙!" effect. We provide the complete mathematical derivations, 412 

inference algorithms, and detailed definitions in the Supplementary Note.  413 

Computing posterior inclusion probability and 𝜂-credible sets 414 

We define the posterior inclusion probability (PIP) for SNP 𝑗 with 𝜶), … , 𝜶'  as PIP2 ≔ 	1 −∏ (1 − 𝜶%,2)'
%() . To 415 

compute an 𝜂 -credible set for each 𝐿 , where 𝜂  represents the desired probability that the set contains cis-416 

molQTLs, we decreasingly sort 𝜶%  and take a greedy approach to include SNPs until their cumulative sum exceeds 417 

𝜂.  418 

In the case that the inferred number of effects 𝐿 surpasses the actual number of cis-molQTLs, the unnecessary 419 

credible sets will contain most SNPs with low posterior probability close to 𝜶%,2 = 1/𝑝, where 𝑝 is the number of 420 

SNPs. To refine the final inference results, we remove the credible sets whose lowest absolute pairwise correlation, 421 

which is defined as “purity”15 and weighted by sample size across all ancestries, among SNPs is less than 0.5. In 422 

practice, following the previous work15, we empirically specify 𝐿 as 10. 423 
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Inferring cross-ancestry effect size correlations 424 

SuShiE features the capability to estimate the correlation of cis-molQTL effect sizes across multiple ancestries. For 425 

some gene 𝑡, SuShiE by default outputs 𝐿 estimates of the effect size correlation 𝜌z5,), … , 𝜌|5,' for each credible set. 426 

If we apply SuShiE to 𝑇  genes in total, we empirically recommend computing effect size correlation across 427 

ancestries with 𝜌. = 1
𝑇
∑ 𝜌.𝑡,1
𝑇
𝑡=1 . 428 

Simulating genotypes and quantitative molecular traits 429 

To evaluate SuShiE’s performance in simulations, we first simulated genotypes and quantitative molecular traits 430 

to mimic the real-world scenarios using our previous simulation frameworks36,106,107. To simulate genotype data, 431 

we used LD estimates from individuals of European (EUR; n=489), African (AFR; n=639), and East Asian (EAS; n=481) 432 

ancestries from the 1000 Genomes Project (1000G) phase three data108. We limited LD to biallelic HapMap SNPs109, 433 

discarded those with missingness (>1%), MAF (<1%), and violated Hardy-Weinberg equilibrium (HWE mid-adjusted 434 

P< 1e-6). We obtained chromosome, transcription start site (TSS), and transcription end site (TES) information for 435 

19,279 protein-coding autosomal genes using GENCODE release 26 (GRCh37)110. We extended each gene 500,000 436 

base pairs (bp) upstream of TSS and 500,000 bp downstream of TES, and randomly selected 500 genes that have 437 

at least 500 common SNPs across EUR, AFR, and EAS genotypes. 438 

We first focused on simulations using EUR and AFR (𝑘 = 2). At each gene, we simulated centered and standardized 439 

genotype matrix 𝑿# ∈ ℝ,!	×4  for 𝑖!"  ancestry using a multivariate normal distribution 𝑁(0, 𝑽#)  where 𝑛# ∈440 

{200, 400, 600, 800} is the cis-molQTL study sample size, 𝑝  is the number of common SNPs across ancestries in 441 

the locus, and 𝑽# ∈ ℝ4	×4  is the ancestry-specific LD matrix estimated from 1000G genotypes108. Next, we 442 

uniformly chose 𝑚 ∈ {1, 2, 3} out of 𝑝 common SNPs as cis-molQTLs and simulated their ancestry-specific effect 443 

sizes 𝜷�), 𝜷�* ∈ ℝ
	:×) under a bivariate normal distribution as 444 
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, 445 

where ℎ;,#* ∈ {0.01, 0.05, 0.1, 0.2} is the proportion of variance in gene expression explained by cis-molQTLs (i.e., 446 

cis-SNP heritability of the molecular trait) and 𝜌 ∈ {0.01, 0.4, 0.8,0.99} is the effect size correlation. Then, we 447 

constructed effect-size vectors 𝜷)  and 𝜷* , where 𝜷�)  and 𝜷�*  are the 𝑚  non-zero entries at the same index 448 

representing shared cis-molQTLs and the rest 𝑝 −𝑚  entries are zero representing the null SNPs. Next, we 449 

computed the quantitative molecular traits 𝒈#  using 𝑿#𝜷# + 𝝐#  where 𝝐# 	~	𝑁 �𝟎, 𝑠;,#* � )
<#,!
% − 1� 𝑰,!� is the random 450 

environmental noise and 𝑠;,#* = 𝜷#=𝑽#𝜷#  is the genetic variance after accounting for LD. To reflect cases where 451 

heterogeneity exists in the genetic architecture of molecular traits across ancestries31,72, we allowed cis-SNP 452 

heritability to be ancestry-specific with ℎ;,)* = 0.05  and ℎ;,** ∈ {0.01,0.05, 0.1, 0.2} ; we also evaluated the 453 

performance under different statistical power where 𝑛)	 = 400 and 𝑛*	 ∈ {200, 400, 600, 800}. To determine 454 

whether incorporating additional ancestry improves SuShiE’s performance, we simulated the genotypic and 455 

phenotypic data for EAS with the same total sample sizes and genetic architecture. 456 

