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Abstract: 

Non-typeable Hemophilus Influenzae (NTHi) is a common pathogen that 

can cause a range of respiratory infections, including children pneumonia. 

However, NTHi can also be found in the upper respiratory tracts of healthy 

individuals and may not cause any symptoms. The transition of NTHi from a 

commensal to a pathogenic state is still not well understood. In this study, we 

aimed to investigate the genomic differences between NTHi isolated from 

healthy children and those with acute or chronic community-acquired 

pneumonia (CAP) to better understand the mechanisms underlying this 

transition. Genomic differences between NTHi isolated from the nasopharynx 

swabs of healthy children and the bronchoalveolar lavage fluids of children with 

acute or chronic community-acquired pneumonia (CAP) were analyzed and 

compared. The study used bGWAS (Bacterial Genome-Wide Association Study) 

analysis to identify phenotype convergence genes among the three groups and 

conducted gene enrichment, antibiotic resistance, and virulence factor 

analyses. Findings showed heterogeneity in the NTHi genomes among the 

three groups, and various phenotype transition genes that represent the 

evolution from a healthy to an acute or chronic clinical phenotype were 

identified. Multiple pathways were found to be involved in the pathogenicity and 

chronic adaptation of NTHi, including metabolism, synthetic, mismatch repair, 

glycolysis, and gluconeogenesis. Furthermore, the analysis indicated that 

antibiotic resistance genes against cephalosporin were commonly present in 

NTHi isolated from acute and chronic pneumonia patients. Overall, this 

genomic analysis of NTHi offers promising contributions toward precise clinical 
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diagnosis and treatment. 
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Importance: 

Understanding the transition of Non-typeable Hemophilus Influenzae (NTHi) 

from a harmless commensal organism to a dangerous pathogen responsible 

for respiratory infections such as pneumonia in children is crucial for developing 

more effective diagnostic and treatment strategies. The importance of this study 

lies in its comprehensive examination of the genomic differences between NTHi 

strains found in healthy individuals and those causing acute or chronic 

community-acquired pneumonia (CAP). By employing advanced techniques 

like bGWAS (Bacterial Genome-Wide Association Study), the research sheds 

light on the complex genetic underpinnings that facilitate NTHi's shift towards 

pathogenicity. Identifying specific genes associated with phenotype transitions, 

antibiotic resistance, and virulence factors not only deepens our understanding 

of NTHi's biology but also paves the way for targeted therapies that could 

mitigate the impact of this pathogen on public health. Furthermore, the 

discovery of multiple pathways involved in NTHi's adaptation to chronic 

infection states highlights the multifaceted nature of bacterial pathogenesis and 

underscores the necessity of a nuanced approach to combating these 

infections. This study's findings are particularly significant given the growing 

concern over antibiotic resistance, as evidenced by the prevalence of 

cephalosporin-resistant genes in strains isolated from pneumonia patients. 

Thus, this research contributes importantly to the ongoing efforts to refine our 

approach to diagnosing and treating respiratory infections caused by NTHi, with 

potential implications for reducing the burden of these diseases on affected 

populations worldwide. 

 

Introduction: 

Childhood severe pneumonia is a serious respiratory disease with a high 

incidence and mortality rate among children in developing countries. To date, 

pneumonia remains one of the leading causes of death among all children who 

die before the age of five as per etiologic investigations[1, 2]. The most common 

pathogens causing childhood pneumonia include Streptococcus pneumoniae, 

Haemophilus Influenza type b (Hib), respiratory syncytial virus (RSV), and 

Mycoplasma pneumoniae[3, 4]. In the past, invasive diseases caused by H. 
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influenzae were often linked to strains with type b polysaccharide capsules. 

However, since the introduction of the Hib conjugate vaccine, there has been a 

significant decrease in the frequency of illnesses caused by this particular 

serotype[5, 6]. Worldwide, there has been a significant increase in invasive 

infections caused by non-vaccine-preventable H. influenzae strains. This 

increase is mainly attributed to NTHi strains[7, 8]. 

 NTHi is an opportunistic pathogen of the upper respiratory tract in healthy 

children, which can infect the lower respiratory tract and induce chronic 

pulmonary diseases. Studies have shown that NTHi is the most commonly 

isolated bacterial pathogen in otitis media and sinusitis in children and one of 

the major drivers of acute exacerbation of chronic obstructive pulmonary 

disease (COPD) in adults[9, 10]. NTHi colonization/infection is also common in 

young children with cystic fibrosis[11]. Currently, the molecular basis for the 

transformation of NTHi from a commensal organism to a pathogen is not well 

understood. Some studies suggest that the phase variation of NTHi is one of 

the mechanisms underlying its virulence changes, which include homologous 

recombination or changes in simple sequence repeat lengths between allele 

variants, phase variation mediated by slip-strand mispairing, transcriptional 

termination introduced by frameshift mutations, and so on[12-14]. Some studies 

have shown that the phase variation of specific lipooligosaccharide (LOS) 

biosynthesis genes plays a critical role in the transition from colonizing the 

human nasopharynx to invading the middle ear cavity during the course of otitis 

media[15]. Overall, there are relatively few genomic studies on the differences 

between NTHi from a commensal organism to a pathogen, partly because it is 

difficult to obtain pathogenic samples. 

The present study aims to explore the genomic differences among (NTHi) 

strains isolated from the nasopharynx swabs of healthy children, 

bronchoalveolar lavage fluids (BALF) of children with acute or chronic 

pneumonia. The objective is to uncover the genomic characteristics that enable 

NTHi to adapt to pulmonary infections and the underlying mechanisms through 

which NTHi causes acute and chronic pneumonia in children. This investigation 

is critical for enhancing the diagnosis, treatment, and prevention of NTHi-

related lower respiratory tract diseases. 

