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Abstract 

Genome-wide assessment of genetic variation is becoming routine in human genetics, but 

functional interpretation of non-coding variants both in common and rare diseases remains 

extremely challenging. Here, we employed the massively parallel reporter assay ChIP-

STARR-seq to functionally annotate the activity of >145 thousand non-coding regulatory 

elements (NCREs) in human neural stem cells, modelling early brain development. Highly 

active NCREs show increased sequence constraint and harbour de novo variants in 

individuals affected by neurodevelopmental disorders. They are enriched for transcription 

factor (TF) motifs including YY1 and p53 family members and for primate-specific 

transposable elements, providing insights on gene regulatory mechanisms in NSCs. 

Examining episomal NCRE activity of the same sequences in human embryonic stem cells 

identified cell type differential activity and primed NCREs, accompanied by a rewiring of the 

epigenome landscape. Leveraging the experimentally measured NCRE activity and 

nucleotide composition of the assessed sequences, we built BRAIN-MAGNET, a functionally 

validated convolutional neural network that predicts NCRE activity based on DNA sequence 

composition and identifies functionally relevant nucleotides required for NCRE function. The 
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application of BRAIN-MAGNET allows fine-mapping of GWAS loci identified for common 

neurological traits and prioritizing of possible disease-causing rare non-coding variants in 

currently genetically unexplained individuals with neurogenetic disorders, including those from 

the Genomics England 100,000 Genomes project, identifying novel enhanceropathies. We 

foresee that this NCRE atlas and BRAIN-MAGNET will help reduce missing heritability in 

human genetics by limiting the search space for functionally relevant non-coding genetic 

variation.  
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Introduction 

Around 98% of the human genome does not directly encode protein coding genes and 

contains by far the most genetic variation1. Although rapid advances in genomic sequencing 

technologies have made the identification of this genetic variation rather trivial, interpreting the 

functionality of non-coding genomic sequences and effects of variants herein remains 

tremendously challenging1. This is exemplified by the plethora of common single nucleotide 

polymorphisms (SNPs) associated with disease traits by genome-wide association studies 

(GWAS) for which the underlying biological function and direct effects on gene regulation have 

not been resolved2. Another example concerns the rare disease field, where current genomic 

diagnostic testing modalities even when using whole genome sequencing (WGS) mostly focus 

on interpreting potential disease-causing variants directly affecting protein coding genes3. 

Such approaches at best identify a genetic cause for rare disorders in 30-50% of affected 

individuals4,5. Given that in a clinical setting most of the non-coding genetic variation is not 

routinely assessed, and an increasing amount of evidence demonstrates that genetic 

alterations of non-coding regulatory elements (NCREs) such as enhancers can cause human 

disorders6-8, it seems likely that a considerable amount of missing heritability in human 

genetics might be caused by non-coding genetic variation. To resolve this missing heritability, 

it is crucial to functionally annotate NCREs, characterize their activity in various cell types and 

to develop novel approaches that help to predict the impact of genomic variants on NCRE 

function.  

Here, we employed the massively parallel reporter assay ChIP-STARR-seq9 to functionally 

annotate NCREs at high throughput and measure their activity in neural stem cells (NSCs) as 

a model system for developing brain cells. Our in-depth characterisation revealed that 

increased NCRE activity is associated with increased expression and likelihood of loss-of-

function intolerance of the target genes. Highly active NSC NCREs are characterized by 

increased sequence constraint and are enriched for TF binding motifs including YY1 and p53 

family members and primate-specific MER61 and LTR10 transposable elements, providing 

insights into the mechanisms underlying gene regulation in NSCs. Functional examination of 

the same genomic regions in human embryonic stem cells (ESCs) identified differential NCRE 

activity between the two cell types that was accompanied by a rewiring of the epigenome 

landscape, pinpointing NCREs that are primed for activation upon neural differentiation. 

Finally, we developed, benchmarked and functionally validated BRAIN-MAGNET, a 

convolutional neural network model trained on the experimentally measured NCRE activity 

data to predict nucleotides and motifs required for NCRE activity solely based on DNA 

composition. We applied BRAIN-MAGNET to prioritize the effects of genomic variants in the 

context of brain-related neurological traits from GWAS data and to identify likely disease-
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causing non-coding variants in individuals with rare diseases, including those from the 

Genomics England 100,000 Genomes Project10. Together, these data comprise a novel 

NCRE atlas and analysis framework that will be invaluable tools for the reduction of missing 

heritability in human genetics. 
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Results  

ChIP-STARR-seq in neural stem cells functionally annotates NCREs with different 

activity levels 

To functionally identify NCREs genome-wide in human ESCs, we previously used the 

massively parallel reporter assay (MPRA) ChIP-STARR-seq9, herein referred to as ESC ChIP-

STARR-seq. In this assay, putative NCREs obtained upon chromatin immunoprecipitation 

(ChIP) are cloned in the STARR-seq reporter plasmid11 downstream of a minimal-promoter 

driven GFP and upstream of the polyadenylation signal. The minimal promoter alone is 

insufficient to drive GFP expression. However, if the cloned sequence is a functional NCRE, 

it will enhance GFP transcription and, being located upstream of the polyadenylation signal, it 

will also be self-transcribed. Thus, performing RNA-seq on GFP-containing mRNAs 

synthesised upon plasmid cell transfection allows the identification of sequences with 

functional NCRE activity in the tested cell type. 

Here, we applied an adapted ChIP-STARR-seq approach (see Methods, Fig. 1a, Extended 

Data Fig. 1 and Supplementary Note 1 for details) in human NSCs, referred to as NSC ChIP-

STARR-seq. NSCs are multipotent stem cells reminiscent of the stem cell population in the 

ventricular zone during human brain development12 and can proliferate and differentiate into 

multiple neural cell types. Characterizing the functionally active NCRE landscape of NSCs can 

thus likely identify NCREs involved in early stages of human neurodevelopment, considered 

relevant for human neurodevelopmental disorders. For ChIP experiments and plasmid library 

generation we focussed on the TFs YY1 and SOX2, which are important to NSCs13,14, and on 

the histone modifications H3K4me1 and H3K27ac, which are associated with putative 

NCREs15. This allowed us to enrich for sequences that likely reflect active chromatin at the 

endogenous loci in NSCs even when tested in an episomal MPRA. 

To identify active NCREs, we first generated an analysis scaffold consisting of all merged 

ChIP-seq and plasmid DNA-seq peaks (148,198 genomic regions in total, see Methods). 

Large merged sequences were split in scaffold regions of a maximum of 1,000 bp, which were 

approximately equally divided over all human chromosomes except for the Y chromosome, 

which was not present in the female cell line used for the experiments (Extended Data Fig. 

2a). Subsequently, we counted ChIP-STARR-seq RNA and plasmid reads in each of these 

scaffold regions. The ratio of normalized RNA-seq to DNA-seq (plasmid) reads per scaffold 

region was then used as a measure of NCRE activity of that region. This allowed ranking of 

NCREs based on their activity level in different categories (Fig. 1b)16. Visual inspection of 

RNA and plasmid tracks at multiple loci confirmed the presence of NCREs, as testified by the 
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loci surrounding the TKT and CHD8 genes, which showed NCREs ranking within the top-10% 

activity category (Fig. 1c and Extended Data Fig. 2b). Independent testing of 15 NCREs 

confirmed their NCRE activity (Extended Data Fig. 2c). To assess whether NCRE activity 

correlates with the expression of putative target genes in NSCs, we first linked NCREs to their 

presumed target genes by combining the closest gene method and available Hi-C data 

obtained from the germinal zone of human foetal brain at gestation weeks 17–1817, 

representing the anatomical location of NSCs in the developing human brain. We observed 

that genes linked to NCREs with higher activity show a significantly higher expression level 

compared to genes linked to regions with lower NCRE activity, reaching the highest 

expression level when focussing on the top-10% most active NCREs (n=14,818 NCREs, 

n=7,752 unique genes) (Fig. 1d). Gene expression further increased when focussing on the 

subset of genes involved in human disease according to the Online Mendelian Inheritance in 

Man (OMIM) catalogue (Fig. 1d). As several NCREs with different activity levels can be linked 

to the same gene, we performed the same analysis using only expression data for those genes 

uniquely linked to each NCRE activity group and observed similar findings (Extended Data 

Fig. 2d).  

Loss of function (LoF) of human genes has been studied as a driver of human disease. We 

investigated the probability of LoF intolerance (pLI) of the genes linked to the different NCRE 

activity categories and observed that genes regulated by highly active NCREs, besides being 

expressed at a higher level, are also more intolerant to LoF, suggesting they might play 

important biological roles (Fig. 1e). Gene ontology analysis using Enrichr18,19 of the protein-

coding genes linked to the various NCRE activity groups revealed that genes linked to the 

most active NCREs are mainly involved in the regulation of transcription, whereas genes 

involved in various processes such as neurodevelopment and axon guidance were linked to 

NCREs belonging to all activity classes (Fig. 1f).  

Next, to investigate whether the presence of a certain histone modification (H3K27ac or 

H3K4me1) or the binding of one of the tested TFs (YY1, SOX2) would largely predict NCRE 

activity, we analysed the ChIP-seq signal enrichment across the different NCRE activity 

categories. We observed that increased NCRE activity was associated with an increased 

H3K27ac, YY1 and SOX2 ChIP-seq signal, while the H3K4me1 signal was rather constant 

across all the activity categories (Fig. 1g). Looking at the ratio between the overlap of each 

NCRE category with each ChIP-seq and the total overlap of the 148,198 scaffold regions with 

each ChIP-seq, both normalized for the group size, we observed the same trend (Extended 

Data Fig. 2e). 
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We conclude that by employing NSC ChIP-STARR-seq, we can rank NCREs according to 

their activity, which correlates with the expression level of presumed NCRE target genes of 

cell-type relevance.  

Active NCREs in neural stem cells show distinguishing sequence characteristics  

To further characterize NCREs active in NSCs, we focused on their sequence characteristics 

and investigated a variety of in silico metrics, including GC content. The non-coding essential 

regulation (ncER) score measures the essentiality of each nucleotide within a given genome 

sequence, ranging from 0 (non-essential) to 1 (putative essential)20; the phastcons score 

indicates the probability of each nucleotide of a given sequence to be conserved among 

multiple species21; the Orion score is based on the depletion of variation in the human 

population22; and finally the CADD score takes into account the likelihood of a given nucleotide 

variant to be deleterious23. We observed that NCRE activity in NSC ChIP-STARR-seq is 

positively associated with an increase in all these scores except for GC content (Fig. 1h), 

which is in line with previous findings showing that cell-type specific NCREs have lower GC 

content compared to more broadly active NCREs24,25. When focussing on the top-10% most 

active NCREs linked to genes associated with known OMIM phenotypes, we noticed a further 

increase in these scores (Fig. 1h). We previously performed a large-scale integrative 

computational analysis of epigenome datasets during foetal brain development26 and 

observed that genes linked to differentially active enhancers (as measured by variability of 

epigenome marks over time) are less tolerant to LoF, whereas non-differentially active regions 

are more tolerant to LoF. We therefore wondered whether NCRE activity measured by NSC 

ChIP-STARR-seq would also correlate with intolerance to LoF. To investigate this, we used 

previously published LoF tolerance scores determined from structural variants of whole 

genome sequences27. We observed that the investigated scaffold regions largely show 

intolerance to LoF, without a clear difference emerging between the different NCRE activity 

groups (Extended Data Fig.  2f). This possibly reflects the fact that the investigated scaffold 

regions were selected for being endogenously marked by H3K27ac, H3K4me1, or bound by 

YY1, or SOX2 and thus might already be enriched for regions with intolerance to LoF, 

independent of their NCRE activity in NSCs. Next, we investigated the localization of NCREs 

relative to the transcription start site (TSS) of genes and found that NCREs belonging to all 

the categories of activity show a similar distance distribution (Fig. 1i) and location as 

annotated by Homer (Extended Data Fig. 2g). It is important to note that the design of the 

STARR-seq reporter construct, with the NCRE being positioned downstream of the reporter 

open reading frame, does not allow the measurement of promoter activity. Thus, even when 
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an active region is located in proximity to a TSS, the observed NCRE activity reflects enhancer 

activity and not promoter activity.   

To determine whether differential TF binding might influence NCRE activity, we assessed the 

top-10 TF binding motifs in each NCRE activity category. Lower activity categories were 

mainly enriched for motifs of various SOX family TFs important for neural development, and 

motifs of the RFX family, involved in the regulation of differentiation of various cell types28, 

while the top-10% most active NCRE category was characterized by p53 family motifs (p53 

and p73), that play a crucial role in regulating the development of the central nervous 

system29,30 and the YY1 motif (Fig. 1j). Also enriched in the top-10% most active NCREs was 

the Fli1 motif, belonging to the ETS family that regulates a wide variety of processes31. 