In addition, we simulated two cases under model misspecification. We first evaluated SuShiE’s performance when 457 

ancestry-specific cis-molQTLs exist, we simulated 𝑚#,>? ∈ {1, 2, 3} cis-molQTLs for both ancestries in addition to 458 

shared cis-molQTLs 𝑚 = 2 while fixing ℎ;,#* = 0.05 for ancestry 𝑖. Second, to reflect cases where the number of 459 

shared cis-molQTL (𝑚) is different from inferred 𝐿 by fixing 𝑚 = 2 and varying the inferred 𝐿 ∈ {2, 5, 10}. 460 

Default parameters and performance metrics 461 

We performed SNP fine-mapping using SuShiE on simulated genotypes and molecular data across EUR and AFR 462 

individuals. In terms of variational inference parameters, we specified 𝐿 ∈ {1, 2, 3} to match the actual number of 463 

simulated effects and initialized cis-molQTL effects 𝒃�%,2  as �00�, their covariance matrix 𝐶�%  as 00.001	 0.1
0.1 0.001	1, the 464 
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prior estimates of environmental noises 𝜎z#,+*  as 0.001, the prior probability for SNPs to be cis-molQTLs as 1/𝑝 465 

where 𝑝 is the number of common SNPs.  466 

To evaluate the gain in parametrizing the effect size correlation across ancestries, we compared our method 467 

SuShiE to “SuShiE-Indep” which assumes the cis-molQTL effect sizes are independent across ancestries; that is, 468 

we fixed the effect size correlation prior 𝜌 = 0, and did not learn it through the Empirical-Bayes-like procedure. 469 

To demonstrate that SuShiE’s improvement does not result from the accumulation of samples across ancestries, 470 

we compared SuShiE’s performance to two “baseline" methods: first, we performed single-ancestry SuSiE and 471 

then meta-analyzed the resulting PIPs by PIP@A!B = 1 − (1 − PIPCDE) ∙ (1 − PIPFGE); we refer to this method as 472 

“meta-SuSiE”. Second, we row-stacked the genotype matrices and molecular trait vectors across ancestries and 473 

then performed single-ancestry SuSiE as “SuSiE.” Overall, we performed four methods (SuShiE, SuShiE-Indep, 474 

meta-SuSiE, and SuSiE) on 500 genes’ simulated genotypes and molecular traits to output corresponding PIPs, 475 

credible sets, and ancestry-specific effect size estimates. We varied four parameters: per-ancestry cis-molQTL 476 

study sample size (𝑛#), the number of cis-molQTLs (𝑚), the cis-SNP heritability of molecular traits (ℎ;*) for each 477 

ancestry, and the effect size correlation (𝜌). To reflect a practical study design, the default parameters were fixed 478 

at 𝑛# = 400 , 𝑚 = 2 , ℎ;* = 0.05 , and 𝜌 = 0.8  unless stated otherwise. Furthermore, we evaluated the fine-479 

mapping performance with three metrics across 500 simulated genes: PIPs at causal cis-molQTLs, credible set size, 480 

and frequency that causal cis-molQTLs are contained in 90% credible sets (calibration). We computed the metrics 481 

of meta-SuSiE based on the union of the credible sets across two single-ancestry SuSiE. As different methods may 482 

or may not prune credible sets at the same simulated gene, to show a fair comparison, we computed the credible 483 

set size metric only using the credible set that none of the four methods pruned out. To compare metrics across 484 

methods, we ran linear regression adjusted for relevant simulation parameters and reported one-sided Wald test 485 

P values. 486 
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Simulating GWAS and TWAS 487 

Transcriptome-wide Association Studies (TWASs) leverage GWAS summary statistics, eQTL prediction weights, 488 

and LD reference to identify genes whose predicted expression levels are associated with complex traits42–44. A 489 

more accurate eQTL prediction weight will increase the power of the TWAS framework. Therefore, we compared 490 

the prediction weights inferred by SuShiE to other methods: SuShiE-Indep, Meta-SuSiE, SuSiE, least absolute 491 

shrinkage and selection operator (LASSO)53, elastic net regularization (Elastic Net)54, and genomic best linear 492 

unbiased prediction (gBLUP)55. We simulated the expression and genotype data for the training and testing set 493 

separately, with the same method mentioned in the previous sections. For the training set, we varied the per-494 

ancestry sample size 𝑛5 ∈ {200, 400, 600, 800} and set the out-of-sample testing set sample size 𝑛H = 200. Then, 495 

we predicted the expressions using ancestry-matched fitted weights on testing genotype data, and computed the 496 

coefficients of determination (𝑟*) between the predicted and simulated expression. For Meta-SuSiE, we trained 497 

the prediction weights for each ancestry using per-ancestry sample size. For SuSiE, LASSO, Elastic Net, and gBLUP, 498 

we trained the prediction weights after concatenating data across ancestries to guarantee that the total sample 499 

sizes were the same as SuShiE as fair comparisons. 500 

To showcase that SuShiE’s prediction weights introduce more power in TWAS, we simulated GWAS summary 501 

statistics and computed TWAS statistics using different prediction weights. First, because individuals in GWASs 502 

are usually different from ones in the eQTL studies, we re-simulated the genotype matrix 𝑿IJFK,# ∈ ℝ,&'(),!	×4 503 

where 𝑛IJFK,#  is the GWAS sample size for ancestry 𝑖 using the same generating approach above. Then, we used 504 

the eQTL effect size vectors 𝜷#  generated in the previous section to simulate a complex trait 𝒚# ∈ ℝ,&'(),!	×) as 505 