 

Result: 

1. Heterogeneity of NTHi genome across different clinical phenotypes 

In this study, 69 samples were sequenced to explore the genomic traits of 

NTHi with different clinical phenotypes. The samples included 23 cases of NTHi 
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isolated from children with acute pneumonia, 27 cases from children with 

chronic pneumonia, and 19 NTHi samples from the nasopharynx of healthy 

children for comparative analysis. All pneumonia samples (a total of 50 samples) 

were obtained from Bronchoalveolar Lavage Fluid (BALF), while all health 

control samples (19 samples) were obtained from nasopharyngeal swabs. The 

next-generation sequencing revealed satisfactory data quality, with an average 

coverage depth of 1,161x (Table S1). 

While studying samples from the same patient at different clinical stages 

would provide a more comprehensive understanding of the changes and 

mechanisms of NTHi during disease progression, it presents significant 

challenges due to the need for sample collection before the onset of illness. 

This is particularly challenging in the case of children. Therefore, in the absence 

of the ability to obtain samples from the same patient at different clinical stages, 

the collection of nasopharyngeal samples from healthy individuals remains 

crucial for comparative analysis. Gradually increasing the sample size can help 

mitigate differences caused by genetic background and other factors, thereby 

enhancing our understanding of the biological characteristics associated with 

the disease. 

We first attempt to classify and identify these 69 samples within the current 

NTHi whole-genome phylogenetic tree in order to better understand the 

possible relationship and evolutionary history of these samples. Determining 

the location of the samples in the phylogenetic tree can help us to more 

accurately study the evolutionary history, population structure, and genetic 

variation of these pathogen. Through the mining of the NTHi genomes in the 

National Center for Biotechnology Information (NCBI) database, the reference 

sequence 86-028NP was selected for the investigation of the 52 NTHi genomes 

filtered from the database and the 69 samples sequenced in this study. The 

methods used for select and filtrations are described in Method part detail. 

Based on the whole genomic SNP analysis, an evolutionary tree of NTHi was 

constructed. To the best of our knowledge, this is the most comprehensive 

phylogenetic tree of NTHi based on whole-genome SNPs that has been 

established to date (69+52=121 samples), leading to the following conclusions:  

Firstly, based on the evolutionary tree analysis of the NCBI database 

(Fig1B), there is significant heterogeneity in the NTHi genome within the 

database, which can be divided into five major branches (annotated as clade 

A-E in the image). Different serotypes of strains are mixed together within these 

NTHi branches (serotypes A, B, and D are in clade A, while serotype F is in 

clade E). However, this may be due to the limited representative data for each 
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serotype, as the only three serotype A strains still cluster together relatively 

closely and are genetically distant from other serotypes. Previous studies have 

demonstrated that SNP analysis based on core and accessory genome can 

divide NTHi into 6 distinct clades, and that the majority of genetic information is 

transmitted vertically within lineages [16]. Our findings demonstrate similarities 

to previous studies, as notable genetic heterogeneity and lineages evolution 

can be observed even though we have categorized the clades into 5 groups 

instead of 6.  

As a second point, the marked heterogeneity of the NTHi genome within 

the database prompted us to undertake a deeper analysis of the distribution of 

the 69 samples in this study in relation to the 52 database reference sequences 

(Fig1A, red and blue circles). These observations revealed that while a number 

of samples in this study clustered together (as seen in the large connected 

clusters of blue and red circles of Fig1A), a cross-clustered pattern with the 

database sequences was still evident overall. The results suggest that the 

genomic differences between the samples examined in this study and those 

present in the NCBI database are minor, and that this study did not introduce 

any new clades of NTHi phylogenetic tree. 

Finally, the ancestral lineage of 69 novel samples examined in this study 

were analyzed thoroughly, specifically regarding their evolutionary relationships. 

The findings of the study revealed that all the acute pneumonia (as denoted by 

the red color) and chronic pneumonia (as denoted by the blue color) samples 

under consideration, can be traced back to the same lineage as the samples of 

healthy children (as denoted by the green color), as depicted in Figure 1C. This 

phenomenon strongly suggests that NTHi pneumonia strains may have evolved 

from healthy strains or a common ancestor, acquiring certain traits or genetic 

changes that led to their pathogenic state. Despite the observation that acute 

pneumonia strains, chronic pneumonia strains, and healthy children’s strains 

do not cluster precisely in the evolutionary tree, the clustering pattern 

discernible in Fig1D is evident. This clustering pattern is suggestive of the 

notion that genomic variations whose presence account for the clinical 

attributes of acute and chronic pneumonia may be complex in nature, yet the 

patterns of these genomic variations may still be discernible in evolutionary 

analysis. 

 

2. Certain genes in the genomes of acute and chronic NTHi pneumonia 

possess distinctive phenotypic effects. 

Based on the above analysis, we attempted to use a method based on 
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evolutionary tree results to analyze the correlation of whole-genome bacteria 

and differences in the genome of NTHi pneumonia between acute, chronic, and 

healthy groups. The bgwas analysis of whole-genome differences was 

performed using the Hogwash software [17], which captures the correlation 

between genome variation and phenotype variation based on the convergent 

evolution of the bacterial whole-genome relationship method to identify genes 

that can significantly affect the phenotype.  

We conducted bgwas analysis on the pairwise groups of acute pneumonia 

vs chronic pneumonia, acute pneumonia vs Control, and chronic pneumonia vs 

Control. The results showed that the genes potentially determining phenotype 

convergence were in the range of 651-726 intervals between the three groups, 

accounting for between 35.5% and 39.6% of the entire reference genome of 

1834 genes (Table 1). This indicates that over one-third of the genes on the 

genome may be involved in changes in the phenotype of health, acute 

pneumonia, and chronic pneumonia in this study, while most genes are 

relatively conservative. A total of 835 genes were identified that may be related 

to the dynamic evolution process of NTHi phenotype changes from health, to 

acute pneumonia, and finally to chronic pneumonia (TableS2). 