Finally, we assessed the presence of transposable elements (TEs) at the identified NCREs. 

TEs are present throughout the human genome and are enriched in TF binding sites32. 

Moreover, in our previous work9, we showed that some classes of TEs are enriched in active 

NCREs in ESCs, including satellite repeats and some LTR family elements33. The most 

enriched TEs in the top-10% most active NCREs in NSCs belong to the primate-specific 

subfamilies of MER61 and LTR10, both members of the ERV1 type of long terminal repeats 

(LTRs) (Extended Data Fig. 2h). These TEs have previously been associated with p53 

binding sites34,35, in line with our observation that p53 binding sites are enriched in highly active 

NCREs (Fig. 1j). On the other hand, TEs enriched in the classes with low NCRE activity are 

mostly simple repeats (Extended Data Fig. 2h). Importantly, we did not observe any overlap 

between the 10 most enriched TEs in NSCs and the 10 most enriched TEs we identified 

previously in ESC ChIP-STARR-seq9, suggesting that the NSC NCRE landscape is shaped 

mainly by different TEs. However, our top hits in NSCs, MER61C and MER61E, were included 

in the top-20 most enriched TEs in active NCREs in ESCs.  

Together this indicates that NCREs from different NCRE activity categories, despite being 

located at similar genomic locations relative to TSSs, show differences in sequence 

characteristics including sequence constraint, and enrichment for TF motifs and TEs.  

Comparative ChIP-STARR-seq using NSC-derived plasmid libraries transfected in 

ESCs identifies NCREs which are primed in ESCs for future NCRE activity 

Reasoning that NCREs with a role during neural development might show higher NCRE 

activity specifically in NSCs whereas NCREs regulating genes with broader biological roles 

might show activity in multiple cell types, we next investigated cell-type specificity of NCRE 

activity. Therefore, we transfected ESCs with the same NSC-derived ChIP-STARR-seq 

plasmid libraries (Fig. 2a and Extended Data Fig. 1i,j), which we refer to as comparative 
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ChIP-STARR-seq. In NSCs, these sequences are marked by H3K27ac, H3K4me1, YY1 or 

SOX2 resulting in their capture into the NSC plasmid library. Testing their activity in an earlier 

developmental cell type such as ESCs, where these sequences are not necessarily 

endogenously enriched for active chromatin marks, might additionally allow direct assessment 

of the role of the nucleotide composition itself driving NCRE activity. As done for NSCs, we 

ranked the 148,198 NSC-derived scaffold regions based on the NCRE activity in ESCs (Fig. 

2b). As expected we found active NCREs, given that some NCREs show activity in multiple 

cell types and because 56.35% of the NSC-derived scaffold overlapped with the ESC-derived 

scaffold tested in ESC ChIP-STARR-seq9, representing genomic regions marked by OCT4, 

NANOG, H3K27ac and H3K4me1 in ESCs (Extended Data Fig. 3a). First, comparing for each 

of the 148,198 scaffold regions the changes in NCRE activity groups between NSC ChIP-

STARR-seq and comparative ChIP-STARR-seq, we noticed that most regions remained in 

the same or in an adjacent higher or lower activity category, and only a minority showed 

extreme changes (e.g., going from category 5 to category 1 and vice versa) (Fig. 2c). To 

further interpret comparative ChIP-STARR-seq findings, we linked NCREs to presumed target 

genes using proximity and available HiC data in H9 ESCs36. Contrary to NSCs, we observed 

that increased NCRE activity in comparative ChIP-STARR-seq is not accompanied by a major 

increase in gene expression of the presumed target genes in ESCs (Fig. 2d). Like in NSCs, 

we observed an increased intolerance to LoF of the presumed ESC target genes (Fig. 2e). 

Focussing on sequence characteristics, we did not notice a consistent stepwise increase of 

the various scores following increased comparative ChIP-STARR-seq NCRE activity as found 

in NSCs, with the exception of the phastcons and CADD score. Rather, we observed a 

decrease in essentiality (ncER), Orion and GC score, the latter mirroring our findings in NSCs 

(Fig. 2f). Next, we investigated the localization of NCREs relative to the TSS of genes and 

noticed that NCREs with increased activity in comparative ChIP-STARR-seq in ESCs tended 

to be more distally located (Extended Data Fig. 3b). When performing TF binding motif 

analysis, whereas the top-10% most active NCRE category in NSCs was dominated by motifs 

for p73, p53 and YY1 (Fig. 1j), these motifs were no longer found amongst the top-10 most 

enriched motifs in any of the NCRE activity categories from comparative ChIP-STARR-seq in 

ESCs (Extended Data Fig. 3c). Other TF motifs, including SOX2, SOX3, SOX10, RFX and 

RFX2 were enriched in the top-10% category in ESCs, like in NSCs, while ERG and ETV2, 

other members of the above mentioned ETS family, were only found enriched in the top-10% 

most active NCRE category in ESCs but not in NSCs (Extended Data Fig. 3c). Interestingly, 

except for the OCT4-SOX2-TCF-NANOG motif only found in NCRE category 5 of comparative 

ChIP-STARR-seq in ESCs, we did not observe major differences in TF motif enrichment 

between NCREs ranked in the 5 activity categories in ESCs, as they all showed SOX and 

RFX family TFs (Extended Data Fig. 3c). When investigating the 10 most enriched TEs in 
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the different categories of NCRE activity in comparative ChIP-STARR-seq, we observed 

similar results as for the NSCs (Extended Data Fig. 3d), with a large overlap of TEs identified 

in highly active NCREs in both cell types. 

Gene ontology analysis of the protein-coding genes linked to the various classes of ESC 

NCRE activity showed that genes involved in the regulation of transcription are enriched 

amongst all ESC NCRE activity categories (Fig. 2g). Categories with higher NCRE activity in 

comparative ChIP-STARR-seq were also enriched for processes involved in nervous system 

development and neuronal differentiation (Fig. 2g). This was surprising given that these 

experiments were performed in ESCs where we would have expected to find a more ESC-

related gene ontology for genes linked to the most active NCREs. Together with the lack of a 

major increase in target gene expression in ESCs upon increased NCRE activity from 

comparative ChIP-STARR-seq in ESCs (Fig. 2d) and the absence of the typical ESC TF and 

TE enrichments that we previously observed in ESC ChIP-STARR-seq with ESC-derived 

libraries9, this potentially indicates that the NCREs showing episomal activity in comparative 

ChIP-STARR-seq in ESCs might not all be active at the endogenous loci in ESCs. This could 

possibly reflect the NSC origin of the plasmid libraries and the fact that these sequences in 

the ESC experiments are uncoupled from their cell type specific environment and chromatin 

landscape. Thus, they might not be active at the endogenous loci in ESCs, in contrast to NSCs 

where these NCREs are endogenously marked by H3K27ac, H3K4me1, YY1 or SOX2. 

Indeed, when determining the ChIP-seq signal enrichment obtained from ESC data for the 

NCREs from the various activity categories from comparative ChIP-STARR-seq in ESCs, we 

only noticed a limited enrichment of H3K27ac and H3K4me1 in ESCs at these sites, not 

correlating with their measured NCRE activity (Fig. 2h). Likewise, enrichment of YY1, SOX2, 

OCT4 and NANOG at these sites in ESCs was limited. Both of these trends were slightly 

increased when assessing only those scaffold regions showing an overlap between the NSC-

derived scaffold used herein and the previously used ESC-derived scaffold from ESC ChIP-

STARR-seq9 (Extended Data Fig. 3e), but still dramatically reduced when compared to the 

enrichment of H3K27ac, H3K4me1, YY1 and SOX2 in NSCs over these regions (Fig. 2h and 

Extended Data Fig. 3e). Surprisingly, despite the lack of H3K27ac and H3K4me1 in ESCs, 

these regions were still located in accessible chromatin in ESCs, as determined using ATAC-

seq, and depleted for the repressive mark H3K27me3 in ESCs (Fig. 2h). Additionally, these 

same regions were enriched for H3K4me2 and H3K4me3, with the latter being more enriched 

in the less active NCRE categories from comparative ChIP-STARR-seq in ESCs (Fig. 2h). 

Previously, so called “primed enhancers” have been shown to lack H3K27ac and to be 

characterized by H3K4 methylation37. Together, the epigenome profile indicates that some of 

the NCREs identified by comparative ChIP-STARR-seq belong to such a class of primed 
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NCREs, which are primed in ESCs for activity at later developmental stages. An extensive 

differential NCRE activity analysis and epigenome profiling (Supplementary Note 2 and 

Extended Data Fig. 4), comparing NCREs with high activity in the one cell type and low 

activity in the other, and vice versa, likewise pointed to priming of NCREs for later activity 

along the trajectory of neural differentiation, although future studies will be required to 

completely resolve the underlying mechanisms.   

BRAIN-MAGNET, a convolutional neural network model, predicts NCRE activity based 

on DNA sequence and facilitates interpretation of biological consequences of non-

coding variants 

The NSC ChIP-STARR-seq performed herein provides a comprehensive atlas of annotated 

NCREs ranked by activity in a cell type relevant to early brain development. We hypothesized 

that such an NCRE atlas will aid the interpretation of non-coding genetic variants encountered 

in neurodevelopmental disorders. The diagnostic yield for most of these disorders using 

current genomic technologies, which mainly focus on coding sequences, is well under 50%4,5, 

suggesting that some causes of missing heritability might be located in NCREs. If this would 

be the case, disease-relevant NCREs should be relatively depleted of rare genomic variation 

in the healthy population compared to other genome sequences. Indeed, using the recently 

released gnomAD v4 data, containing 76,215 genomes from individuals that did not present 

with early onset neurodevelopmental phenotypes1, we found that NCREs with higher activity 

in NSCs harboured fewer rare variants (minor allele frequency (MAF) <0.1%) compared to 

NCREs with lower activity (Extended Data Fig. 5). An even stronger depletion of rare variants 

was observed upon increasing NCRE activity in comparative ChIP-STARR-seq (Extended 

Data Fig.  5). As expected, the coding sequences (CDS) of protein coding genes showed the 

strongest depletion of rare variants. Nevertheless the relative depletion of rare variants in the 

highly active NCREs in both NSCs and ESCs was in a similar range as for other sets of 

NCREs, including VISTA enhancers38, candidate cis regulatory elements from ENCODE39, 

differentially active enhancers (DAEs) and non-differentially active enhancers (nDAEs) from 

an epigenome study of human foetal brain26, and for the 5’ and 3’ UTRs of genes (Extended 

Data Fig. 5). Although this relative depletion of rare variants is in line with the hypothesis that 

the identified NCREs from our atlas could be disease relevant, the 148,198 NCREs assessed, 

encompassing a total size of 112,314,966 nucleotides, still harboured 28,486,102 rare variants 

(MAF <0.1%) in healthy individuals. Most of these variants are likely not disease relevant as 

they will not interfere with NCRE function, but it is currently difficult to assess their potential 

pathogenicity, especially given the lack of a genetic code for NCREs contrary to that of the 

protein coding exome. If a rare variant would affect a nucleotide directly relevant for the NCRE 
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function and consequent downstream gene expression, it would be more likely to be disease 

relevant. This underscores the necessity to develop tools that can predict the function of 

individual nucleotides within NCREs, enabling the prioritization of variants that are more likely 

to be pathogenic.  

To be able to interpret the potential effects of NCRE variants, we set out to build an artificial 

intelligence based prediction model. As identifying non-coding variants that affect NCRE 

function is reminiscent of searching for needles in a haystack, and needles are more likely to 

be identified using a magnet, we refer to the model as BRAIN-MAGNET (BRain-focussed 

Artificial INtelligence Method to Analyse Genomes for Non-coding regulatory Element 

mutation Targets). BRAIN-MAGNET is a sequence-based single-task convolutional neural 

network (CNN) model40 that allows predicting NCRE activity for NSCs and ESCs individually 

(Fig. 3a, Extended Data Fig. 6b,c, Methods). This model uses the genomic sequences 

assessed by ChIP-STARR-seq as input and links to their measured activity as output, 

determining what is causing a given sequence to have a given activity. BRAIN-MAGNET 

trained on both NSC ChIP-STARR-seq and comparative ChIP-STARR-seq in ESCs is able to 

precisely predict the experimentally measured activity of NCREs, contrary to an existing model 

(Extended Data Fig. 6a-c), with the ESC-trained model slightly outperforming the NSC-

trained model (Extended Data Fig. 6b,c). Possibly this reflects the fact that some NCREs 

identified by comparative ChIP-STARR-seq in ESCs potentially are primed, and might be 

more dependent on their sequence composition for episomal activity, which might be more 

amenable for training of the sequence-based model.    