a linear combination of expression levels 𝒈# ∈ ℝ,&'(),!	×) as 506 

𝒚# = 𝒈#𝛿	 + 𝒆# = 𝑿IJFK,#𝜷#𝛿 + 𝒆#, 507 

where 𝛿~𝑁(0,1) is the gene expression effect on the complex trait, 𝒆#~𝑁(0, 𝑠#* �
)
<*+
% − 1� 𝐼,&'(),!) is the random 508 

noises for the complex traits, 𝑠#* = 𝜷#=𝑽#𝜷#𝛿* , 𝑽#  is the LD matrix generated from 1000G108, and ℎLM* ∈509 
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{6 × 10NO, 1.5 × 10NP, 3 × 10NP, 6 × 10NP} is the proportion of variation of the complex trait explained by the 510 

expression of a single gene111. Then, we regressed the complex trait 𝒚#  on each SNP in 𝑿IJFK,#  marginally to 511 

compute the GWAS summary statistics 𝒛IJFK,# ∈ ℝ4	×) . Last, we computed TWAS summary statistics with 512 

𝒛QJFK,∗,# =
𝒘∗,!
- 𝒛&'(),!

𝒘∗,!
- 𝑽!𝒘∗,!

 along with its P value where 𝒘∗,#  is the prediction weights fitted by different methods. We 513 

define the TWAS power as the frequency of the Bonferroni-corrected P value is less than 0.05. 514 

Overview of real-data analyses 515 

We applied SuShiE and other methods (e.g., SuShiE-Indep, Meta-SuSiE, and SuSiE) to three datasets: mRNA (visit-516 

1) measured in peripheral blood mononuclear cells (PBMCs) and protein expression measured in plasma of three 517 

EUR, AFR, and HIS ancestries from Trans-Omics for Precision Medicine program Multi-Ethnic Study of 518 

Atherosclerosis (TOPMed MESA)48,49 and mRNA expression measured in lymphoblastoid cell lines (LCLs) of EUR 519 

and AFR ancestries from the Genetic Epidemiology Network of Arteriopathy (GENOA) study26. We excluded the 520 

mRNA expression levels data measured in T cells and monocytes from TOPMed MESA study due to relatively 521 

smaller sample sizes. We explain the detailed quality control (QC) procedure in the sections below. We conducted 522 

pairwise comparisons of methods on four basic summary statistics, focusing on the genes for which both methods 523 

output credible sets; the summary statistics included the number of genes identified with cis-molQTLs (e/pGenes), 524 

the average PIPs of the SNPs in the credible sets, the average single-effect-specific credible set sizes, and the 525 

frequency of having genes whose credible sets contained SNPs with PIPs greater than 0.9. We defined the number 526 

of cis-molQTLs as the number of credible sets output after pruning for purity (see previous section for the 527 

definition). Next, we performed enrichment analyses using 89 functional annotations and a case study focusing 528 

on a gene that was only identified by SuShiE, and missed by other methods. Last, using SuShiE-derived ancestry-529 

specific cis-molQTL effect sizes, we performed individual-level TWAS and PWAS with All Of Us (AOU) biobank50 530 

individuals and compared to the results derived from SuSiE. 531 
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To validate SuShiE’s results on the three main datasets mentioned above, we applied SuShiE and other methods 532 

to three separate datasets: mRNA expression (visit-5) measured in PBMC of EUR, AFR, and HIS ancestries from 533 

TOPMed MESA, protein expression measured in plasma of EUR ancestry from INTERVAL study5, and the mRNA 534 

expression measured in LCL of EUR and Yoruba in Ibadan (YRI) ancestries from the GEUVADIS study61. We 535 

computed two statistics to evaluate validation performance: first, focusing on the cis-molQTLs of e/pGenes 536 

identified by SuShiE, the percentage for which SuShiE identified cis-molQTLs in the validation datasets. Second, 537 

focusing on the credible sets for which we identified the same cis-molQTLs in both main and validation studies, 538 

we computed the cosine similarity of posterior probabilities (𝜶%) to see whether they prioritized the same SNPs. 539 

For SNPs that are not in the overlap between main and validation studies, we manually assigned them a value of 540 

0 for cosine similarity calculation. For each credible set, we randomly shuffled the 𝜶%  in validation studies 500 541 

times to construct the null distribution of the cosine similarity and compute its z score. We computed the average 542 

cosine similarity and z scores across all credible sets as an aggregation estimate and its corresponding significance. 543 

For all the fine-mapping analysis, we used the SNPs that are shared across ancestries on the genomic window of 544 

each gene that is 500,000 bp upstream and downstream of each gene’s TSS and TES (one million bp in total), 545 

respectively, based on the GENCODE v34110,112. In addition, we only included genes that are located on the 546 

autosomes, do not overlap with the major histocompatibility complex (MHC) region, have more than 100 SNPs on 547 

the genomic window present in all ancestries, and whose ENSEMBL gene IDs match the records in GENCODE 548 

v34110,112. We adjusted for covariates by regressing them from both mRNA/protein levels and each SNP. In addition, 549 

we computed the cis-SNP heritability using the limix python package (see Code Availability) for each analyzed 550 

molecule within each ancestry. We used PLINK2.0, vcftools, and bcftools for genotype manipulation113–116. 551 

Genotype data in the TOPMed MESA study 552 

We obtained the whole-genome sequencing (WGS)  data (freeze 9; GRCh 38) of 5,379 individuals from the 553 