As NTHi is not a model organism for bacterial genomic research yet, 

many genes of its genome do not have complete gene annotation and 

functional research content. We classified all the differentially expressed 

genes we found according to whether they could be annotated and found that 

only about 40% of the phenotype convergence genes found had clear 

functional annotation (TableS2). Other genes, usually named NTHi_geneID 

model genes, were genes predicted by software homology, and their function 

remains unclear (TableS2). As our study mainly focuses on the biological 

function of these phenotype convergence genes, we focus our main research 

efforts on genes with clearly defined functions.  

The venn diagram analysis of intergroup genes shows that among these 

annotated genes, there are 379 phenotype convergence genes in the 

comparison between acute pneumonia and chronic pneumonia, which may 

potentially represent adaptive changes in the NTHi genome from the acute 

phase to the chronic phase, which we name then “Chronic adaptive genes” of 

NTHi in this study. There are 339 phenotype convergence genes between the 

acute pneumonia group and the healthy group, which may represent changes 

in genes from colonization to pathogenic conversion of NTHi, which we name 

then “pathogenic transformation genes” of NTHi in this study. Finally, we have 

screened a total of 274 phenotype convergence “Core genes” shared among 
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the three groups, accounting for approximately 32.8% of the total phenotype 

convergence genes. These core genes mean that genes that undergo 

changes in phenotype from health to acute or from acute to chronic, represent 

the differences between colonization and infection of NTHi which are 

theoretically more representative than single-group comparisons (Fig2A-C). 

 

3. Multiple gene pathways involved in the Pathogenicity and Chronic 

adaptability of NTHi. 

   Next, we performed enrichment analysis on the three groups of phenotype 

convergence genes mentioned above (Chronic adaptive genes, 379, 

pathogenic transformation genes, 339, Core Genes, 274). We used KOBAS-i, 

which is KOBAS 3.0 to perform enrichment analysis on the combination of the 

three selected sets of phenotype convergence genes. KOBAS gene 

enrichment analysis is an ORA-based (Over Represented Analysis-based) 

method that uses a simple and common gene enrichment method based on 

hypergeometric tests and Fisher’s exact tests to calculate gene enrichment 

pathways. 

We selected a p-value threshold of <0.05 after calibration to identify 

significantly enriched pathways. As shown in Fig3A-B, a total of 20 pathways 

were identified as significantly enriched and were classified into three 

categories based on their biological significance. One category is metabolism-

related, shown in green in the figure, which includes nine metabolic pathways 

related to 1). methane metabolism, 2). c5 branch dicarboxylic acid 

metabolism, 3). biotin metabolism, 4). propionate metabolism, 5). starch and 

sucrose metabolism, 6). ketone bodies metabolism, 7). microbial metabolism 

under different environments, 8). carbon metabolism, and 9). metabolic 

pathways. Although “9). metabolic pathways” is the most significantly enriched 

pathway among all metabolism-related pathways based on the p-value, we 

should aware that its enrichment factor in the three groups of enriched 

pathways is only around 0.26, indicating that the pathway is statistically 

significant but only a small proportion of the DEGs are associated with it. On 

the other hand, 5). starch and sucrose metabolism and 2).c5 branch 

dicarboxylic acid metabolism pathways have enrichment scores of 0.67 and 

0.62, respectively (TableS3), and are enriched in all three groups, indicating a 

high reliability that NTHi undergoes changes in the utilization of starch and 

sucrose and dicarboxylic acid metabolism during a clinical phenotype of 

colonization to chronic transformation. 
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In addition to metabolic-related pathways, another significantly enriched 

pathway group is the synthetic-related pathways, which includes the 1). 

biosynthesis of folate, 2). phenylalanine, tyrosine, 3). tryptophan, 4). amino 

acids, 5). peptidoglycan, 6). antibiotics, 7). secondary metabolites, etc. Among 

all synthetic-related pathways, the 5). peptidoglycan biosynthesis pathway 

has the highest enrichment factor. Previous studies have shown that 

interfering with NTHi’s peptidoglycan synthesis can increase biofilm 

synthesis[18]; and many studies have suggested that the biofilm formed by 

NTHi may be an important step in the pathogenic mechanism of this 

bacterium [19, 20]. Our results also indicate that the peptidoglycan 

biosynthesis pathway, mainly composed of adaptive SNPs in the genes mraY, 

murA, dacB, murC, murD, murE, murF, murG, and mrcB, plays an important 

role in colonization and chronic transformation. 

Finally, some pathways that do not belong to either the metabolic-related 

or synthetic-related categories were classified into the “other” category. These 

pathways include 1). mismatch repair, 2). glycolysis/gluconeogenesis, 3). 

vancomycin resistance, 4). citric acid cycle, 5). ABC transporters, etc. The 2). 

glycolysis/gluconeogenesis pathway is closely related to the 4). citric acid 

cycle, both of which are central carbon metabolic pathways that oxidize 

carbohydrates, fats, and proteins for energy production inside the cell. On the 

other hand, 5). ABC transporters play a crucial role in the pathogenic 

mechanism and virulence of bacteria by transferring various substrates from 

ions to proteins through ATP-coupled processes [21]. In addition, the 3). 

vancomycin resistance and 1). mismatch repair pathways were also enriched. 

The enrichment factor of 3). vancomycin resistance reached 0.8 in the core 

gene group, including four genes in this pathway, murG, alr, murF, and mraY. 

The 1). mismatch repair pathway was only enriched in the pathogenicity 

adaptive group. Overall, we found that although the number of core genes 

was relatively small (274 genes), they were associated with more significantly 

enriched pathways than those enriched in the pathogenic transformation (339 

genes) and chronic adaptability (379 genes) groups. This indicates that core 

genes are often associated with critical pathway changes and warrants further 

research. 