To further interpret the predictions of BRAIN-MAGNET, we next utilized the explainable AI 

DeepExplainer framework41,42 to calculate BRAIN-MAGNET contribution (cb) scores. These 

cb scores indicate for each of the 112,314,966 nucleotides in our NCRE atlas the relative 

contribution to NCRE activity, with higher cb score ranking pointing to functionally more 

important nucleotides. We then identified functionally important motifs in sequences with high 

cb scores using TF-MoDISco-lite (see Methods) (Fig. 3b). For example, in the NSC NCREs 

we found prominent enrichment for the TP53 and TP73 motifs when using BRAIN-MAGNET 

trained on NSC ChIP-STARR-seq (Fig. 3b). Another motif frequently identified was ZFP42 

(REX1). REX1 originated from a duplication event of YY1 in the eutherian lineage43, thus it 

recognizes the same TF binding motif. Since REX1 is not expressed in NSCs, the observed 

enrichment for the ZFP42 motif likely represents YY1 bindings sites. Indeed, the YY1 motif is 

the third redundant motif called by the algorithm at the ZFP42 motif sites. Hence, the results 

from BRAIN-MAGNET are in line with the previous motif discovery analysis (Fig. 1j), but 

additionally indicate that the binding of these TFs might also be functionally important for 

NCRE activity given the high cb scores of these motifs. To functionally validate BRAIN-
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MAGNET findings and to confirm that the prioritized motifs were indeed required for NCRE 

activity, we selected 15 NCREs highly active in NSCs that displayed a significant TF motif with 

high cb score (Fig. 3c,d, Extended Data Fig. 7-12). We cloned these NCREs into the STARR-

seq reporter plasmid and generated mutations lacking 30 bp centred on the TF motif. Upon 

transfection in NSCs, we observed that these deletions significantly impacted the NCRE 

activity of 14 out of 15 tested NCREs (Fig. 3c,d and Extended Data Fig. 7-12). Likewise, 

generating point mutations disrupting the prioritized motifs of 4 NCREs similarly affected 

NCRE activity (Fig. 3c,e and Extended Data Fig. 7,8). For example, changing 4 nucleotides 

in the prioritized TP53 motif of an NCRE upstream of ACTB (Fig. 3e,f), a gene of which 

mutations cause a syndromic neurodevelopmental disorder known as Baraitser-Winter 

syndrome (OMIM #243310), significantly reduced NCRE activity (Fig. 3e). The same holds 

true when introducing point mutations in the TP53 motif of an NCRE interacting with OAT, a 

gene of which mutations are linked to gyrate atrophy of the choroid and retina (OMIM 

#258870), and in NCREs of PAFAH1B1 and ASH1L (Fig. 3e and Extended Data Fig. 7,8), 

genes playing a role in lissencephaly (OMIM #607432) and intellectual disability (OMIM 

#617796), respectively. Previously reported variant prioritization scoring methods, including 

LINSIGHT44, GERP45, CADD23 and ncER20 score were not correlated with BRAIN-MAGNET 

cb scores across our NCRE atlas and the experimentally validated NCRE mutations 

(Extended Data Fig. 6d,e, and Extended Data Fig.  7-12) and were therefore less suited to 

identify these functional NCRE sequences and predict their mutation effects compared to 

BRAIN-MAGNET.   

Together this indicates that BRAIN-MAGNET can predict NCRE activity based on DNA 

sequence composition and can be exploited to identify which nucleotides and motifs within 

NCREs can impact NCRE activity when mutated.     

Application of the NCRE atlas and BRAIN-MAGNET to prioritize genomic variants found 

in common disease helps to dissect GWAS loci 

To test the utility of our NCRE atlas and BRAIN-MAGNET to prioritize genomic variants, we 

first applied them to genome-wide association studies (GWAS). Numerous GWAS have 

identified risk loci for neuropsychiatric disorders, the vast majority of which are located in the 

non-coding genome2. It has been tremendously challenging to decipher the mechanisms 

through which SNPs identified in GWAS might confer disease risks, as the majority of them 

are in linkage disequilibrium (LD) with adjacent SNPs. Thus, it remains unclear which of these 

genomic variants underscore the allele-specific biological effects causing the increased 

disease risks. Recently, MPRAs have been employed to fine-map GWAS loci and assess how 

the lead SNPs and adjacent SNPs in LD would affect the function of NCREs at single 
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nucleotide resolution. In one such application, Guo et al. assessed 2,221 non-coding variants 

associated with 10 neuropsychiatric disorders, with an average of 5 SNPs per disease risk 

loci being tested46. Comparing the activity of matched risk versus reference allele pairs, they 

identified 892 SNPs that showed differential activity (daSNVs) in their MPRA depending on 

the genotype of the given SNP. As the BRAIN-MAGNET cb scores enable prediction of which 

nucleotides within a given NCRE have the highest likelihood of impacting the NCRE activity 

and daSNVs were already shown to affect NCRE activity in an allele-specific manner46, we 

hypothesised that daSNVs that overlapped with the NCREs measured in our study should 

have, on average, a higher BRAIN-MAGNET cb score than non-daSNVs. In agreement, we 

observed a significant difference in normalized cb score percentile between daSNVs and non-

daSNVs (p=0.0374, t-test) (Extended Data Fig. 13a). In contrast, GERP, LINSIGHT, CADD 

and ncER scores did not significantly differ between the same daSNVs and non-daSNVs 

(Extended Data Fig. 13a). Since GWAS typically nominates a lead SNP, with other SNPs in 

LD, we next asked whether BRAIN-MAGNET cb scores could prioritize which SNP in a given 

GWAS locus would be more likely to be a daSNV (Fig. 4a). We therefore investigated GWAS-

associated regions where multiple SNPs were previously functionally tested46 and for which 

multiple NCREs were present in our data set. One such locus on chromosome 6 contains in 

total 7 SNPs in LD which are located on 4 NCREs from our atlas, including rs401754 which 

was previously shown to be associated with an increased risk for schizophrenia (Fig. 4b). 

Amongst these 7 SNPs, rs200483 has relatively the highest normalized cb score compared 

to the other 6 SNPs (Fig. 4c, Extended Data Fig. 13b,c), and indeed rs200483 was previously 

identified as a daSNV46. Similarly, at a locus on chromosome 1 associated with major 

depression, comparing the relative normalized cb score amongst the 4 candidate SNPs in LD 

rightly pointed to rs301806 as the daSNV (Fig. 4d,e and Extended Data Fig. 13d,e). Of note 

is that other nucleotides within these NCREs, not overlapping with common SNPs, have 

higher cb scores, and alterations of those nucleotides might thus impact the activity of these 

sequences more severely than the daSNVs. The likely more severe effect of such genomic 

variants might not be compatible with the expected moderate risk effects of GWAS loci. 

Therefore, those nucleotides might not harbor common SNPs associated with common 

disease, but perhaps might harbor rare variants causing other related monogenic disorders. 

Together this indicates that comparing cb scores of candidate SNPs at GWAS loci can help 

to prioritize those SNPs that have the relatively highest likelihood to affect NCRE activity 

compared to the reference allele.  
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Application of the NCRE atlas and BRAIN-MAGNET to prioritize genomic variants found 

in rare disease identifies novel enhanceropathies 

As the last proof of concept for the utility of the NCRE atlas and BRAIN-MAGNET, we 

investigated non-coding variants in WGS data from individuals with rare disease. To this end, 

we applied BRAIN-MAGNET to the data from the Genomics England 100,000 Genomes 

Project (GEL)10. If genetic variants at nucleotides with high cb scores would contribute to 

unexplained neurodevelopmental disorder phenotypes, we should observe an increased 

burden of de novo variants overlapping such nucleotides in genetically unexplained patients 

with neurodevelopmental disorders. To investigate this, we assessed 4,415 individuals from 

the unexplained neurology and neurodevelopmental cohort (NDD) of the v18 GEL data 

release for which 13,276 de novo variants overlapped with our NSC NCREs. Indeed, at 

population level, we observe a tendency towards an increased number of de novo variants at 

nucleotides with higher cb scores in NCREs from higher NSC ChIP-STARR-seq activity 

groups (Extended Data Fig. 14a), with similar findings for the NCREs identified by 

comparative ChIP-STARR-seq (Extended Data Fig. 14a). Likewise, we found a similar trend 

when investigating 4,558 genomes from individuals with a variety of other rare disease 

categories (Extended Data Fig. 14b).  

We next screened the GEL data searching for variants that were overlapping with 20 bp 

fragments centred on the high confidence motifs found in the most active (category 4 and 5) 

NSC NCREs for which BRAIN-MAGNET predicts a major impact when disturbed. Following 

additional filtering steps, we identified 705 rare variants (each present ≤10 times in GEL) in 

824 individuals with unexplained NDDs that were located within 20 bp centred on 440 motifs 

from NCREs that are linked to known OMIM genes (Fig. 5a). We randomly chose 4 

heterozygous variants for functional validation which were absent in gnomAD v4, and found 

that three out of four variants significantly affected NCRE activity (Fig. 5b). The first 

heterozygous variant was in an NCRE linked to GRIA4 (gene linked to autosomal dominant 

neurodevelopmental disorder with or without seizures and gait abnormalities, OMIM 

#617864), found in an individual with a complex neurological phenotype including ataxia and 

spasticity, and did not show a significant difference (Fig. 5b and Extended Data Fig. 15a). 

The second heterozygous variant that was identified in two unrelated individuals affected by 

epilepsy and ataxia and which is located in an NCRE linked to KPTN (gene linked to autosomal 

recessive intellectual developmental disorder 41, OMIM #615637) increased NCRE activity 

(Fig. 5b and Extended Data Fig. 15b). This indicates that genomic variants altering 

nucleotides with high cb scores do not necessarily only diminish NCRE activity but could also 

cause gain-of-function. The third heterozygous variant in an NCRE linked to MN1 (gene linked 

to autosomal dominant CEBALID syndrome, OMIM #618774, that presents with dysmorphic 
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features, intellectual disability, and brain malformations), significantly reduced the NCRE 

activity (Fig. 5b and Extended Data Fig. 15c). This variant was found in an unexplained 

individual reported to have a complicated epilepsy phenotype with amongst other features 

abnormalities of the cerebral cortex possibly presenting a (partial) phenotypic match. Lastly, 

the fourth heterozygous variant disrupts a ZFP42/YY1 binding motif in an NCRE linked by HiC 

to RAB7A and significantly reduced NCRE activity (Fig. 5b,c). This chr3:128681129 T>C 

(GRCh38/hg38) variant was identified in a genetically unexplained female clinically diagnosed 

with Charcot-Marie-Tooth disease and Sanger sequencing confirmed that her similarly 

affected mother carried the same variant. Interestingly, RAB7A is linked to an autosomal 

dominant type of Charcot-Marie-Tooth disease (type 2B, OMIM #600882)47 and is a dosage 

sensitive gene, indicating a phenotypic match. To further investigate how NCRE dysfunction 

might be implicated in this disorder, we first performed CRISPRi experiments targeting the 

RAB7A NCRE which resulted in significantly diminished RAB7A expression, confirming that 

RAB7A is under control of this NCRE (Fig. 5d). We next performed transgenic reporter assays 

in developing zebrafish larvae with wild type and patient-specific mutant RAB7A NCREs, both 

episomally and upon transposase-mediated NCRE integration. Under both conditions, and 

compared to the wild type, the patient-specific mutant RAB7A NCRE showed reduced 

expression in the central nervous system (CNS) 24 hours post fertilization (hpf). Also, a larger 

proportion of larvae with the patient-specific mutant NCRE showed bright, non-specific 

expression at aberrant locations not seen with the wild type RAB7A NCRE (Fig. 5e, Extended 

Data Fig. 14c,d,e). Together, this indicates that the patient-specific RAB7A NCRE variant 

leads to reduced expression in the CNS and an altered spatiotemporal NCRE activity in vivo, 

indicating NCRE dysfunction. Hence, it is currently considered that this non-coding variant is 

causative for the disease phenotype and represents a novel enhanceropathy. Clinical follow-

up has been initiated for these individuals.  