TOPMed MESA48,49. Specifically, we removed the SNPs with the following criteria: both duplicate genotype 554 
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discordance and mendelian genotype discordance are greater than 2%, genotype missing rate at depth 10 is 555 

greater than 2%, Milk-SVM score for variant quality is less than -0.5, variants that overlap with centromeric regions, 556 

HWE p-value is less than 1e-6, and MAF is less than 1%, resulting in a total of 125,089,612 SNPs. In addition, we 557 

computed the genotype principal components (PCs) with SNPs that are pruned for LD using PLINK2.0 (--indep-558 

pairwise 200 1 0.3)113,114,117. Last, we retained individuals who are self-identified as EUR, AFR, or HIS ancestries and 559 

have measurements in mRNA (both visits 1 and 5) and protein datasets, resulting in a total of 1,292 individuals. 560 

mRNA expression data in the TOPMed MESA study 561 

We obtained RNA-seq data in gene-level read counts and reads per kilobase of transcript per million mapped 562 

reads (RPKM) of 57,615 genes for 2,137 samples (both visits-1 and visit-5) measured in PBMC using RNA-SeQC 563 

v2.0.0 from the TOPMed MESA study. The data was pre-processed based on the TOPMed RNA-seq harmonization 564 

pipeline (see Code Availability). We first calculated the gene expression PCs on all samples’ read counts using the 565 

PCA function of the scikit-learn package118, and normalized it across all samples within each PC. Then, focusing on 566 

the samples measured in visit-1, we followed the GTEx3 eQTL analysis preparation script to select gene whose 567 

transcript per million (TPM) is >0.1 and raw read counts >6 reads in at least 20% of samples (see Code Availability). 568 

For individuals with replicate samples, we only kept one sample with the greatest sum of reads across all genes; 569 

we also removed individuals with whom we did not have self-identified ancestry information, resulting in 402 EUR, 570 

175 AFR, and 277 HIS individuals. Then, within each ancestry, we normalized expression levels between samples 571 

using edger_cpm function in the pyqtl package, (see Code Availability) with normalized_lib_sizes=True, which is 572 

a Python implementation of edgeR119 ; we next performed inverse-rank normalization using the 573 

inverse_normal_transform function. Last, focusing on 21,747 genes filtered based on inclusion criteria and using 574 

SNPs whose MAF >1% and HWE mid-adjusted P>1e-6 within each ancestry, we ran SuShiE and other methods 575 

using SNPs on the genomic windows of each gene, adjusting for 15 gene expression PCs, 10 genotype PCs, age, 576 

sex, and the assay lab. We did not include individuals who self-identified as East Asian in TOPMed MESA study due 577 
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to the small sample size (n=96). We removed SNPs based on MAF <1%, and including EAS participants would 578 

exclude 501 more SNPs on average per gene from downstream analyses. 579 

Protein expression data in the TOPMed MESA study 580 

We obtained the protein expression levels of 1,317 target proteins for 1,966 samples (both visits-1 and -5) from 581 

the TOPMed MESA study using SOMAscan, an aptamer-based technology. First, we computed the protein 582 

expression PCs on all samples using the PCA function of the scikit-learn package118, and normalized it across all 583 

samples for each PC. Then, focusing on the samples measured in visit-1, we removed individuals with whom we 584 

did not have self-identified ancestry information, resulting in 398 EUR, 297 AFR, and 261 HIS individuals. Within 585 

each ancestry, we inverse-rank normalized the protein expression data using the inverse_normal_transform 586 

function in the pyqtl package (see Code Availability). As some proteins may be targeted by multiple aptamers, 587 

which correspond to different isoforms of proteins120, we regarded each isoform as a unique protein. As a result, 588 

we obtained 1,274 proteins based on gene inclusion criteria and performed fine-mapping using SuShiE and other 589 

methods on the genomic windows adjusted for 15 protein expression PCs, 10 genotype PCs, sex, and age, using 590 

SNPs whose MAF > 1% and HWE mid-adjusted P>1e-6 within each ancestry.  591 

Genotype and mRNA expression data in the GENOA study 592 

From the GENOA study26, we obtained paired genotype and LCL mRNA expression data of 373 EUR and 441 AFR 593 

individuals, together with corresponding covariates, processed by previous works26,36. Briefly, we restricted 594 

TOPMed-imputed121 genotype data on biallelic SNPs with imputation score 𝑟* > 0.6, MAF >1%, and HWE mid-595 

adjusted P>1e-6  within each ancestry. Focusing on 14,797 genes based on gene inclusion criteria, we performed 596 

fine-mapping on the genomic window, adjusted for 30 gene expression PCs, five genotype PCs, age, sex, and 597 

genotyping platform. 598 
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Genotype and molecular data in three validation datasets 599 

To validate SuShiE’s results of PBMC mRNA expression (visit-1) in TOPMed MESA48,49, we used the mRNA 600 

expression data measured in PBMC of the same study but collected from visit-5, a 10-year-later follow-up visit. 601 

We performed the identical pipeline mentioned in the previous section, resulting in 21,695 genes (21,240 602 

overlapped with visit-1) from 422 EUR, 168 AFR, and 285 HIS individuals.  603 

To validate the plasma protein expression results in TOPMed MESA, we obtained the inverse-rank normalized 604 

protein expression levels of 3,301 EUR individuals measured in plasma from the INTERVAL study5. The genotype 605 

data was pre-processed, imputed, and annotated with dbSNP v153 by previous studies5,122,123. We obtained 3,187 606 