 

4. Analysis of virulence factors revealed seven specific virulence factors 

associated with NTHi pathogenicity. 

The pathogenicity of bacteria is determined by their virulence factors. 

Virulence factors can be encoded on mobile genetic elements (such as 
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plasmids, genomic islands, or bacteriophages) and undergo horizontal gene 

transfer (propagation). Genes that control these virulence factors are present 

at specific sites on the chromosome, and can also be carried by genetic 

elements such as plasmids or bacteriophages within the bacteria. By 

comparing the DNA of different bacteria and identifying similar functional 

sequences of virulence factors, it is possible to predict the virulence of the 

bacteria. 

It is understood that although previous studies have identified many 

virulence factors associated with Haemophilus influenzae, there has not been 

a comprehensive analysis and study of virulence factors of the entire genome 

of Haemophilus influenzae. In this study, we performed a whole-genome 

virulence factor scanning, compilation, and inter-group differential analysis of 

virulence factors in acute pneumonia, chronic pneumonia, and control groups 

based on the VFDB database. The virulence factor database, VFDB, was 

developed by the Chinese Academy of Medical Sciences and is widely used 

for virulence factor gene identification[22]. 

The analysis results showed that a total of seven out of eight classes of 

virulence factors related to Haemophilus influenzae were identified in 69 NTHi 

samples in this study (TableS4), involving aspects such as Adherence, 

Antiphagocytosis, Endotoxin, Protease, Immune evasion, Invasion, and Iron 

uptake (Fig4B). Only the toxin-related genes, such as cdtA, cdtB, and cdtC, 

were not detected in any of the samples in this study. Through database 

analysis, we found that these not-detected virulence factors were all from the 

Ducreyi Haemophilus strain (H. ducreyi 35000HP), indicating that the different 

strains of Haemophilus influenzae have specificity. Our samples also carried 

some virulence factor genes of serotype D of Haemophilus influenzae, such 

as oapA, ompP5, indicating that virulence factor genes can be transmitted 

between different strains of Haemophilus influenzae. On the other hand, it is 

worth noting that in the chronic group, two samples were identified with a 

same invasion-related gene, which does not exist in the reference genome of 

NTHi in the database (marked as newgene in the figure). This virulence factor 

gene is believed to come from Legionella, and can enhance the invasion 

process of heterologous proteins. 

In the end, 53 genes showing significant differences among the groups 

were selected for differential significance identification, which included 16 

virulence factors belonging to 7 major classes. A total of 7 genes (hifA, hifB, 

hifC, hifD, NTHi1224, lex2A, iga) were identified as showing significant 

differences between any two groups. Among these, hifA, hifB, hifC, and hifD 
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belong to the adhesion class, and their virulence factors are pili. Analysis of 

the inter-group differences showed that these four genes had differences 

between the acute and healthy groups, but the differences between the acute 

and chronic groups were not significant, indicating that these virulence factors 

may play an important role in the transition of NTHi from colonization to 

infection but not for NTHi chronic adaption. On the other hand, the genes 

NTHi1224 and lex2A belonging to endotoxins were identified, and their 

virulence factors were lipooligosaccharides (LOS). The LOS of NTHi is known 

to consist of multiple heterogenous glycan types, some of which are attributed 

to phase variation[23]. Previous studies have shown that LOS plays a variety 

of roles in serving as a colonizer and pathogen [15]. In our analysis, 

significant differences were found between gene NTHi1224 and the control 

group in both the acute and chronic groups, while differences in gene lex2A 

were only found between the acute and control groups. The findings suggest 

a partial alignment with earlier research outcomes, while simultaneously 

highlighting the intricate nature of biological regulatory mechanisms and the 

variances observed across strains.  

The virulence factor of the protease class produced by the gene igA1 

also showed differences between the acute and control groups, and this 

virulence factor is believed to be associated with the occurrence of 

meningitis[24]. Overall, the analysis conducted indicates that virulence factors 

may play a significant role in the variation of clinical phenotypes observed in 

NTHI. This finding may have important implications for the diagnosis, 

treatment, and prevention of NTHI infections, as understanding the 

mechanisms that underlie the pathogenicity of these bacteria is essential for 

developing effective interventions. 

 

5. Both the acute and chronic pneumonia groups commonly carry genes 

for resistance to cephalosporin antibiotics. 

To understand the drug resistance characteristics of NTHi between 

different groups, we annotated all the samples involved in this study using the 

CARD database. The core of the CARD database is ARO (Antibiotic 

Resistance Ontology), which includes terms related to antibiotic resistance 

genes, resistance mechanisms, antibiotics, and targets. The CARD database 

is a widely used tool for studying resistant genes[25]. 

We first examined whether there were differences in ARO data identified 

among the three groups. The results showed that although the ARO data 

identified in the healthy group was lower than that in the acute and chronic 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.14.24305778doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.14.24305778
http://creativecommons.org/licenses/by/4.0/


 11 / 26 

 

pneumonia groups (with averages of 5.86 and 5.92 for acute and chronic, 

respectively, and 5.31 for healthy), there was no significant difference in the 

ARO data among the three groups overall. Furthermore, we analyzed the 

drug classes of the identified resistant entries in depth and found that a total 

of 10 drug categories were involved in the genome of this study, including 

elfamycin antibiotics, cephalosporins, fluoroquinolones, macrolides, 

monobactams, aminoglycosides, tetracyclines, nucleoside antibiotics, 

glycopeptide antibiotics, and sulfonamide antibiotics. Among them, more than 

half of the samples in this study were identified with resistance genes for five 

of these drugs. The most commonly identified was elfamycin antibiotic, which 

was detected in 57 out of 69 samples, with more than one resistance gene for 

elfamycin antibiotic present in 43 of these samples. 