Finally, we screened through three independent WGS sources. First, focussing on a set of 

249 trio WGS of unsolved rare disorder patients and solely on de novo variants overlapping 

NCREs with a cb score above the 95th percentile, we identified 12 variants in NCREs which 

target genes could potentially provide a clinical match. We then screened for deletions 

overlapping the same set of NCREs in 3,971 singleton WGS of undiagnosed rare disease 

patients and compared HPO-terms of NCRE target genes and the individuals. This identified 

5 heterozygous carriers harbouring deletions of NCREs which were regulating known disease 

genes causing overlapping phenotypes as observed in the patients but with an autosomal 

recessive mode of inheritance, likely representing carrier status. In addition, we identified three 

deletions of NCREs regulating genes with an autosomal dominant mode of inheritance, 

possibly representing a clinical phenotypic match. This included a heterozygous ~5.7 kb 
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deletion of an NCRE for NEFL (Extended Data Fig. 14f), a gene associated with various 

dominant forms of Charcot-Marie-Tooth disease48, found in a genetically undiagnosed adult 

with motor and sensory neuropathy providing a clinical phenotypic match. Ultimately, we 

applied BRAIN-MAGNET to clinical WGS data from our center analyzing a genetically 

unexplained patient clinically suspected of Mowat-Wilson syndrome and ruled out a non-

coding variant in an intron of ZEB2 as the likely disease cause (Supplementary Note 3, 

Extended Data 16). This shows how BRAIN-MAGNET can also be used to clinically eliminate 

potential candidate disease-causing non-coding variants. 

Together, this indicates that the NCRE atlas presented herein, coupled with BRAIN-MAGNET, 

can facilitate the search for possibly disease-implicated rare variants identified by WGS in rare 

disease cohorts. Furthermore, BRAIN-MAGNET can predict the impact of such variants on 

functional NCRE activity and aid in their clinical interpretation (Fig. 6).   
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Discussion 

Here, we used ChIP-STARR-seq to build an extensive atlas of NCREs functionally active in 

NSCs. Besides informing on the biological mechanisms regulating gene expression in NSCs 

and on NCREs distinguishing sequence characteristics, we provide evidence that a CNN 

model trained on the experimental data allows to predict NCRE activity solely based on NCRE 

nucleotide composition, similar to what other recent MPRA studies have found49-51. BRAIN-

MAGNET can be used to predict the functional effects of genomic variants overlapping with 

NCREs, and such predictions occur with high confidence as testified by our functional 

validation. We show how BRAIN-MAGNET can be used to interpret effects of common SNPs 

identified in GWAS, as well as rare variants identified by WGS in affected individuals with 

currently unexplained neurological and neurodevelopmental phenotypes. We thus anticipate 

that this resource might be useful to diminish so-called missing heritability of non-coding 

variants in the field of human genetics, by providing an additional option for variant 

prioritization based on BRAIN-MAGNET cb scores.  

Our study has several limitations. First, MPRAs measure NCRE activity in an episomal 

context, outside of the natural chromatin environment, hence, results might not always reflect 

the endogenous NCRE activity. Notwithstanding this potential limitation, previous work has 

already extensively shown that multiple MPRA findings can be reproduced when altering 

NCREs at the endogenous locus9,49,52. To minimize potentially confounding effects, we 

generated ChIP-STARR-seq plasmid libraries from chromatin marked in NSCs with histone 

modifications associated with active NCREs. In addition, the episomal approach might also 

reveal insights in mechanisms that are alternatively difficult to study at the endogenous locus, 

such as the potential priming of NCREs in ESCs for later activation that we observe here when 

using comparative ChIP-STARR-seq. Second, results of MPRAs are obtained in a given cell 

type, and it remains to be investigated how cell type specific findings and rules identified by 

CNN models can be extrapolated to other cell types and tissues. Third, although we show the 

utility of this resource to prioritize non-coding genomic variants for functional effects on NCRE 

activity based on their BRAIN-MAGNET cb scores, it remains challenging to draw final 

conclusions regarding pathogenicity of such variants and causality in causing rare disease. 

One of the largest conceptual challenges in this regard is the fact that the clinical phenotype 

of an NCRE-disrupting variant does not necessarily have to equal the phenotype of a protein 

coding pathogenic variant affecting the gene that the NCRE is regulating. This is illustrated by 

tissue-specific effects of mutations in the PTF1A enhancer, where such NCRE mutation only 

causes part of the phenotype compared to that of the PTF1A disease gene53. Hence, when 

finding a variant that strongly impacts NCRE function, its associated phenotype might be 

similar to the known phenotype of the target gene, such as is likely the case of the RAB7A 
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example presented here, but might also cause phenotypes that represent only “partial known 

syndromes”, or novel phenotypes which might complicate the clinical interpretation of such 

variants. Future studies will be required to more clearly dissect correlations between cell type 

specific effects of NCREs and phenotypes that NCRE dysfunction might cause. The NCRE 

atlas presented herein and BRAIN-MAGNET will form a solid starting point for such studies.  
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Supplementary Note 1 

Adapted ChIP-STARR-seq approach 

Compared to our previous application of ChIP-STARR-seq in human embryonic stem cells 

(ESCs) 9 that focussed on NCREs enriched for the TFs NANOG, OCT4, and the histone 

modifications H3K4me1 and H3K27ac (herein referred to as ESC ChIP-STARR-seq), we 

performed a number of updates on the experimental procedures, aiming to reduce 

experimental noise, increasing reproducibility and reducing experimental complexity and costs 

(Extended Data Fig. 1a).  

First, to enrich for genomic regions with putative NCRE function in NSCs, we performed ChIP 

in duplicates for the TFs SOX2 and YY1, that are important in NSCs13,14, and the histone 

modifications H3K27ac and H3K4me1, which are associated with putative NCREs15. ChIP-

qPCR showed an enrichment at known NCREs surrounding the FGFR1, PAX6, SOX2 and 

NES loci (Extended Data Fig. 1b). Sequencing of the ChIP material (ChIP-seq) showed a 

good correlation between replicates (Pearson correlation coefficient > 0.88) (Extended Data 

Fig. 1c,d). Next, using the same ChIP-DNA, ChIP-STARR-seq plasmid libraries were 

generated from both ChIP replicates and pooled. To further decrease the number of 

transfections and simultaneously increase the number of individual plasmids covering each 

putative NCRE, theoretically reducing experimental noise, we pooled together the plasmid 

libraries derived from ChIP for the histone modifications H3K27ac and H3K4me1, and for the 

TFs SOX2 and YY1. Hereafter, we refer to these combined plasmid libraries as HIST and TF 

libraries, respectively, and the application of these libraries for ChIP-STARR-seq in NSCs or 

ESCs as NSC ChIP-STARR-seq or comparative ChIP-STARR-seq, respectively. Visual 

inspection of sequencing results to assess whether the pooled plasmid libraries are a good 

representation of the initial ChIP material, showed that peaks from ChIP-seq experiments 

were still recognisable in the sequencing tracks of the pooled plasmids (Extended Data Fig. 

1e), and analysis of normalized sequencing reads confirmed a high correlation between initial 

ChIP-seq peaks and corresponding pooled plasmid libraries (Extended Data Fig. 1c,d). On 

average, 93.04% of HIST ChIP-seq peaks and 96.86% of TF ChIP-seq peaks were covered 

by more than 5 different plasmids and 46.91% of HIST peaks and 67.54% of TF peaks by 

more than 20 plasmids, with a mean of 27 and 43 distinct plasmids per HIST and TF ChIP-

seq peak, respectively. Together this indicates an increased complexity of the generated 

plasmid libraries compared to our earlier study using ChIP-STARR-seq in ESCs9.   

Second, to overcome the variability between samples that we previously observed in ESC 

ChIP-STARR-seq9, we implemented the following changes in the experimental strategy. We 
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performed 5 independent transfections per plasmid pool, each starting with ~3 million NSCs 

seeded 48 hours before the transfection (or ~6 million ESCs transfected in suspension, see 

Methods). 24 hours post-transfection, we collected and pooled together approximately 30 

million cells from these 5 independent transfections (Extended Data Fig. 1a). FACS analysis 

showed that 26.5% and 30% of NSCs transfected with the HIST or TF libraries, respectively, 

were GFP positive (Extended Data Fig. 1f).  

Third, RNA was isolated from these pooled, unsorted cells and subsequently split and treated 

as two replicates, which were subjected to DNase treatment and cDNA synthesis. To limit 

PCR artefacts, the first PCR amplification step which suppresses residual plasmid 

contamination by the use of primers spanning a synthetic intron in the STARR-seq plasmid, 

was performed in 10 parallel reactions for each of the two replicates. These 10 PCRs per 

replicate were then pooled, purified and further amplified with the index primers required for 

sequencing, using 5 independent PCR reactions and two independent index primers for each 

replicate. Thus, we sequenced a total of four replicates of STARR-seq RNA for each pooled 

HIST or TF library, with an average of 20 million reads per sample (Extended Data Fig. 1a). 

As the two technical replicates amplified with independent index primers showed a high 

correlation (Pearson correlation coefficient >0.96) (Extended Data Fig. 1g-j), they were 

merged for further downstream data analysis.  

Together this indicates that our revised experimental strategy generated highly complex 

plasmid libraries capturing genomic regions marked by H3K27ac, H3K4me1 or bound by 

SOX2 and YY1 in NSCs, which upon transfection and RNA sequencing results in highly 

correlated replicate data. 
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Supplementary Note 2 

Differential NCRE activity analysis in NSCs and ESCs 

To identify differences in NCRE activity between the two cell types, we next performed a 

differential NCRE activity analysis16, comparing NCREs captured in the same NSC-derived 

plasmid library with high activity in the one cell type and low activity in the other, and vice 

versa (Extended Data Fig. 4a). To this end, we first selected those NCREs that ranked in the 

top-10% of NSC ChIP-STARR-seq activity in NSCs and in the bottom-90% of comparative 

ChIP-STARR-seq in ESCs, and those NCREs that ranked in the top-10% of comparative 

ChIP-STARR-seq activity in ESCs and the bottom-90% in NSC ChIP-STARR-seq. With these 

settings, we identified 6,850 out of 14,818 NCREs (46.2%) overlapping between the top-10% 

of NSCs and ESCs (referred to as common-high) (Extended Data Fig. 4b), possibly 

explaining part of the overlap between TF motifs and TEs in NSC and ESC active NCREs 

(Fig. 1j and Extended Data Fig. 3c), and 7,968 out of 14,818 NCREs (53.8%) per cell type 

that were either NSC- or ESC-high. Visual inspection of the tracks surrounding the CHD2 

locus shows both common-high NCREs and differentially active NCREs (Extended Data Fig. 

4c). Investigating the distance distribution of these regions from the TSS, we observed that 

part of the NSC-high NCREs is located in closer proximity to TSSs, while common and ESC-

high NCREs were spatially distributed in a more similar manner (Extended Data Fig. 4d). A 

deeper investigation revealed that all the three classes or NCREs are enriched mainly at 

intronic (NSC-high: 46.4%; ESC-high: 55.2%; common-high: 53.7%) and intergenic (NSC-

high: 29.6%; ESC-high: 36.7%; common-high: 35.9%) regions with an increase at promoter-

TSS regions for the NSC-high ones (NSC-high: 17.1%; ESC-high: 4.4%; common-high: 6.3%), 

in agreement with their tendency to be located in closer proximity to the TSS (Extended Data 

Fig. 4e). Next, we asked whether cell-type specific highly active NCREs were also more 

susceptible to LoF. As observed previously (Extended Data Fig. 2f,3b), the majority of the 

investigated regions are intolerant to LoF, with NSC-high NCREs showing a larger enrichment 

amongst intolerant regions, possibly indicating that alterations of these regions might be 

negatively selected in the human population or might be implicated in disease (Extended Data 

Fig. 4f). Investigating the pLI of the genes linked to these NCREs groups, we did not find a 

significant difference (Extended Data Fig. 4g).  

Next, we aimed at understanding whether these NCREs might regulate cell-type specific gene 

expression. We observed that NSC-high NCREs are linked to genes expressed at a 

significantly higher level in NSCs but also in ESCs (Extended Data Fig. 4h), whereas genes 

linked to ESC-high and common-high NCREs did not show major expression differences. 

Gene ontology analysis identified for all three categories of NSC-high, ESC-high and common-
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high NCREs terms related to transcriptional regulation (Extended Data Fig. 4i). Common-

high NCREs were also enriched for terms related to nervous system development and 

generation of neurons and axons. Like previously seen for all NCREs active upon comparative 

ChIP-STARR-seq in ESCs, also ESC-high NCREs were enriched for nervous system 

development and generation of neurons, rather than other expected terms for pluripotent stem 

cells, despite that these genes are not highly expressed in ESCs. This observation further 

provides support for the hypothesis that these ESC-high NCREs, despite showing episomal 

activity in comparative ChIP-STARR-seq in ESCs when using plasmid libraries obtained from 

NSCs, might not be active at the endogenous chromatin in ESCs. Rather, these ESC-high 

NCREs might be primed for future activation at the endogenous locus, and this priming might 

not be recapitulated in an episomal plasmid-based system.  