ENSEMBLE-UniProt-SOMAmer ID triplets (1,313 overlapped with the TOPMed MESA) based on gene selection 607 

criteria and performed singe-ancestry SuSiE fine-mapping on the genomic window, adjusted for sex, age, duration 608 

between blood draw and process, 3 genotype PCs, and subcohort, and 5 expression PCs, using SNPs whose MAF >1% 609 

and HWE mid-adjusted P>1e-6. 610 

To validate the mRNA expression data measured in LCLs from the GENOA study, we obtained paired genotype and 611 

gene expression data measured in LCLs in gene-level RPKM of 23,722 genes for 373 EUR and 89 YRI individuals 612 

from the GEUVADIS study61. First, we computed the expression PCs on all the individuals using the PCA function 613 

of the scikit-learn package118. Then, we kept high-expressed genes whose TPM >0.1 in at least 20% of all the 614 

individuals3 and filtered based on gene selection criteria, resulting in a total of 19,882 genes (10,439 overlapped 615 

with GENOA). Last, using SNPs whose MAF >1% and HWE mid-adjusted P>1e-6 within each ancestry, we 616 

performed SuShiE fine-mapping on the genomic window, adjusted for sex, five expression PCs, and five genotype 617 

PCs, which is calculated on the LD-pruned pipeline defined in the previous section.  618 

Functional enrichment analyses and case study 619 

We ran functional enrichment analysis only on the genes identified with cis-molQTLs (i.e., SuShiE outputs credible 620 

sets; e/pGenes). To visualize the relationship between the PIPs inferred by SuShiE and their distance to the TSS, 621 
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we grouped fine-mapped SNPs into 2,000 bins that are 500 bp long to cover the one-million-bp window around 622 

the TSS for each gene and computed the average PIPs within each bin. To visualize the relationship between single 623 

effects’ posterior probabilities and their distance to the TSS, we performed the same procedure focusing on the 624 

shared effects that had credible set output (i.e., passed the purity threshold; see previous method section). 625 

We performed enrichment analysis using 89 functional annotations. First, we downloaded 5 candidate cis-626 

regulatory elements (cCREs) from ENCODE Registry v358. Then, we obtained 9 cell-type specific cCREs measured 627 

in PBMC using snATAC-Seq59 and one cCRE measured in frozen PBMC using scATAC-seq60. Last, we obtained the 628 

74 categorical functional annotations from LDSC baseline annotations v2.2124,125, and remapped to GRCh38 using 629 

LiftOver (see Code Availability). To compute the functional enrichment scores, we employed an approach that is 630 

similar to TORUS126. Briefly, for each functional annotation and each gene, we performed the logistic regression 631 

𝑔(𝑷) = 𝒂𝜔 where 𝑔(⋅) is the logit link function, 𝑷 is the vector for the PIPs of all the SNPs,  𝒂 is the binary vector 632 

indicating whether the SNPs fall into the annotation, and 𝜔 is the desired log-enrichment scores. After removing 633 

the genes on which logistic regression does not converge, we meta-analyzed the log-enrichment scores across 634 

genes by 𝜔!"#$ =
∑𝜙𝑖𝜔𝑖
∑𝜙𝑖

 and 𝑧𝜔meta =
∑X!Y!
Z∑X!

 where 𝜙#  is the inverse of the squared standard error for gene 𝑖. 635 

When comparing enrichment results across methods, we focused on e/pGenes fine-mapped by both methods. 636 

We computed the comparison z score as 
𝜔meta,𝑗−𝜔meta,𝑗′

[\+%𝜔meta,𝑗]\+
%𝜔meta,𝑗′

 for method 𝑗 and 𝑗′. For the enrichment analyses 637 

focusing on individual shared effect using 𝜶%, rather than PIPs, we limited analyses to those single effects that had 638 

corresponding credible sets (i.e., were not pruned).  639 

To perform a case study, we selected URGCP, which was fine-mapped by SuShiE, but missed by other methods. 640 

To annotate the genomic region around URGCP, we downloaded the ChiP-Seq H3K27ac data of ENCODE58 from 641 

WashU Epigenome Browser127 (see Code Availability) and proximal enhancer (pELS) cCREs from ENCODE Registry 642 

v3, PBMC annotation using scATAC-seq in Satpathy et al.60, naive T cells, naive B cells, cytotoxic natural killer (cNK) 643 

cells, and monocytes annotations using snATAC-seq in Chiou et al.59 644 
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Prior cis-molQTL correlation analyses 645 

To shed light on the relationship between heterogeneity of effect-sizes across ancestries and genes’ constraint, 646 

using all the credible sets output by SuShiE, we tested for association between SuShiE-inferred effect size 647 

correlations across ancestries (𝝆% ) and five measures of constraint (𝒔) using all the fine-mapped e/pGenes: 648 

probability of being Loss-of-Function Intolerant (pLI)75, loss-of-function observed/expected upper bound fraction 649 

(LOEUF)76, enhancer-domain score (EDS)77, the Residual Variation Intolerance Score (RVIS)78, and shet
79. We 650 

downloaded pLI and LOEUF from gnomAD browser v4.0 (see Code Availability), we downloaded EDS, RVIS, and  651 

shet from their original papers. Our base model is according to: 652 

𝐸(𝒔) = 𝝊^ + 𝝆%𝜐) + 𝑳𝜐* + 𝒅𝜐_ + 𝒓𝜐P 653 

where 𝝊^  is the intercept term, 𝑳 is the ordered and categorical single effect index representing the order of 654 

variance explained, 𝒅 is the corresponding ancestry pair indicator (e.g., the correlation of EUR-AFR, EUR-HIS, or 655 