Less frequently detected resistant gene entries were mainly sulfonamide 

and glycopeptide antibiotics, both of which were detected only in one sample. 

However, drugs such as elfamycin antibiotics were detected in half of the 

samples in all three groups, and there was no significant difference among the 

groups (Fig5A). Among the frequently detected resistance genes, the most 

interesting was cephalosporin antibiotics, which showed much higher 

detection rates in both the acute and chronic pneumonia groups than in the 

control group. Since the acute and chronic pneumonia samples collected in 

this study were all clinically treated with drugs, most of which were 

cephalosporin antibiotics, the genome of NTHi in the body exhibited a rapid 

and persistent response to drug pressure. The cephalosporin antibiotics 

detected in this study were divided into two categories: cephamycin 

cephalosporin and penam cephalosporin, with resistance gene families being 

OXA beta-lactamase and APH(3’’) and resistance mechanisms being 

antibiotic inactivation and antibiotic efflux (Table S5). 

 

Discussion: 

This study collected genomic sequences of NTHi from three different 

clinical phenotypes, including healthy children, acute pneumonia, and chronic 

pneumonia of children. Through comparative analysis of the genomes, the 

genomic characteristics of NTHi in different clinical phenotypes were explored 

and discussed. Firstly, by manually collating and analyzing information from 

the NCBI database, it was confirmed that complete NTHi genomes with 

serotyping are not common. The study also attempted to use whole-genome 

SNP analysis to differentiate NTHi genotypes and found that influenza H. 

influenzae type A, B, D, and F have potential discriminability at the whole-
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genome SNP level, but overall, the heterogeneity of NTHi genomes is greater. 

Secondly, although imperfect, there is still a certain discriminability between 

NTHi genomes from different clinical phenotypes. Finally, the study observed 

the development of NTHi from healthy to acute to chronic in the evolutionary 

tree, indicating that the NTHi genome can acquire convergent advantageous 

variations during the development of pediatric acute and chronic pneumonia. 

Furthermore, we identified and distinguished convergence-associated 

genes through bGWAS. bGWAS analysis is a method of genome-wide 

association analysis based on bacterial genomes. It is a method that 

associates genome sequences with phenotype data to identify loci of genomic 

variation associated with specific phenotypes. Based on BGWAS analysis, we 

confirmed three representative gene enrichment analysis results. Among 

them, the most interesting finding was that one of our analysis results 

indicated that the peptidoglycan synthesis pathway may play an important role 

in NTHi colonization and chronic transition. Peptidoglycan is a biomolecule 

that plays many important biological functions in the body. Recent studies 

have shown that peptidoglycan synthesis also plays an important role in NTHi 

colonization and chronic transition. In this study, bacterial genes involved in 

biofilm formation were identified using a transposon mutant library and their 

roles in biofilm formation were verified through in vitro experiments. The 

experimental results of this study showed that by interfering with 

peptidoglycan synthesis, bacterial dissolution could be increased, leading to 

an increase in extracellular DNA levels and promoting biofilm formation. 

Interestingly, similar results could also be obtained with subinhibitory 

concentrations of β-lactam antibiotics, but not with other classes of antibiotics. 

These results suggest that the use of β-lactam antibiotics (especially NTHi 

strains resistant to β-lactam antibiotics) may increase biofilm formation, 

thereby increasing bacterial resistance to antibiotics. 

Corresponding to the aforementioned findings, our analysis of NTHi 

resistance revealed a significant increase in the rates of cephalosporin, 

cephamycin, and penam resistance among the chronic and acute groups 

compared to the healthy group. Specifically, this resistance is due to the flu-

like haemophilus influenzae PBP3 acquiring resistance to β-lactam antibiotics 

through mutations in the penicillin binding protein. The mechanism of 

resistance is through antibiotic target alteration. Previous epidemiological 

studies have shown an increasing incidence of strains with altered penicillin 

binding proteins, particularly PBP3 (β-lactamase-negative ampicillin-resistant 

and β-lactamase-positive amoxicillin-clavulanate-resistant), especially in 
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Japan. This increase in resistance to ampicillin, amoxicillin, amoxicillin-

clavulanate, and many cephalosporins has limited the effectiveness of broad-

spectrum cephalosporins for meningitis and many oral cephalosporins for 

other diseases. Our study found that this phenomenon still exists, and our 

research indicates an association between this phenomenon and the 

formation of biofilms. 

Furthermore, this study investigated the relationship between bacterial 

pathogenicity and virulence factors, as well as developed a method for 

predicting virulence based on comparative analysis of functional sequences of 

bacterial DNA. Building on this foundation, the study conducted a 

comprehensive genome-wide analysis of virulence factors in NTHi strains, 

revealing seven virulence factor categories related to haemophilus species, 

and identified 53 genes with differential expression between groups, including 

seven genes with significant differences between any two groups. These 

findings contribute to a deeper understanding of the virulence differences 

among different haemophilus strains and provide potential therapeutic and 

preventive strategies. It is worth noting that the study also identified a 

virulence factor gene that was not present in any known database in two 

samples from the chronic group, indicating the potential of this research in 

discovering new virulence factors. 

Of course, we must acknowledge that there are certain limitations to this 

study, such as the incomplete recording of antibiotic use during the collection 

of clinical samples, as well as the time lag between sampling and drug 

administration. If these factors can be better controlled, we may be able to 

further investigate the mechanisms of antibiotic resistance and its formation in 

more depth. Nevertheless, overall, this study represents the first comparative 

genomic analysis of NTHi across multiple clinical phenotypes, with potential 

guiding significance for NTHi genomics and clinically related research. 

 

Method: 

1.Sample collection, strain identification, and identification of NTHi types. 