To further investigate this hypothesis, we assessed various chromatin profiling data at the 

common and cell-type specific highly active NCREs. As expected, since all the investigated 

putative NCREs are derived from H3K27ac, H3K4me1, YY1 and SOX2 ChIP in NSCs, all the 

common and differentially active NCREs (ESC-high, NSC-high) show central enrichment of 

these chromatin marks across NSC ChIP-seq data (Extended Data Fig. 4j,k). To further 

characterize the 7,968 NSC-high NCREs at their endogenous locus, we retrieved H3K4me3 

and H3K27me3 from previously published data of H9-derived NSCs54 and performed ATAC-

seq in NSCs to assess chromatin accessibility. We observed that the NSC-high NCREs are 

enriched for accessible chromatin, as expected given the chromatin immunoprecipitation in 

this cell type, and a strong enrichment of the active chromatin mark H3K4me3 (Extended 

Data Fig. 4j,k) overlapping the enrichment of YY1 and H3K27ac. H3K4me3, as well as YY1, 

is highly enriched at promoters55, suggesting this fraction of loci might partially include the 

17% of NSC-high NCREs found in proximity to promoters (as previously discussed, the 

STARR-seq design does not allow to test promoter activity and thus despite being located in 

proximity to promoters these sequences are NCREs). Compatible with the 

immunoprecipitation of markers associated with NCRE activity used to identify ChIP-STARR-

seq NCREs, we did not see enrichment of the inactive chromatin mark H3K27me3 at these 

NCREs.  

To investigate the hypothesis that ESC-high NCREs are not enriched in active marks at the 

endogenous chromatin loci, we collected H9 ESC epigenome data from publicly available 

sources and from our previously generated H3K27ac, H3K4me1, OCT4 and NANOG ChIP-

seq9. Furthermore, we generated ChIP-seq data for YY1 and SOX2 in ESCs. ESC-high 

NCREs, even though located in accessible chromatin in ESCs, show no enrichment of the 

active chromatin marks H3K27ac and H3K4me1 in ESCs (Extended Data Fig. 4j,k). The 

majority of the ESC-high NCREs from comparative ChIP-STARR-seq in ESCs show a very 
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mild enrichment of SOX2 and NANOG binding, but interestingly, a subset of the ESC-high 

NCREs (n=1,100 out of the 7,968 ESC-high NCREs) had an accumulation of the histone 

marks H3K4me2 and H3K4me3, with especially the latter mark showing a bi-modal distribution 

with a valley over the NCRE centre. Primed NCREs are indeed characterized by methylation 

of H3K4 and no acetylation of H3K2737. Therefore, this observation is compatible with the 

hypothesis that these NCREs, despite being highly active in the episomal setting, are not 

active at the endogenous locus but primed for activation at a later stage. Further pointing to 

this scenario, we noticed that ESC-high NCREs primed with H3K4 methylation in ESCs, gain 

H3K27 acetylation at the NSC stage, although to a lower level compared to NSC-high NCREs, 

compatible with the lower activity of these regions in NSCs (Extended Data Fig. 4j,k). 

Interestingly, these regions maintain H3K4me3 also at later stages of differentiation, in 

neurons and in astrocytes, where they also display H3K27ac. The same scenario described 

for ESC-high NCREs applies to common-high NCREs, for which we could observe a fraction 

of regions (n=1,200 out of 6,850 common-high) with H3K4me2/3 accumulation and no 

H3K27ac in ESCs, but with H3K27ac in NSCs. H3K4me3 regions have been previously 

reported to be located mainly at the TSS55. In line with this, we observed that the majority of 

the ESC-high and common-high NCREs marked by H3K4me3 were located in proximity of a 

TSS, within 5kb down- or upstream (Extended Data Fig. 4l), but as outlined as the STARR-

seq design does not allow to capture promoter activity these are thus NCREs in proximity of 

the TSS. Moreover, when investigating the enrichment of TF binding motifs, the TATA-box 

was among the most enriched motifs in the H3K4me2/3 positive subset of both the ESC-high 

and common-high NCREs (Extended Data Fig. 4m). Further supporting the hypothesis that 

this subset of regions is primed for activation at a later stage, we noticed that the majority of 

them (>75%) in NSCs belong to the NCRE activity categories 4 and 5 (Extended Data Fig. 

4n). 

Analysing further the TF motifs enriched in these regions, we noticed that the most enriched 

in the common-high subset positive for H3K4me2/3 in ESCs were YY1, p73 and p53, possibly 

explaining their activity in NSCs where these regions are marked by H3K27ac. We also 

identified the OCT4 and OCT4-SOX2-TCF-NANOG56 motifs at this subset of ESC-high 

NCREs, possibly contributing to the episomal activity of these NCREs. Interestingly, the 

repressor protein ZNF281 was enriched at a small subset of ESC-high, H3K4me2/3 positive 

NCREs (Extended Data Fig. 4n). ZNF281 is a known repressor protein expressed at high 

levels in ESCs but downregulated upon neural differentiation57, and it will therefore be 

interesting to investigate whether ZNF281 or related factors might contribute to explain 

silencing of some of the ESC-high NCREs at the endogenous chromatin. 
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Supplementary Note 3 

BRAIN-MAGNET eliminates a clinically suspected candidate disease causing non-

coding variant  

We applied the NCRE atlas to a patient from our clinic, which was clinically suspected of 

Mowat-Wilson syndrome, a severe neurodevelopmental disorder linked to dysfunction of the 

ZEB2 gene. Previous extensive genetic investigations, including trio whole exome and 

genome sequencing did not reveal a protein coding mutation in ZEB2, or any other likely 

disease-causing variant, but identified a heterozygous chr2:144469837C>T variant in intron 2 

of ZEB2. This variant overlapped with a highly active NCRE from NSCs (category 5), was 

absent in gnomAD v4, had a CADD score of 21.0, an ncER score of 99.6 and was predicted 

by the RegulomeDB v.258 to contain a TF binding motif (Extended Data Fig. 14a). According 

to LINSIGHT44, an algorithm that aims to predict which non-coding variants are likely to have 

deleterious fitness effects, the chr2:144469837C>T variant was predicted to be likely 

pathogenic (score 0.98). In contrast, according to BRAIN-MAGNET, this nucleotide had a low 

cb score (65.7th percentile within the NCRE (cb_each); 52.4th percentile within all NCREs 

(cb_all)), while a different ONECUT1 TF motif located 36 nucleotides upstream is predicted to 

mostly impact on activity of this NCRE. To investigate this functionally, we cloned the NCRE 

in the STARR-seq plasmid and introduced by site directed mutagenesis either the variant 

identified in the patient or a 27 bp deletion centred on the ONECUT1 motif. Upon transfection 

in NSCs, the ONECUT1 deletion completely abolished the NCRE activity, while the patient 

variant did not majorly affect NCRE activity, in agreement with the BRAIN-MAGNET 

predictions (Extended Data Fig. 14b). In addition, clinical RNA-seq of patient derived 

fibroblasts did not reveal any ZEB2 expression changes and a diagnostic Episignature did not 

reveal evidence of a Mowat-Wilson syndrome specific DNA-methylation pattern (data not 

shown). Even though we cannot completely exclude that the intronic ZEB2 variant could have 

an effect in other cell types, based on the current functional testing the variant was clinically 

classified as a variant of unknown significance which was considered unlikely to contribute to 

the phenotype which remains unexplained. This illustrates how BRAIN-MAGNET can be used 

to clinically eliminate potential candidate causing non-coding variants identified during filtering 

of WGS data sets.   
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Experimental procedures 

Cell culture 

H9-derived human Neural Stem Cells (NSC, Gibco) were cultured as previously described59. 

Briefly, cells were seeded onto Geltrex (Gibco) coated plates and cultured in KnockOut 

DMEM/F12 (Gibco) supplemented with 2 mM L-Glutamine (Gibco), 2% StemPro neural 

supplement (Gibco), 20 ng/ml EGF (Peprotech), 20 ng/ml b-FGF (Peprotech), 100 U/ml 

penicillin and 100 µg/ml streptomycin. Cells resulted negative at mycoplasma testing. 

H9 ESCs were cultured as previously described59 on Matrigel (Corning) coated plates in 

MTeSR-1 medium (STEMCELL Technologies). 

Chromatin immunoprecipitation 

For chromatin immunoprecipitation, 5x107 NSC were harvested in 9 mL of PBS and dual 

cross-linked first with 2mM Di(N-succinimidyl) glutarate (Sigma) for 45 min followed by 10 

minutes 1.1% buffered formaldehyde (50mM Hepes-KOH pH7.6, 100mM NaCl, 1mM EDTA 

pH8.0, 0.5mM EGTA pH8.0, 11% formaldehyde). Formaldehyde was then quenched with 125 

mM glycine (Sigma) for 10 min. Cross-linked cell pellets were snap-frozen and stored at -

80°C. 

ChIP was performed as described9. Briefly, cell nuclei were sonicated at 4°C with Diagenode 

Bioruptor for 45 cycles (30 sec on, 30 sec off), prior to overnight incubation with antibody-

coupled beads. The antibodies used were rabbit-anti-H3K4me1 (ab8895, Abcam), rabbit-anti-

H3K27ac (ab4729, Abcam), rabbit-anti-YY1 (ab109237, Abcam) and goat-anti-SOX2 

(AF2018, R&D systems). Immunoprecipitated chromatin and total input control were de-cross-

linked in a final volume of 100 µL, by addition of 3 µL of 10% SDS and 10 µL proteinase K (10 

mg/ml, Roche) and 5µl RNase (11119915001, 500 ng/µl, Roche) and incubation overnight at 

65°C at 1400 RPM on a shaking thermomixer block. Following Phenol:Chloroform:IAA 

(Sigma) extraction and ethanol precipitation, the concentration of ChIP-DNA was determined 

by Qubit (Invitrogen) and the sonication was assessed by gel-electrophoresis of total input 

DNA (target fragment size between 200 and 600 bp). 

ChIP-qPCR 

For qPCR, 10µl of ChIP material and total input material were diluted 6 times. 2 µL of DNA 

were used per qPCR reaction, using iTaq universal SYBR Green Supermix in a CFX96RTS 

thermal cycler (Bio-Rad), following manufacturer’s instructions. Fold enrichment was 
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determined following the ΔΔct method. All data shown are averages of at least 2 biological 

replicates and 2 technical replicates. 

ChIP-seq, ChIP-STARR-seq plasmid library preparation 

ChIP-seq and ChIP-STARR-seq plasmid libraries were generated as described9. Briefly, 10 

ng of ChIP DNA were end-repaired, dA tailed and adaptor ligated using NEBNext ChIP-seq 

library preparation kit (E6240, NEB), according to manufacturer’s instructions. Adaptor ligated 

DNA was eluted into 32 µL of 0.1xTE, 25 µL were used for ChIP-seq library preparation and 

5 µl were processed for ChIP-STARR-seq plasmid libraries preparation.  

For ChIP-seq library preparation, purified adaptor ligated DNA was PCR amplified with 

Illumina index primers (E7335 and E7500, NEB) according to manufacturer's instructions. 

ChIP-seq libraries were assessed on an Agilent Tapestation. All sequencing occurred on an 

Illumina HiSeq 2500 platform, using 50bp single-end sequencing. 

For details about the plasmid library preparation see Barakat et al9. Briefly, 5 µL of purified 

adaptor ligated DNA for each replicate were separately amplified with primers 147 STARRseq 

libr FW and 148 STARRseq libr RV11, and used in a Gibson assembly reaction with an AgeI-

SalI digested STARR-seq plasmid and a home-made Gibson reaction buffer (100mM Tris-

HCl, 10mM MgCl2, 0.2 mM dNTP, 0.5U Phusion DNA polymerase (NEB), 0.16U 50 T5 

exonuclease (NEB)). Gibson reactions for the ChIP replicates were pooled together, purified 

by ethanol precipitation and used for electroporation into electrocompetent MegaX DH10b E. 

coli bacteria (C640003, Invitrogen), according to manufacturer’s instructions. A total of 5 

electroporation reactions per library were performed with 2 µl of DNA each. After recovery, 

bacteria from the 5 reactions were pooled together and 100 µL of a 1:100 and 1:10000 dilution 

was plated on Ampicillin containing Agar plates to enable estimation of the number of 

transformants. The remaining 5 mL of bacteria culture were incubated in 1 L of LB-media 

supplemented with Ampicillin over-night, and the plasmid DNA was isolated using a Maxiprep 

kit (Macherey-Nagel) according to manufacturer’s instructions. 

Transfection of plasmid libraries 

For each transfection in NSC ChIP-STARR-seq, approximately 3 million NSC were seeded in 

a 10 cm dish and 48 hours later transfected with 6.8 µg of plasmid library DNA and 27.5 µl 

Lipofectamine Stem Transfection Reagent (STEM00015, Invitrogen) following manufacturer’s 

instructions. In total, 5 dishes of transfected cells were used. For ESCs transfections in ESC 

ChIP-STARR-seq, approximately 6 million cells were seeded in a 10 cm dish and transfected 

in suspension with an identical transfection mix to NSCs in the presence of 5µM ROCK-



30 
 

inhibitor (Y27632, Millipore). After 24h of transfection, cells were collected, and RNA was 

extracted with Tri-reagent (Sigma) following the manufacturer's instruction. A small fraction of 

cells was kept for estimating the fraction of GFP positive cells by flow cytometry. 