HIS-AFR), 𝒓 is the study indicator (e.g., TOPMed MESA mRNA, TOPMed MESA proteins, or GENOA mRNA) , 𝜐#s are 656 

the corresponding coefficients. We test the significance of 𝜐)in a linear regression framework. A negative value 657 

of 𝜐)for pLI, EDS, and shet is taken to indicate stronger associations between cis-molQTL effect size heterogeneity 658 

across ancestries and gene constraint, while a lower value of LOEUF and RVIS is suggestive of stronger associations. 659 

In addition, to show robustness, we re-tested these associations using estimated covariance by replacing 𝝆%  by 660 

𝝈.*. We also only focused on correlations estimated only from the primary effect (i.e., L=1); in this case, we 661 

removed 𝑳 from the base model. We also re-computed the standard error using bootstrap. Specifically, for each 662 

study, each ancestry pair, and each 𝐿 , we sampled the genes with replacement and computed the 𝜐) . We 663 

repeated 100 times to construct the null distributions for 𝜐) and used its standard deviation as a new standard 664 

error. In addition, to adjust for allele frequency differences across ancestries, we added Wright's fixation index 665 

(Fst) as an additional term. To compute Fs,, we only used the fine-mapped SNPs to compute the Fst using 666 

PLINK2113,114 with the “Hudson” method128,129 for each gene. To investigate the relationship between expected cis-667 
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molQTLs’s distance to TSS and genes’ constraint, we computed the expected distance to TSS for each gene 668 

according to ∑`a`!∗b!∑`a`!
 where 𝐷#  is the distance (absolute value) to the TSS for SNP 𝑖. 669 

TWAS and PWAS analyses in All Of Us biobank 670 

We performed individual-level Transcriptome- and Proteome-wide Association Studies (TWASs and PWASs)42–44,47 671 

on 6 white blood cell-related traits: basophil count (BAS), eosinophil count (EOS), lymphocyte count (LYM), 672 

monocyte count (MON), neutrophil count (NEU), and white blood cell count (WBC; Table S9) measured in AOU 673 

biobank50. We excluded individuals who had acute abdomen, acute appendicitis, acute cholangitis, acute 674 

cholecystitis, acute pancreatitis, anemia due to and following chemotherapy, bone marrow transplant present, 675 

chemotherapy-induced nausea and vomiting, cirrhosis of liver, clostridium difficile colitis, complication of 676 

chemotherapy, congenital anemia, congenital hemolytic anemia, convalescence after chemotherapy, dermatosis 677 

resulting from cytotoxic therapy, diverticulitis of intestine, end-stage renal disease, fatigue due to chemotherapy, 678 

hereditary hemolytic anemia, human immunodeficiency virus infection, leukemia, mucositis following 679 

chemotherapy, myelodysplastic syndrome (clinical), neutropenia due to and following chemotherapy, 680 

pancytopenia due to antineoplastic chemotherapy, peripheral neuropathy due to and following antineoplastic 681 

therapy, post-splenectomy disorder and post-splenectomy thrombocytosis. For WBC, we only included 682 

measurements <200e9/L. For all the traits, we also excluded measurements that were 3 standard deviations away 683 

from the mean, resulting in a total of 86,345 individuals on average. We identified individual ancestry information 684 

based on AOU precomputed information (i.e., “eur”, “afr”, and “amr” labels), resulting in 53,268 EUR, 16,748 AFR, 685 

and 16,329 HIS individuals on average. 686 

From our previous analysis, we obtained the eQTL prediction weights of EUR, AFR, and HIS in the TOPMed MESA 687 

mRNA dataset, the pQTL prediction weights of EUR, AFR, and HIS in the TOPMed MESA protein dataset, and the 688 

eQTL prediction weights of EUR and AFR in the GENOA mRNA dataset. We evaluated the prediction accuracy for 689 

SuShiE SuShiE-Indep, Meta-SuSiE, SuSiE, LASSO53, Elastic Net54, and gBLUP55 with five-fold cross-validation. For 690 
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Meta-SuSiE, we trained the prediction weights for each ancestry. For SuSiE, LASSO, Elastic Net, and gBLUP, we 691 

trained the prediction weights after concatenating genotype and phenotype data across ancestries to ensure the 692 

equal sample sizes as SuShiE (i.e., the same prediction weights for all ancestries). We computed cross validation 693 

𝑟* (cv-𝑟*) between the measured expression levels and predicted expression levels concatenated across each fold 694 

and each ancestry. We also used the SuShiE-based ancestry-specific prediction weights to evaluate the prediction 695 

performance using cross-ancestry weights. Specifically, we predicted the expression levels of EUR individuals using 696 

AFR weights (of AFR individuals using HIS weights and of HIS individuals using EUR weights). 697 

To perform T/PWAS, we first predicted expression levels (either mRNA or proteins) for EUR, AFR, and HIS 698 

individuals in AOU using each ancestry-matched e/pQTL prediction weights with the score function in PLINK2113,114. 699 