The clinical samples used in this study were obtained from the sample 

library of the Clinical Microbiology Laboratory at Shenzhen Children's 

Hospital. The samples were collected between February 2019 and October 

2021. They consisted of Haemophilus influenzae strains obtained from the 

nasopharynx of healthy children and bronchoalveolar lavage fluids of 

hospitalized children. The healthy children's samples were taken from 

nasopharyngeal swabs during routine health examinations. On the other 
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hand, the hospitalized children included both acute and chronic respiratory 

infection cases and underwent bronchoscopy and lavage for clinical purposes. 

The children included in the study exhibited clinical symptoms of 

pneumonia such as coughing, chest tightness, wheezing, and fever, along 

with characteristic pulmonary imaging features. Those who developed these 

symptoms within one month were classified as having acute pneumonia, while 

those with symptoms persisting for more than three months were classified as 

having chronic pneumonia. 

The lavage fluid was subjected to routine bacterial culture, with the 

specimens inoculated onto Haemophilus influenzae selective plates and 

Columbia blood agar plates (both purchased from bioMérieux, France) and 

incubated at 35°C under a 5% CO2 atmosphere for approximately 24 hours. 

After incubation, small, dewdrop-shaped, colorless, and transparent colonies 

were selected as suspected colonies. Gram staining was performed, with the 

results showing short, small, and gram-negative rods. Bacterial colonies were 

picked and plated onto VITEK MS-DS target plates, followed by matrix 

solution addition for lysis, air-drying, and on-machine analysis of the results. 

All isolated clinical strains were subjected to MALD-TOF (matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry) for mass spectrum 

acquisition and analyzed using the Merk VITEK MS database for 

microbiological identification, confirming the identity of the strains as 

Haemophilus influenzae. Total bacterial DNA was extracted from the 

Haemophilus influenzae and PCR detection of the Haemophilus influenzae 

capsule gene (bexA) was performed. B-type Haemophilus influenzae 

ATCC10211 was used as a positive control, and gel electrophoresis was used 

to observe the PCR products, enabling the classification of Haemophilus 

influenzae. Strains that did not show the target band were determined to be 

NTHi and included in this study. 

This study was approved by the Ethical Committee of Shenzhen 

Children’s Hospital with registration number 2016013. Written informed 

consent for the storage and use of the BAL or NP samples for further studies 

was obtained from the parents or caregivers before enrollment. 

 

2.Extraction, library preparation, and sequencing of the genome. 

The extraction of the sample genome was completed using the MGIEasy 

Fast Enzymatic DNA Library Prep Kit (catalog number: 940-000027-00), 

which is compatible with a variety of single-bacteria and meta-sample library 

preparations and is suitable for microbial WGS, meta-species identification, 
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abundance determination, and assembly. Conventional cyclization reagent 

kits (MGI, catalog number: 1000020570) were used to cyclize the obtained 

PCR library to obtain single-stranded circular DNA. Conventional make DNB 

was performed using the make DNB reagent components in the MGI 

sequencing reagent kit. After the library was prepared, the MGISEQ-2000RS 

high-throughput sequencing reagent kit (FCL PE150) was used for genome 

sequencing (catalog number: 1000012555). The MGISEQ-2000RS high-

throughput sequencing reagent kit uses combinatorial probe-anchor synthesis 

(cPAS) technology to aggregate DNA molecules and fluorescent probes on 

DNA nanospheres (DNBs), and high-resolution imaging systems are used to 

collect optical signals that are digitized to obtain high-quality and accurate 

sample sequence information. 

Extract the genomic DNA and randomly break it into fragments, perform 

electrophoresis to recover DNA fragments of the required length, add 

adapters for cluster preparation, and finally perform sequencing. After the 

DNA samples are received, they are checked, and qualified samples are used 

to construct libraries: first, large DNA fragments are randomly fragmented into 

500-800bp fragments using ultrasound methods such as Covaris or Bioruptor. 

The sticky ends generated by the fragmentation are repaired into blunt ends 

using T4 DNA Polymerase, Klenow DNA Polymerase, and T4PNK. Then, the 

3’ end is extended with an “A” base so that the DNA fragment can be 

connected to a special adapter with a 3’ end carrying a “T” base. The target 

fragments are selected using electrophoresis to connect the products, and 

PCR technology is used to amplify the DNA fragments with adapters at both 

ends. Finally, qualified libraries are used for cluster preparation and 

sequencing. 

 

3.Organizing and selecting the NTHi reference genome for the database. 

To determine the genomic status of NTHi in the database and select 

representative strains as the reference sequence for this analysis, we 

compiled all NTHi genomes in the existing NCBI nucleotide database and The 

Reference Sequence (Refseq) database. A total of 107 sequences between 

1.6M and 2.4M nucleotide lengths were collected and compiled for this study. 

As the genome of NTHi was first sequenced and evaluated as 1.83M[26], 

theoretically, the sequences in our selected length range should represent 

complete or nearly complete NTHi sequences. We found that nine of the 107 

sequences were deleted or removed from Refseq due to quality issues. 

Notably, the removed sequences include strains frequently mentioned in 
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previous studies, such as NC_009566.1 (PittEE) and NC_009567.1 (PittGG) 

(see Appendix Table 1). Among the remaining sequences, 86 were identified 

as NZ - not finished WGS sequences, although many of them had titles 

suggesting complete genomes. One sequence was only available in 

GeneBank. Finally, a total of 11 sequences were identified as NC-level 

genomes. 

We further manually curated and annotated the typing of the 107 

sequences and found that most strains listed in NCBI did not adopt a unified 

typing standard. Previous studies have also shown that there is no unified 

standard for typing this bacterial sequence due to its diversity[27]. 

Nonetheless, most previous studies have identified the typing of NTHi through 

serotype, MLST typing, or capsule expression. Therefore, we finally selected 

52 genomes with serotype annotations for evolutionary comparative analysis. 