ChIP-STARR-seq RNA and plasmid sequencing  

ChIP-STARR-seq RNA libraries were prepared as described9, with minor modifications. 

Briefly, RNA was isolated with Trizol (Sigma), following manufacturer’s instruction and split 

into two replicates. The mRNA fraction was captured from each replicate of total RNA using 

Oligo (dT) 25 beads (61002, Life Technologies), DNaseI treated (18068-015, Life 

Technologies), and reverse transcribed with a GFP-mRNA specific primer (149 STARRseq 

rep RNA cDNA synth) following Superscript III protocol (18080-044, Life Technologies). To 

avoid plasmid DNA contamination, cDNA was PCR amplified in 10 parallel reactions for each 

replicate using primers spanning a synthetic intron (152 STARR reporter specific primer 2 fw 

and 153 STARR reporter specific primer 2 rv), as previously described11. 35 ng of PCR 

amplified DNA were then used in a second round of PCR to add Illumina index primers (E7335, 

E7500, NEB). PCR was performed in 5 parallel reactions and using 2 independent index 

primers for each of the two replicates. In total, we sequenced 4 replicates of STARR-seq RNA 

for each pooled HIST or TF plasmid library. Corresponding plasmid libraries were similarly 

amplified using two independent Illumina index primers for each plasmid library. Quantity and 

quality of generated sequencing libraries was assessed on an Agilent Tapestation. All 

sequencing occurred on an Illumina HiSeq 2500 platform, using 50bp paired-end sequencing.  

ATAC-seq 

The Assay for Transposase Accessible Chromatin coupled to high-throughput sequencing 

(ATAC-seq) was performed as previously described60 with slight modifications. Briefly, 

approximately 50.000 single cells were lysed in Resuspension buffer containing 0,1% IgePal, 

0,1% Tween-20 and 0,01% Digitonin. Immediately after lysis, the buffer was washed out by 

Resuspension buffer with only Tween-20. Nuclei were centrifuged at 500xg for 10 min at 4°C. 

Nuclei were re-suspended in 25 μl 2x TD buffer (Illumina), 2.5 μl TDE1 (transposase, Illumina), 

16.5 μl PBS, 0.5 μl Tween-20, 0.5 μl Digitonin, and incubated for 30 min at 37°C. Afterward, 

the sample was purified using the MinElute PCR Purification Kit (QIAGEN) according to the 

manufacturer’s protocol and eluted with 10 μl elution buffer. Samples were amplified using the 

NEBNext High Fidelity PCR master mix (New England Biolabs) and afterwards purified using 

a MinElute PCR purification kit (Qiagen) according to the manufacturer’s instructions. One 

microliter was loaded on an Agilent Technologies 2100 Bioanalyzer using a DNA 1000 assay 

to determine the library concentration and for quality check. 
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Cluster generation was performed according to the Illumina TruSeq SR Rapid Cluster kit v2 

(cBot) Reagents Preparation Guide (www.illumina.com). Briefly, for sequencing libraries were 

pooled together to get a stock of 10 nM. One microliter of the 10 nM stock was denatured with 

NaOH, diluted to 10 pM and hybridized onto the flowcell. The hybridized products were 

sequentially amplified, linearized and end-blocked according to the Illumina Single Read 

Multiplex Sequencing user guide. After hybridization of the sequencing primer, sequencing-

by-synthesis was performed using the HiSeq 2500 with paired end 50-cycle protocol followed 

by dual index sequencing. ATAC-seq libraries were sequenced to a depth of 20x106 reads. 

RNA-seq 

For RNA sequencing of ESCs, we used our previously published data59. For RNA sequencing 

of NSCs, RNA was isolated from two independent cultures following TRI reagent (Sigma) 

manufacturer’s instruction. RNA was further purified using column purification (Qiagen, 

#74204). mRNA capture, library prep and barcoding were performed according to standard 

procedures of the Erasmus MC Biomics facility. Libraries were then single end sequenced, 

50bp, on an Illumina HiSeq2500 machine at a depth of approximately 20 million reads per 

sample.  

Data processing 

The FASTQ files of RNA-, ChIP-, ATAC- and STARR-seq data were trimmed using 

Trimmomatic (version 0.39)61 to remove possible adaptor contamination and remove low 

quality reads. The trimmed RNA- and ATAC-seq data were mapped to the GRCh38/hg38 

human genome build using the HISAT2 aligner (version 2.2.1)62,63. For RNA-seq, aligned 

reads were counted for each gene using htseq-count (version 0.12.4)64 and further processed 

using edgeR65 to normalize the data and perform downstream analysis. Bowtie2 (version 

2.4.2) (with --very-sensitive parameter)66 was used to align both ChIP- and STARR-seq data 

against the GRCh38/hg38 human genome build. Only properly and uniquely mapped reads, 

with mapping quality more than 30 (MAPQ >=30), were kept followed by removing possible 

duplicated reads (only for ChIP-seq data) using Picard's MarkDuplicates (version 4.0.1.1) 

(http://broadinstitute.github.io/picard/). The aligned reads were converted to bigwig format 

using ”bamCoverage” function with --binSize 10 and --normalizeUsing CPM parameters, the 

read coverage was then computed using “multiBigwigSummary” and pearson correlation 

between replicates was calculated using “plotCorrelation” via deepTools (version 3.4.3)67. 

Peak calling was performed using MACS2 (version 2.1.2) (with -q 0.05)68 for each replicate of 

ESCs and NSCs separately, and took sequencing data of total input as background. Peaks 

overlapping blacklist regions defined by the ENCODE project (Accession: ENCFF356LFX, 
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Date: 05.05.2020) were removed. The overlapping peaks between replicates were merged as 

common peaks using intersectBed (version2.30.0)69,70. 

NCRE activity analysis 

To generate a non-redundant set of scaffold regions to assess activity of NCREs, ChIP-seq 

and RNA-plasmid peaks (H3K4me1, H3K27ac, YY1 and SOX2 of ChIP-seq and histone and 

TF plasmid DNA-seq libraries of STARR-seq) were merged after extending the peak summit 

to a width of 1000 bp (500 bp from each side). All regions larger than 1000 bp were split in 

half until all regions were at most 1000 bp in length, avoiding large regions and preserving 

high genomic resolution for later analysis. All further analysis for both NSC ChIP-STARR-seq 

and comparative ChIP-STARR-seq was performed on these scaffold regions. 

To define active regions, reads under the defined scaffolds in both NSC and comparative 

ChIP-STARR-seq in ESCs were counted by FeatureCount71. Read counts for each scaffold 

region were normalized by the total number of aligned reads in each library, after removing 

low coverage regions with less than 20 reads in at least two samples. The average number of 

normalized reads between replicates was taken for computing NCRE activity followed by the 

ratio of RNA-seq and DNA-seq (plasmid) reads as measurement of NCRE activity. The 

scaffold regions were ranked based on the average activity of RNA-seq samples in 5 different, 

equally sized, categories and the top-10% regions were defined as the most active NCREs in 

each cell line. 

As NSC ChIP-STARR-seq we define those experiments that used NSC-derived plasmid 

libraries transfected in NSCs. As comparative ChIP-STARR-seq we refer to those data 

obtained from the transfection of NSC-derived plasmid libraries in ESCs. When discussing 

ESC ChIP-STARR-seq, we refer to our previous study that generated data obtained from 

transfections of ESC-derived plasmid libraries in ESCs9. Furthermore, we defined cell-specific 

regions as the overlapping regions between active regions (top-10%) of a given cell line and 

regions with less activity (bottom90%) of another cell line (i.e., from NSC ChIP-STARR-seq or 

comparative ChIP-STARR-seq in ESCs). We also considered the active regions that were in 

the top-10% of both NSC ChIP-STARR-seq and comparative ChIP-STARR-seq as common 

highly active regions. 

NCRE-gene interaction 

To integrate gene expression data, NCREs were linked to their target genes using HiC data 

and distance to the closest TSS. Previously published HiC data from the germinal zone (GZ) 

at gestation weeks 17–18 of 3 human foetal brains were used17 to link NSC NCREs to target 
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genes. This data provides 10 kb resolution bins for gene loop interactions and 40 kb resolution 

for TADs. Moreover, to link NCREs identified in comparative ChIP-STARR-seq in ESCs to 

their target genes, we used published HiC data from H9 human ESCs with 25 kb resolution 

bins for both gene loop interactions and TADs36.  

NCREs were then intersected with pre-calculated significant interactions using intersectBed 

to define NCRE-gene interaction. NCRE-gene interactions located within the same TAD were 

considered for downstream analyses. The coordinates of HiC data were liftedOver to the 

GRCh38/hg38 human genome build before intersecting with regions. In addition, NCREs were 

annotated for target genes based on the distance to nearest TSS using the “annotatePeaks.pl” 

function of HOMER (version 4.11)72. Finally, all NCRE-gene interactions either using HiC or 

distance to closest TSS were considered for further analysis. In total, we found 28,514 target 

genes (coding and non-coding) for NSCs and 20,347 target genes for ESCs, of which 19,739 

target genes are identified based on the closest TSS and the other target genes are based on 

HiC. 

We only included protein-coding genes in our analysis. Gene expression levels were plotted 

and statistical comparison was performed using Wilcoxon signed rank test in R. The Online 

Mendelian inheritance in Man (OMIM) gene list (updated 21-04-2022) was downloaded from 

the OMIM database to further assist in annotation of target genes.  

Gene ontology analysis 

The web interface of Enrichr18,19 (https://maayanlab.cloud/Enrichr/) was used for functional 

enrichment analysis using the default settings, and the whole genome was set as background. 

The geom_point function of ggplot2 (version 3.5.0)  was used to visualize the GO enrichment.  

Functional enrichment 

NCREs were annotated for genome features using the “annotatePeaks.pl” function of HOMER 

(version 4.11)72. Motif enrichment analysis was performed using the “findMotifsGenome.pl” 

function of HOMER 72 with default setting and whole genome as background. Significant 

enriched motifs were selected based on p-value ≤ 0.01. 

Sequence characteristics analysis 

To determine whether different DNA sequence features distinguish defined regions between 

NSCs and ESCs, we considered the following features: (i) the non-coding essential regulation 

(ncER) score (https://github.com/TelentiLab/ncER_datasets/; updated 06-03-2019)20; (ii) GC 
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content, as determined by the GCcontent R packages based on BSgenome. 

Hsapiens.UCSC.hg38 (version 1.4.3); (iii) conservation score for each NCRE, as derived from 

the gscores R packages based on phastCons100way.UCSC.hg38 (version 3.7.2)21; (iv) Orion 

scores22; (v) CADD scores23; (vi) Haploinsufficiency scores27 and (vii) probability of loss-of-

function intolerance (pLI) score73. The overlaps between DNA sequence features and regions 

were defined using intersectBed. The coordinates of data were converted to the 

GRCh38/hg38 human genome build by liftOver prior to intersections. The scores of the genes 

linked to the regions were plotted to show pLI distribution. Statistically significant differences 

between groups were determined using the Wilcoxon signed rank test in R. 

Transposable element enrichment 

The RepeatMask (GRCh38/hg38, updated 03-09-2021) was downloaded from the UCSC 

table browser and intersected to the regions. To determine enrichment of transposable 

elements in NCREs, we followed a strategy previously used for investigating active NCREs in 

human embryonic stem cells9. The number of overlaps of each type of repeat (n_overlaps) 

with all regions (n) was used to calculate the relative frequency (f_all = n_overlaps/n). 

Multiplication of the relative frequency with the number of regions (n_test, e.g., ESC, NSC 

etc.) in any tested group yields the expected frequency (E). This number was compared with 

the actual observed frequency in the subgroups (f_test = (n_overlap, test)/n_test = O) to 

calculate the observed versus expected ratio (O/E). We considered repeats with O/E > 2 as 

enriched. For the subsequent data interpretation, we only focused on transposable elements 

that were present multiple times (n_overlap > 15). 

Epigenome profiling of NCREs 

To find the enrichment of endogenous marks around NCREs in ESC and NSC, we collected 

various ChIP-seq data from previously published studies9,54,74 and from the ENCODE 

project75. 

The FASTQ files of ChIP-seq data was re-analyzed along with ATAC-seq data (from this 

study) based on what we described in the “Data processing” section. 