Then, we standardized the expression vector (centered by mean and scaled by standard deviation) within each 700 

ancestry and then concatenated them into a single vector across ancestries. Then, we regressed out sex, age, 701 

squared age, and ten genotype PCs from the trait measurements. Last, we regressed the inverse-rank normalized 702 

residuals on the predicted expression levels to compute the TWAS or PWAS statistics. We re-performed the 703 

procedure using SuSiE-derived e/pQTL prediction weights as comparisons. We applied the Bonferroni correction 704 

to adjust the reported P-values with n=23,000. To validate our TWAS results, we compared them to five 705 

independent TWAS studies: Lu and Gopalan et al.36, Kachuri et al.31, Tapia et al.82, Rowland et al.84, and Wen et 706 

al.83 We released our cis-molQTL prediction weights to the public, which can be found at the Data Availability 707 

section. To test the association between T/PWAS chi-square statistics and genes’ constraint scores: pLI75, LOEUF76, 708 

EDS77, RVIS78, and shet
79, we used linear regression adjusted for phenotype and study and reported one-sided P 709 

values. To compare significance of these associations between SuShiE and SuSiE, we computed the z score as 710 

∑ c!,)/)012
%3

!45 N∑ c!,)/)12
%3

!45

Z*∗(*e)
  where Χ#,∗*  is the chi-square statistics for constraint score 𝑖. We classified genes into three 711 

groups: Low, Middle, and High based on different scores, respectively. For pLI, we labeled genes with pLI >0.9 as 712 

High, <0.1 as Low, and otherwise middle. For other scores, we labeled genes whose value is greater than 90% 713 

quantile as High, smaller than 10% quantile as Low, and otherwise middle. 714 
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High-speed inference of SuShiE using JAX 715 

We implemented SuShiE in an open-sourced command-line Python software sushie, which can read individual-716 

level genotype data in three formats: PLINK1.9113,114, bgen1.3130, and vcf116, together with phenotypic and 717 

covariates data in tab-separated-values format. We leveraged Just In Time compilation in JAX (see Code 718 

Availability) to facilitate high-speed inference on CPUs, GPUs, or TPUs. This technique allows users to process, in 719 

a scalable fashion, thousands of molecular phenotypes with the backgrounds of diverse ancestries specified by 720 

the user. Not only can sushie perform our method, but it can also perform single-ancestry SuSiE15, effect size 721 

correlation estimation, cis-SNP heritability estimation, cross-validation for the cis-molQTL prediction weights, and 722 

contain the script to convert the cis-molQTL prediction results to FUSION format42, thus can be used in TWAS 723 

framework. We also implemented basic QC on the input data. Users can also customize the sushie inference 724 

function according to their preferences. We have compiled comprehensive documentation about the software at 725 

https://mancusolab.github.io/sushie/. 726 

  727 
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Figures 728 

 729 
Fig. 1: SuShiE infers ancestry-specific effect sizes, PIPs, and credible sets by leveraging shared 730 
genetic architectures and LD heterogeneity.  731 
A) SuShiE takes individual-level phenotypic and genotypic data as input and assumes the shared cis-molQTL effects 732 
as a linear combination of single effects. 733 
B) For each single shared effect, SuShiE models the cis-molQTL effect size follows a multivariate normal prior 734 
distribution with a covariance matrix, and the probability for each SNP to be moQTL follows a uniform prior 735 
distribution; through the inference, SuShiE outputs a credible set that includes putative causal cis-molQTLs, learns 736 
the effect-size covariance prior, and estimates the ancestry-specific effect sizes. 737 
  738 
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 739 
Fig. 2: SuShiE outperforms other methods, estimates accurate effect-size correlation, and 740 
boosts higher power of TWAS in realistic simulations  741 

A-C) SuShiE outputs higher posterior inclusion probabilities (PIPs; A), smaller credible set sizes (B), and higher 742 
frequency of cis-molQTLs in the credible sets (calibration; C) compared to SuShiE-Indep (2.60e-4, 1.5e-1, and 743 
1.30e-11), Meta-SuSiE (P=9.67e-43, 9.35e-231, and 1.17e-76), and SuSiE (P=6.98e-63, 6.65e-2, and 1.58e-104).  744 
D) SuShiE accurately estimates the true effect-size correlation across ancestries using the primary effect (First 745 
credible sets; CSs) while exhibiting an underestimation using the secondary effects (Second CSs) or combined (All 746 
CSs) because the variance explained by the secondary effect decreases, thus requiring higher statistical power. 747 
The error bar is a 95% confidence interval. 748 
E) SuShiE outputs higher ancestry-specific prediction accuracy compared against SuSiE, LASSO, Elastic Net, and 749 
gBLUP (all P<9.57e-8) with the fixed sample size. The plots are aggregation across two ancestries.  750 
F) SuShiE induces higher TWAS power compared to SuSiE, LASSO, Elastic Net, and gBLUP (all P<4.34e-14) with the 751 
fixed sample size. The plots are aggregation across two ancestries. 752 
 753 
By default, the simulation assumes that there are 2 causal cis-molQTLs, the per-ancestry training sample size is 754 
400, and the testing sample size is 200, cis-SNP heritability is 0.05, the effect size correlation is 0.8 across ancestries, 755 
and the proportion of cis-SNP heritability of complex trait explained by gene expression is 1.5e-14. The error bar 756 
is a 95% confidence interval.  757 
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 758 
Fig. 3: SuShiE reveals cis-regulatory mechanisms for mRNA and protein expression 759 