For genome assembly with a reference genome, we used five NTHi strains at 

the NC (complete genome) level as reference sequences. For SNP analysis 

and gene annotation, to maintain consistency with previous studies, we used 

the 86-028NP strain as the reference sequence for analysis. 

 

4.Filtering, alignment, SNP analysis, and construction of the evolutionary tree 

for the sequences. 

The downstream data from the aforementioned sequencing was first 

filtered using fastp software (version 0.20.1) [28] to remove adapters and low-

quality sequences. Specifically, since the subsequent sequences needed to 

be used for assembly, we used the parameter --trim_poly_x --poly_x_min_len 

10 to filter the poly sequences to reduce their impact on subsequent assembly 

analysis. After data filtering, we used bwa-men (Version: 0.7.17-r1188)[29] to 

perform sequence alignment and SNP and Indel analysis based on the 

selected 86-028NP reference genome. The mutect2 module in the Genome 

Analysis Toolkit (GATK) v4.1.1.0[30] was used for SNP and Indel analysis 

based on the reference genome. Even though GATK has a SNP and Indel 

variant calling pipeline called GATK-for-Microbes for bacterial reference 

genomes, we conducted tests and discovered that Mutect2 produced more 

reliable results. Therefore, we selected Mutect2 for our study. 

After obtaining the SNPs for each sample through GATK, we used an 

internal script to construct a consensus sequence for each sample based on 

the reference genome. On the other hand, for the selected 52 complete 

reference genome sequences of NTHi, MUMmer4 [31] was used to call SNPs 

based on the reference sequence and construct the consensus sequence. 
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Finally, we combined the consensus sequences of the samples and the 

reference sequences and used the software fasttree (version 2.1.10) [32] to 

construct the NJ evolutionary tree. After obtaining the tree file of the 

evolutionary tree through fastree, we used the ggtree [33] package in R 

software to display and beautify the evolutionary tree and used the 

ggtreeExtra [34], ggstar [35], and ggnewscale [36] packages to add 

annotations and layers to the evolutionary tree. 

 

5.NTHi whole-genome association analysis and acquisition of phenotype-

convergent genes. 

The whole-genome association analysis of NTHi was performed using 

the R package hogwash [17]. Based on a comparison between the Phyc and 

Synchronous algorithms that come with the software, the phenotype-

convergent genes obtained from the Synchronous algorithm developed by the 

software were selected for subsequent analysis. We used the post-ancestral 

reconstruction grouping algorithm included in the software to perform gene- 

and differential-based grouping and analysis of SNPs. The SNP gene 

annotation was completed using SnpEff version 5.0e [37] based on the 

reference genome NC_007146.2, and SnpSift [38] was used to extract the 

relationship between SNPs and genes after gene annotation was completed. 

The homology-predicted functionally unknown genes in the reference 

genome, i.e., in 86-028NP, were labeled based on the NTHi-GeneID pattern. 

In particular, some SNPs are annotated as existing in intergenic regions, 

so intergenic regions are also treated as independent units for testing whole-

genome association. Therefore, the phenotype-convergent genes identified in 

this study are divided into three types for display: annotatable, homology-

predicted, and intergenic regions. In this study, the phenotype refers to three 

clinical differentiations: acute, chronic, and healthy. After obtaining the 

phenotype-convergent genes, the online software EVenn [39] 

(http://www.ehbio.com/test/venn/#/) was used to display the differences 

between groups. We used two modules, Interactive Venn Diagram and Upset 

Plot, to show the differences in gene expression between groups from 

different perspectives. After uploading the raw data to EVenn to obtain the 

original SVG-format image, Adobe Illustrator was used to integrate the 

images. 

 

6.Enrichment analysis of phenotype-convergent genes. 
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The enrichment analysis of phenotype-convergent genes was performed 

using the Gene-list Enrichment module in the online analysis software 

KOBAS-i (http://kobas.cbi.pku.edu.cn/) [40], with Haemophilus influenzae 86-

028NP (nontypeable) selected as the species. Although KOBAS-i supports 

four pathway databases, KEGG Pathway (K), Reactome ®, BioCyc (B), and 

PANTHER §, as well as GO enrichment analysis, only the KEGG Pathway 

database is supported for the species of NTHi. On the other hand, we 

attempted to use gene IDs similar to NTHi-GeneID for gene annotation in 

KOBAS, but none of the NTHi genes were collected in the KEGG database. 

Therefore, we excluded genes starting with NTHi and selected annotated 

genes for pathway enrichment analysis. After obtaining the enrichment 

results, the Gene List Enrichment Visualization module was used to obtain the 

raw data for pathway associations and Rich Factor for each pathway. 

Furthermore, these data were displayed using the pheatmap package [41] in 

R and the Venn Network module in EVenn [39]. 

 

7.Genome assembly, polishing, and annotation. 

Genome assembly was based on filtered data from downstream 

sequencing, and SPAdes (v3.13.0) [42] was used for genome reassembly. 

Trust-contig was set for the aforementioned five high-quality NTHi genomes 

starting with NC, including NC_007146.2 (86-028NP), NC_014920.1 (F3031), 

NC_014922.1 (F3047), NC_017451.1 (R2866), and NC_017452.1 (R2846). 