Heatmaps for differentially active regions across the endogenous marks were created using 

deeptools (version 3.4.3)67. We first converted bam files of endogenous marks into bigwig 

format using the “bamCoverage” function with --binSize 10 and --normalizeUsing RPKM 

parameters. The bigwig files were then used to compute the number of reads across 6 kb 

centered on NCREs using “computeMatrix” with --referencePoint center, --upstream 3000 and 
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--downstream 3000 parameters. Finally, the line plots and heatmaps were generated using 

the “plotProfile” and “plotHeatmap” functions, respectively. 

Predicting NCRE activity using DeepSTARR 

In our initial attempts to predict NCRE activity based on DNA sequence composition 

(Extended Data. 6a), we used the previously published DeepSTARR framework50 As this 

model requires 249 bp input sequences, we first generated 249 bp regions centered on the 

NCRE regions. Subsequently, we applied the prediction function using the default settings of 

DeepSTARR, as instructed on the author’s Github repository (https://github.com/bernardo-de-

almeida/DeepSTARR). Finally, we calculated the Pearson correlations between DeepSTARR 

output and ChIP-STARR-seq experimental results.  

Construction of BRAIN-MAGNET 

To generate BRAIN-MAGNET, we first removed from the analysis scaffold of 148,198 

genomic regions assessed in ChIP-STARR-seq a small number of patch sequences resulting 

in a final number of 148,114 genomic sequences. These ranged from 500 to 1000 base pairs 

in length, and were augmented with their reverse complement to yield a total of 296,228 

examples. A random 10% of the augmented sequences were held out for both validation and 

testing purposes. The DNA sequences were extracted from the human genome using 

bedtools getfasta (version 2.30.0) and their reverse complements were obtained using revseq 

of EMBOSS (version 6.6.0.0)76. The input sequences were then converted into an one-hot 

encoded matrix of length 1000, with each nucleotide being represented by a binary vector (A 

= [1,0,0,0], C = [0,1,0,0], G = [0,0,1,0], T = [0,0,0,1]). Sequences shorter than 1000 bp were 

padded with zeros. The corresponding sequence activities served as outputs of the model. 

We subsequently used input and output in BRAIN-MAGNET, a single task convolutional 

neural network, to predict either activities of NCREs identified by NSC ChIP-STARR-seq or 

by comparative ChIP-STARR-seq in ESCs. The model is composed of three convolutional 

layers (filters = 128, 256, 512; size = 11, 9, 7), each followed by batch normalization, a ReLU 

non-linearity, and MaxPool (size = 2). After the convolutional layers, there are two fully 

connected layers, each with 1024 neurons, followed by batch normalization, a ReLU non-

linearity, and dropout where the fraction is 0.4. The final layer is mapped to either NSC or 

comparative ChIP-STARR-seq outputs. 

Hyperparameters were manually adjusted to optimize the performance on the validation set. 

The model was implemented and trained in Pytorch (version 1.13.1 with CUDA version 11.7)77 

using the Adam optimizer with a learning rate of 0.01, mean squared error (MSE) as the loss 
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function, a batch size of 128, and early stopping criterion with a patience of 20 on 100 epochs. 

Model training, hyperparameter tuning, and performance evaluation were conducted on 

different sets of genomic regions. 

The performance of the model was evaluated separately for NSC and ESC predictions on the 

held-out test sequences. We used the Pearson and Spearman correlation coefficient (R and 

Rho) across all bins for a quantitative genome-wide evaluation (Extended Data Fig. Sb). 

Furthermore the area under the precision-recall and receiver operating characteristic curve 

(PR and ROC; calculated using pr.curve and pr.roc functions from R package PRROC 

(version 1.3)78 were used for NCRE classification in the various activity groups (top-10% vs. 

the other defined NCRE activity classes) (Extended Data Fig. 6c). To benchmark BRAIN-

MAGNET to existing variant prioritization scoring methods, we first retrieved LINSIGHT44, 

CADD23, GERP45 and ncER20 scores for all nucleotides for which BRAIN-MAGNET provides 

cb scores. We subsequently calculated the Pearson correlation between BRAIN-MAGNET cb 

scores and the outputs of the other variant prioritization scoring methods (Extended Data Fig. 

6d). To reduce the computational burden, for this analysis we used the previously used test 

set of NCREs, containing randomly selected 10% of our NCRE atlas. Furthermore, we 

similarly calculated and plotted the correlation between BRAIN-MAGNET cb scores and 

LINSIGHT, CADD, GERP and ncER score for all nucleotides of the functionally investigated 

motifs and mutations studied in this work (Extended Data Fig. 6e), and visualized all these 

scores as heatmaps for the individual studied loci.  

Motif discovery using TF-MoDISco-lite 

DeepExplainer42, a DeepSHAP implementation of DeepLIFT, was used to compute 

contribution (cb) scores for all nucleotides of the assessed NCREs, which reflects the 

individual contribution of each nucleotide to the NCRE activity in either NSCs or ESCs. 100 

dinucleotide-shuffled versions of each input sequence were used as reference sequences (the 

fork from 

https://github.com/kundajelab/shap/blob/master/shap/explainers/deep/deep_pytorch.py). The 

obtained hypothetical importance scores were then multiplied by the one-hot encoded matrix 

of the sequences to derive the actual nucleotide cb scores, which were visualized using the 

ggseqlogo (version 0.2)79. The cb scores of each NCRE can be visualized using the R-shinny 

app for which the code is available in our github repository:  

https://github.com/ruizhideng/NSC-ChIP-STARR-seq_paper.  

The hypothetical importance scores, along with the corresponding one-hot encoded matrix of 

the sequences, were subjected to TF-MoDISco-lite (https://github.com/jmschrei/tfmodisco-
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lite), a more efficient and user-friendly version of TF-MoDISco41, to identify the most relevant 

motifs associated with changes of each nucleotide. The TF-MoDISco-lite algorithm in default 

settings was used to extract and cluster similar seqlets across all selected sequences, the 

identified seqlets were matched against JASPAR 2022 CORE vertebrate non-redundant 

database (https://jaspar.genereg.net/download/data/2022/CORE/JASPAR2022_CORE_non-

redundant_pfms_jaspar.zip) by Tomtom (version 5.5.1)80 within TF-MoDISco-lite41. To further 

facilitate the interpretation of the cb scores across the genome for downstream analysis, we 

first converted the negative cb scores to positive values allowing to include the impact of 

enriched motifs at sequences with negative cb scores. Subsequently, we calculated 

normalized cb scores taking either a normalisation of all NCREs (cb_all) or normalisation 

within each NCRE (cb_each) into account, and calculated percentile scores for these. All raw 

and normalized cb scores used throughout the study are (given the file size) available via a 

defined USCS browser session: 

https://genome.ucsc.edu/s/BarakatLab/BrainMagnet_NSC_ESC_cb_scoreshg38  

GWAS analysis 

To test the utility of BRAIN-MAGNET cb scores for the functional interpretation of GWAS loci, 

we made use of a recent MPRA data set provided by Guo et al, which tested 2,221 non-coding 

variants associated with 10 neuropsychiatric disorders by MPRA, with an average of 5 SNPs 

per disease risk loci being tested46. Comparing the activity of matched risk versus reference 

allele pairs, the authors identified 892 SNPs that showed differential activity in their MPRA 

depending on the genotype of the given SNP, which the authors refer to as daSNVs. We 

retrieved the daSNVs and non-daSNVs from Supplementary Data 3 and 5 of Guo et al 46 and 

intersected these with NCREs and cb scores from our data set. We subsequently plotted the 

distribution of cb scores (>60 cb_all) over the daSNV and non-daSNVs and additionally plotted 

the GERP, LINSIGHT, CADD and ncER scores for the same SNPs. Furthermore, we used 

the BRAIN-MAGNET cb scores to fine map two previously identified GWAS loci for which 

multiple SNPs in LD were assessed in the Guo et al study and present in multiple NCREs 

from our data set. 

Genomic variant analysis 

For the gnomAD variant analysis, the curated VCFs of gnomAD v4 were downloaded from 

https://gnomad.broadinstitute.org/downloads#v, which contains  909,084,110 short variants 

mapped to the GRCh38 genome build obtained from whole-genome sequencing of 76,215 

individuals. bcftools (v1.8) was used to keep high-quality variants (“PASS” flag) and rare 

variants (AF < 0.1%). tabix (v1.9) was used to extract the variants overlapping our NCREs.  

https://eur01.safelinks.protection.outlook.com/?url=https%3A%2F%2Fgenome.ucsc.edu%2Fs%2FBarakatLab%2FBrainMagnet_NSC_ESC_cb_scoreshg38&data=05%7C02%7Ct.barakat%40erasmusmc.nl%7C22e7f721c25041f1378d08dcb540a574%7C526638ba6af34b0fa532a1a511f4ac80%7C0%7C0%7C638584536459904390%7CUnknown%7CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0%3D%7C0%7C%7C%7C&sdata=CBI0iMdDyXkU1ciC5QNip8W0Cgq6uvz6CJWTMcgNeFc%3D&reserved=0
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The total number of high-quality rare variants was calculated without chromosome Y and 

mitochondrial DNA (chromosome M), as these sequences were not covered in our NCRE 

analysis scaffold. The VISTA enhancers, ENCODE_cCREs, fiveUTR, threeUTR and 

codingExon regions (GRCh38/hg38, updated 14-02-2024) were downloaded from the UCSC 

table browser. DAE and nDAE regions were retrieved from Yousefi et al26. The total number 

of filtered rare variants (MAE <0.1) genome wide (variant_genome) was normalized by the 

size of the genome (size_genome) and used to calculate the expected frequency (E = 

n_variant/size_ genome). The number of filtered rare variants located in the target regions 

(listed in Extended Data Fig. 5a) (variant_region) was normalized by the size of the target 

region (size_region) to calculate the observed frequency (O = variant_region/size_region). 

The O/E ratio was calculated by comparing the observed frequency over the expected 

frequency. 

For the de novo variant analysis from the Genomics England 100,000 Genomes Project 

(GEL), de novo variants of GEL data version 18 (main-programme_v18_2023-12-21) were 

retrieved by Labkey from the de novo_flagged_variants table in the GRCh38 genome build. 

Next, high confidence de novo variants (stringent_filter = 1) were kept. Then, solved cases, 

labelled with “yes”, “unknown” and “partically” in the gmc_exit_questionnaire table, were 

removed. Finally, 4,415 individuals with unexplained neurology and neurodevelopmental 

disorders were kept, for which 13,276 de novo variants overlapped with our NSC NCREs. Also 

we analysed 4,558 genomes from individuals with a variety of other rare disease categories 

(including cardiovascular disorders, hearing an ear disorders, ultra-rare disorders, 

dermatological disorders, gastroenterological disorders, renal and urinary tract disorders, 

respiratory disorders, endocrine disorders, dysmorphic and congenital abnormality 

syndromes, growth disorders, skeletal disorders, ophthalmological disorders, metabolic 

disorders, hematological and immunological disorders and rheumatological disorders), 

harbouring 13,564 de novo variants overlapping NSC NCREs. The de novo variants were 

further annotated by the BRAIN-MAGNET cb scores, and the cb_each distribution of NCREs 

were plotted. 

For the GEL analysis using variants overlapping with high-confidence motifs, we used 20 bp 

sequences with coordinates centred on the high-confidence motifs called by TF-MoDISco (q-

values < 0.05) from the NSC NCRE category 4 and 5. An aggregation of gVCFs (AggV2, only 

available in version 10) comprising 78,195 genomes from GEL harbouring over 722 million 

variants was intersected with these high-confidence motif coordinates. Only variants marked 

with the “PASS” flag, indicating high quality, were retained, resulting in 11,788 variants 

overlapping 2,980 motifs. We next retained only variants in unsolved individuals (55,379 

genomes, 9,787 variants) and subsequently individuals with neurodevelopmental disorders 
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(10,536 genomes, 4,259 variants). Next we retained only variants with allele count (AC) <= 10 

(2,700 genomes, 2,684 variants). Finally, only variants located in NCREs with target genes 

recorded as OMIM disease genes were kept, resulting in a final list of 705 variants from 824 

genomes that overlapped 440 motifs.  

For screening of an independent WGS data set, we first used 330 trio WGS from individuals 

affected by rare disorders from the Institute of Medical Genetics and Applied Genomics 

(IMGAG) database from Tübingen, Germany. Removing those individuals in which already a 

definitive molecular diagnosis was found (n=81) left 249 individuals, of which 60 harbored a 

candidate disease explaining variant. In those 249 individuals, a total of 16,437 de novo 

variants was found. Intersecting these variants with the NCRE atlas and filtering for variants 

with a BRAIN-MAGNET cb score >95th percentile resulted in 70 de novo variants that were 

filtered for potential clinical phenotype matches by HPO terms and manual curation. Finally, 

3,971 singleton WGS of undiagnosed individuals were screened for rare deletions overlapping 

with NCREs that contained nucleotides with a cb score >95th percentile. Among the 12,172 

deletions called in this data set, 1,584 were rare (filtered by <10 exact in-house calls and <50 

larger in house deletion calls). For 117 of those deletions, the associated HPO terms of the 

target gene of the deleted NCRE matched the patient HPO terms. We then manually curated 

for matching clinical phenotypes, focusing on deletions <20 kb in size not containing additional 

coding sequences, resulting in the 8 NCRE deletions, of which 3 are potentially disease-

explaining and 5 represent carrier deletions with currently no second coding hit identified.  