A) SuShiE identified cis-molQTLs for 14,590, 573, and 5,925 genes whose 88%, 86%, and 96%  contain 1-3 cis-760 
molQTLs for the TOPMed-MESA mRNA, TOPMed-MESA protein, and GENOA mRNA dataset, respectively. 761 
B) Posterior inclusion probabilities (PIPs) of cis-molQTLs inferred by SuShiE are mainly enriched around the TSS 762 
region of genes. We grouped SNPs into 500-bp-long bins and computed their PIP average. There are 2,000 bins to 763 
cover a one-million-bp-long genomic window around the genes’ TSS. 764 
C) Across all three studies, cis-molQTLs identified by SuShiE are enriched in four out of five candidate cis-regulatory 765 
elements (cCREs) from ENCODE58, with the promoter (PLS) as the most enriched category. Specifically, the mRNA 766 
expression from TOPMed-MESA and GENOA showed enrichment in the promoter, proximal enhancer (pELS), CTCF, 767 
and distal enhancer (dELS) but depletion in DNase-H3K4me3. Protein expression from TOPMed-MESA showed 768 
enrichment in PLS and pELS but non-significant enrichment in CTCF and dELS because of the low number of genes 769 
identified with pQTLs (n=573). The error bar is a 95% confidence interval.  770 
  771 
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 772 
Fig. 4: SuShiE identifies eQTL rs2528382 for URGCP with functional support 773 

A) Manhattan plot of cis-eQTL scans of URGCP (denoted in orange) for each ancestry (above) with SuShiE fine-774 
mapping results (below). SuShiE was the only method to output credible sets for URGCP and prioritized a single 775 
SNP (rs2528382; denoted in red). 776 
B) Functional annotations at URGCP locus show colocalization of active enhancer activity and chromatin 777 
accessibility with rs2528382. H3K27ac CHIP-seq peaks measured in PBMCs (intensity denoted in blue) and 0/1 778 
accessibility annotations determined from scATAC-seq measured in PBMCs and snATAC-seq measured in naive T 779 
cells, naive B cells, cytotoxic NK (cNK) cells, and monocytes. Blue rectangles denote a putative cCRE called from 780 
sc/snATAC-seq data that colocalize with rs2528382 (gray no colocalization).  781 
  782 
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 783 
Fig. 5: SuShiE identifies more T/PWAS genes compared with SuSiE 784 

A) Scatter plot of T/PWAS t-statistics between SuShiE (y-axis) and SuSiE (x-axis) across all phenotypes and 785 
contributing cis-molQTL studies.  786 
B) Average T/PWAS chi-square statistics within low, middle, and high constraint scores (see Methods). Error bars 787 
represent 95% confidence intervals.  788 
  789 
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Tables 790 

 791 
 pLI LOEUF Shet RVIS EDS 

Base Model -0.022 (4.13e-33) 0.021 (5.92e-20) -0.007 (4.15e-40) 0.043 (2.04e-14) -0.002 (1.25e-02) 

Bootstrap SE -0.022 (5.84e-32) 0.021 (4.92e-20) -0.007 (3.13e-37) 0.043 (1.68e-17) -0.002 (1.56e-02) 

Primary Effect -0.034 (3.51e-23) 0.027 (7.45e-11) -0.011 (7.69e-29) 0.055 (4.09e-09) -0.004 (1.27e-03) 

Effect Covariance -0.339 (7.59e-177) 0.334 (1.77e-109) -0.089 (1.33e-154) 0.537 (9.93e-49) -0.053 (3.10e-25) 

Adjusted Fst -0.022 (2.00e-32) 0.021 (9.90e-20) -0.007 (2.22e-39) 0.042 (5.63e-14) -0.002 (1.08e-02) 

 792 
Table 1: Across-ancestry cis-molQTL effect size correlations are negatively associated with 793 
gene constraint scores 794 
The estimates and corresponding P-value in the regression framework testing associations between inferred 795 
effect size correlations across ancestries and constraint scores (see Methods for the base model). “Bootstrap SE” 796 
is to re-estimate standard error using bootstrap. “Primary Effect” is to only use estimates from L=1. “Effect 797 
Covariance” is to replace estimated correlation with estimated effect size covariance across ancestries. “Adjusted 798 
Fst” is to additionally adjusted for Fst from the base model. A higher value of pLI, shet, and, EDS is taken to indicate 799 
stronger constraint, while a lower value of LOEUF and RVIS is suggestive of more constraint. The reported P-value 800 
is one-sided.  801 
 802 

Data availability 803 

SuShiE-derived prediction models for TWAS/PWAS, fine-mapping, and other analyzed results across cis-molQTL 804 
datasets can be found at https://zenodo.org/records/10963034. 805 

Code availability 806 

SuShiE: https://github.com/mancusolab/sushie  807 

The analysis codes for simulation and real-data analysis of this manuscript: 808 
https://github.com/mancusolab/sushie-project-codes  809 

TOPMed RNA-seq Harmonization pipeline: https://github.com/broadinstitute/gtex-810 
pipeline/blob/master/TOPMed_RNAseq_pipeline.md 811 

gnomAD v4.0: https://gnomad.broadinstitute.org/news/2023-11-gnomad-v4-0/ 812 

GTEx eQTL analysis pipeline: https://www.gtexportal.org/home/methods 813 

pyqtl software: https://github.com/broadinstitute/pyqtl 814 

PLINK: https://www.cog-genomics.org/plink/2.0 815 

BCFTOOLS: https://samtools.github.io/bcftools/bcftools.html 816 

JAX: https://github.com/google/jax 817 

scikit-learn: https://scikit-learn.org/stable/ 818 
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FUSION: http://gusevlab.org/projects/fusion/ 819 

limix: https://github.com/limix/limix 820 

LiftOver: https://genome.ucsc.edu/cgi-bin/hgLiftOver 821 

WashU Epigenome Browser: https://epigenomegateway.wustl.edu/ 822 
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