The kmer lengths used for assembly were the software default of 33, 55, and 

77 bp, and the final result was based on the optimal N50 length. In total, 

around 40 scaffolds with an N50 length of approximately 11K were obtained 

for each sample. To further obtain a draft of the NTHi whole genome for each 

sample, Ragout (Reference-Assisted Genome Ordering Utility) (V2.3) [43] 

was used for scaffold splicing. The basic principle was to construct an A-Bruijn 

graph by using Cactus to align genomes and obtain colinear blocks, which 

were then reconstructed into a chromosome-level genome. The reference in 

the recipe_file was set to the single reference genome NC_007146.2 (86-

028NP), and the scaffolds obtained from SPAdes were used for input. Finally, 

complete draft genome sequences with some N regions were obtained for all 

samples, and the genome sizes ranged from 1.8M to 2.2M. After completing 

the draft genome assembly, Prokka (rapid prokaryotic genome annotation, 

v1.14.6) [44] was used for annotation of the whole genome, and the kingdom 

level selected was Bacteria. 
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8.Toxicity and drug resistance analysis. 

Analysis of virulence factors was based on the VFDB (Virulence Factor 

Database) [22] database and was performed using the online analysis 

software VFanalyzer (http://www.mgc.ac.cn/cgi-bin/VFs/v5/main.cgi). The 

“Select genus of the genome” was set to Haemophilus, “Strain name” was set 

to the sample name, and “upload type” was set to “Pre-annotated DRAFT 

genome in GenBank format”. The input sequence was the genome draft 

obtained from the Ragout assembly, and the representative genome was set 

as NC_007146.2 (86-028NP). After online analysis was performed for all 

samples, the analysis results were downloaded and summarized locally. The 

summarized results were displayed using the R package “pheatmap” [41] for 

heatmap visualization, “ggboxplot” function of “ggplot2” [45] for boxplot 

visualization between groups, and “ggpubr” [46] for calculating the 

significance of differences between groups. The significance of differences 

between groups was determined using the Wilcox test. 

Analysis of drug resistance genes was based on the CARD database 

(https://card.mcmaster.ca/) [25] and was performed using the main module of 

the Resistance Gene Identifier (RGI) software, with the search mode set to 

DIAMOND. After obtaining the ARO entries of resistance genes for each 

sample, custom scripts were used to count ARO data and drug class features 

for each sample. The display of statistical results was also based on the R 

package “pheatmap” [41] and the “ggpubr” [46] package. 
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Figure1. NJ(Neighbor-Joining) tree of 69 new sequence NTHi samples and 52 Hemophilus 

Influenza (HI) Reference Sequences in NCBI. Panel A: A combination NJ tree of samples 

and HI references, present as Fan layout. The outer circle of the tree is colored as red and 

blue, representing the reference sequences and samples, respectively. The NJ tree tip 

label color scheme is as follows: red for Acute cases, blue for Chronic cases, green for 

Healthy cases, orange for type A reference sequence, brown for type B reference 

sequence, teal for type D reference sequence, and light blue for type F reference sequence. 

B: NJ tree of 52 Influenza Hemophilus Reference Sequences, present as daylight layout. 

Panel C: NJ tree of 69 samples, present as daylight layout. Panel D: NJ tree of 69 samples, 

present as dendrogram layout, and root as Clade G. Panel B-D using the same color 

scheme as panel A. 
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Figure 2. Relationship between phenotype convergence genes among different clinical 

groups. A. Venn diagram showing the phenotype convergence genes among acute, 

chronic, and healthy groups. B. Bar chart and shared relationship plot of phenotype 

convergence genes among the three groups. C. Upset view of phenotype convergence 

genes among the three groups. Table 1. Composition of annotated genes, homology-

predicted genes, and intergenic regions in each clinical phenotype groups. 
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Figure 3. Enrichment analysis results of phenotype convergence genes in the three groups 

(379 Chronic adaptive genes, 339 pathogenic transformation genes, 274 Core Genes). A. 

Enrichment analysis results of KEGG displayed by bar plot. The results are classified into 

Biosynthesis-related, Metabolism-related, and Others, represented by red, green, and blue, 

respectively. The right panel of Figure A shows whether each term is significantly enriched 

in different groups. Colored fillings indicate significant enrichment, with purple representing 

Core genes, light yellow representing chronic adaptive genes, and light blue representing 

pathogenic transformation genes. B. Network diagram of the enriched terms among the 

phenotype convergence genes in the three groups. Common pathways are linked, and 

unique pathways are represented as separate branches at the end. Color scheme is the 

same as in A. 

 

 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 16, 2024. ; https://doi.org/10.1101/2024.04.14.24305778doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.14.24305778
http://creativecommons.org/licenses/by/4.0/


 

 

Figure 4. Virulence factor (VF) carriage among three clinical groups. A. Violin plots showing 

the difference in virulence factor carriage among three clinical groups. The p-value 

between groups was calculated using the Wilcox test. Virulence factor carriage was 

categorized as present or absent, with 1 indicating presence and 0 indicating absence. The 

points in the violin plot were jittered for better visualization. Red represents the acute group, 

blue represents the chronic group, and green represents the healthy group. B. Heatmap 

showing the virulence factor carriage among the three groups with VF classification 

annotations. The color fill in the heatmap represents the presence or absence of virulence 

factors, with purple indicating presence and white indicating absence. The first-level 

annotation of VF classification was directly labeled as text, and the second-level 

classification was represented by colored bars on the left side of the heatmap. The specific 

VF gene annotation was indicated in the row names of the heatmap. The colors of the 

three groups were the same as in Figure A. 
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Figure 5. Genome-wide antibiotic resistance gene carriage in three clinical phenotypes. A. 

Left panel: Differential analysis of ARO numbers among three clinical phenotypes. Middle 

panel: Differential analysis of carriage of cephalosporin antibiotic resistance genes among 

three groups. Right panel: Differential analysis of carriage of elfamycin antibiotic resistance 

genes among three groups. p-values between groups were calculated using Wilcox test. 

B. Heatmap of antibiotic resistance gene carriage. The color in the heatmap represents the 

number of AROs carried for a given drug resistance type. Purple represents two copies, 

cyan represents one copy, and white represents no copy. Red represents the acute group, 

blue represents the chronic group, and green represents the healthy control group. 
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