Experimental validation of wild type and mutant NCREs in vitro  

For experimental validation, we randomly selected 15 NCREs of which the target gene was 

expressed in NSCs. NCREs were amplified from genomic DNA and cloned into the STARR-

seq reporter plasmid (kind gift of A.Stark)11 as previously described9. Subsequently, site-

directed mutagenesis was used to generate NCRE deletions or point mutations in the 

generated plasmids. NSCs were then transfected with wild type or mutant NCRE plasmids 

using polyethylenimine (PEI, Sigma) or Lipofectamine™ Stem Transfection Reagent (Thermo 

Scientific) respectively. Twenty-four hours post transfection cells were collected, stained with 

Hoechst dye and the NCRE activity was measured by FACS analysis (20,000 cells per 

sample). GFP-positive cells within the mCherry-positive population were quantified to assess 

NCRE activity compared to an empty STARR-seq vector control. Two independent 

transfection experiments were performed, each in duplicates. Statistical analysis was 

performed using a one-way ANOVA test followed by multiple comparison test (Fisher’s LSD 

test). Calculations were conducted in GraphPad Prism (version 8).  
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For CRISPRi experiments, we first generated a HEK293 cell line stably expressing ZIM3-

KRAB-dCas981 upon doxycycline induction, by transduction with pLX303-ZIM3-KRAB-dCas9 

(a kind gift from Mikko Taipale, Addgene plasmid # 154472). gRNAs targeting the RAB7A 

NCRE were cloned into a pgRGFP plasmid (Addgene #8269582, a kind gift of Allan Mullen) 

and transfected into the ZIM3-KRAB-dCas9 expressing cells using polyethylenimine (PEI, 

Sigma). 48h post transfection cell were collected for RNA isolation (Tri reagent, Sigma). cDNA 

was generated with the iSCRIPT cDNA synthesis kit (Bio-Rad) and the change in expression 

of RAB7A was quantified by qRT-PCR (iTaq universal SYBR Green Supermix) (Sigma), 

performed in a CFX96RTS thermal cycler (Bio-Rad), as previously described59. The ∆∆ct 

method was used to calculate the fold change in gene expression, using TBP expression as 

housekeeping normalisation control. Statistical analysis was performed using one-way 

ANOVA test and calculations were conducted in GraphPad Prism (version 8). 

Transgenic NCRE assays in zebrafish 

Zebrafish (Danio rerio) were raised and maintained under standard conditions, as previously 

described26. Adult and larval fish were kept on a 14h/10h light–dark cycle at 28°C. Larvae 

were kept in HEPES-buffered E3 medium. Media was refreshed daily and at 24 hours post 

fertilization (hpf) 0.003% 1-phenyl 2-thiourea (PTU) was added to prevent pigmentation. All 

zebrafish experiments were performed in compliance with Dutch animal welfare legislation 

and only larvae <5 days post fertilization (dpf) were used for experimentation. The wild type 

and mutant RAB7A NCRE used in the in vitro experiments were transferred by Gibson 

assembly between the AscI and PacI sites of an E1b-GFP-Tol2 enhancer assay plasmid (a 

kind gift from Ramon Birnbaum83) containing an E1b minimal promoter followed by GFP, using 

the following transfer primers: Transfer_fw: 5’-

AGATGGGCCCTCGGGTAGAGCATGCACCGG-3’ and Transfer_rv: 5’-

TCGAGAGATCTTAATGGCCGAATTCGTCGA-3’. Constructs were injected into fertilized 

eggs at the 1 cell stage (25 pg per egg) using standard procedures, with or without 25 pg 

transposase mRNA. At least 50 eggs were injected per construct in at least two different 

injection experiments. GFP expression was observed and annotated at 24 hpf, using a 

fluorescent Leica M165FC stereomicroscope. Embryos representative of each category were 

subsequently imaged on a Leica SP5 intravital imaging setup with a 20 × /1.0 NA water-dipping 

lens. Images were analyzed using imageJ (FIJI).  
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Figures and legends 

Fig. 1: ChIP-STARR-seq in neural stem cells identifies NCREs with different activity 

levels and sequence characteristics 
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a) Schematic representation of the experimental strategy used in this study. 

b) Line plot showing NCRE activity (enrichment of ChIP-STARR-seq RNA over plasmids per 

region of the scaffold; log2) of the 148,198 assessed scaffold regions, ranked from lowest to 

highest activity. In gradient of red are depicted the 5 categories (groups of 20 percentiles) of 

increasing NCRE activity detected by NSC ChIP-STARR-seq used throughout this study. The 

dotted line demarcates the top-10% most active NCREs. 

c) Genome browser tracks surrounding the TKT locus showing a distal NCRE showing activity 

by NSC ChIP-STARR-seq and interaction of this NCRE with the TKT gene confirmed by HiC 

from foetal brain. Blue tracks: sequencing of plasmid DNA. Red tracks: sequencing of ChIP-

STARR-seq RNA.  

d) Expression level (log2(RPKM+1)) of the genes linked to each of the 5 NCRE activity 

categories, to the top-10% most active NCREs and of the OMIM disease-related genes linked 

to the top-10% most active NCREs. Boxes represent the interquartile range (IQR); lines 

represent the median; whiskers extend to 1.5 the IQR; dots represent outliers. (* p < 0.05; ** 

p < 0.01, Wilcoxon test). 

e) As in d) showing the pLI score of the genes linked to the different NCRE categories. (* p < 

0.05; *** p < 0.001 Wilcoxon test). 

f)  Gene ontology analysis using Enrichr of biological processes for the protein-coding genes 

linked to the NCREs of the 5 categories and the top-10% most active NCREs. 

g) Top: line plot showing the average enrichment of ChIP-seq signal from NSCs across the 

genomic regions encompassed by NCREs from the 5 categories of NCRE activity (bins of 3 

kb up and down centred at the middle of the NCRE). Bottom: corresponding heatmaps of 

H3K27ac, H3K4me1, YY1 and SOX2 ChIP-seq signals in NSCs across the 148,198 assessed 

scaffold regions ranked by activity from the highest to the lowest. 

h) Box plots, showing from left to right ncER percentile, GC content score, phastcons score, 

Orion score, and CADD score, for all the 5 NCRE activity categories, the top-10% most active 

NCREs (top-10%) and the top-10% most active NCREs linked to genes with a known OMIM 

phenotype. Boxes represent the interquartile range (IQR); lines represent the median; 

whiskers extend to 1.5 the IQR; dots represent the outliers. (* p < 0.05; ** p < 0.01; *** p < 

0.001; **** p< 0.0001; ns not significant; Wilcoxon tests). 
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i) Bar graphs showing the fraction of NCREs per genomic region using Homer, for all NCRE 

categories. UTR = untranslated region; non-coding = non-coding RNAs such as snRNA, 

lncRNA, etc; TSS = Transcriptional start site; TTS = Transcriptional termination site. 

j) Bar graph showing the 10 most enriched TF motifs in the NCREs belonging to the different 

activity categories in NSCs. Plotted is the -log10 p-value. 
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Fig. 2: Comparative ChIP-STARR-seq using NSC derived plasmid libraries in ESCs 

identifies NCREs which are primed for future NCRE activity 
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a) Schematic representation of the experimental strategy used for transfecting NSC derived 

ChIP-STARR-seq libraries in ESCs, referred to as comparative ChIP-STARR-seq.  

b) Line plot showing NCRE activity (enrichment of ChIP-STARR-seq RNA over plasmids per 

region of the scaffold; log2) of the 148,198 assessed scaffold regions, ranked from lowest to 

highest activity from comparative ChIP-STARR-seq  in ESCs. In gradient of blue are depicted 

the 5 categories (groups of 20 percentiles) of increasing NCRE activity used throughout this 

study. The dotted line demarcates the top-10% most active NCREs. 

c) Sankey plot showing the changes between activity categories for the NCREs measured in 

NSC ChIP-STARR-seq (red) and in comparative ChIP-STARR-seq (blue). For the latter, we 

transfected the NSC-derived plasmid libraries in ESCs.  

d) Expression level (log2(RPKM+1)) of the genes linked to each of the 5 NCRE activity 

categories, to the highly active NCREs (top-10%) and to the highly active NCREs linked to 

genes with a known OMIM phenotype. Boxes represent the interquartile range (IQR); lines 

represent the median; whiskers extend to 1.5 the IQR; dots represent outliers. (* p < 0.05; 

Wilcoxon test). 

e) As in d) showing the pLI score of the genes linked to the different NCRE categories. (** p < 

0.01; Wilcoxon test). 

f) Box plots as in d), showing from left to right on the upper row ncER percentile, GC content 

score, phastcons score and on the lower row Orion score, and CADD score. (* p < 0.05; ** p 

< 0.01; **** p< 0.0001; ns not significant; Wilcoxon tests;). 

g) Gene ontology analysis using Enrichr of biological processes for the protein-coding genes 

linked to the NCREs of the 5 categories and the top-10% most active NCREs. 

h) Epigenome profiling of NCREs with comparative ChIP-STARR-seq activity in ESCs 

(plasmid libraries derived from ChIP experiments in NSCs). Top: line plot showing the average 

enrichment of ChIP-seq (or ATAC-seq) signal from ESCs (left panel) or NSCs (right panel) 

across the genomic regions encompassed by NCREs from the 5 categories of NCRE activity 

from comparative ChIP-STARR-seq in ESCs (bins of 3 kb up and down centred at the middle 

of the NCRE). Bottom: corresponding heatmaps of H3K27ac, H3K4me1, YY1, SOX2, 

NANOG, OCT4, H3K4me2, H3K4me3 and H3K27me3 ChIP-seq signals and ATAC-seq in 

ESCs (left), or H3K27ac, H3K4me1, YY1, SOX2, H3K4me2, H3K4me3 and H3K27me3 ChIP-

seq signals and ATAC-seq in NSCs (right) across the 148,198 assessed scaffold regions 

ranked by activity as measured by comparative ChIP-STARR-seq in ESCs from the highest 

to the lowest. 
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Fig. 3: BRAIN-MAGNET, a sequence based convolutional neural network model, 

predicts NCRE activity and facilitates interpretation of biological consequences of 

genomic variation 
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a) BRAIN-MAGNET is a deep convolutional neural network architecture trained to predict 

NCRE activity from an input sequence of the tested element. See Extended Data Fig. 6 for 

performance and benchmarking analysis of BRAIN-MAGNET.  

b) Enrichment of TF motifs in sequences with high BRAIN-MAGNET cb scores of the various 

NSC NCRE activity categories discovered by TF-MoDISco-lite41. The number of seqlets 

compared with significance (-log10 p-value) for the most matched TF motif per motif cluster. 

Red dots denote enriched motifs in sequences with positive cb scores, and blue dots represent 

motifs enriched at sequences with negative cb scores. The motifs with FDR < 0.05 are 

highlighted as italic. 

c) Schematic drawing of the experimental validation strategy for BRAIN-MAGNET predictions.  

d) Bar plot showing the percentage of GFP+ cells in NSCs upon cell transfection experiments 

(as outlined in c)) with reporter plasmids containing either wild type (blue) or motif deleted 

NCREs (pink) (n=15) or empty reporter plasmid control (grey). NCREs are indicated with the 

name of the presumed target gene. Plotted is the percentage of GFP+ in cells co-transfected 

with an mCherry expressing plasmid, to correct for transfection efficiency. Bars show the 

average from two independent experiments, with each NCRE tested in duplicate. Error bars 

represent standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way 

ANOVA test followed by multiple comparison test (Fisher’s LSD test). 

e) As d), but now showing 4 NCREs with point mutations of the predicted functional relevant 

motifs. Right insert shows the predicted motifs from JASPAR, a visual representation of the 

cb scores for each nucleotide, the created point mutations of the motifs that were tested and 

other variant prioritization outputs from LINSIGHT, CADD, GERP and ncER scores for the 

same region displayed in a heatmap.  

f) Genome browser view showing the ACTB locus and the upstream NCRE tested in panel d 

and e for which BRAIN-MAGNET predicts a functional motif. Top panel: genome browser 

tracks showing ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and sequencing of 

plasmid (grey); highlighted region in magenta indicates the NCRE. The zoom-in of the NCRE 

shows the BRAIN-MAGNET contribution (cb) scores from the NSC model and the ncER 

scores of the same region. A region with high cb scores and an overlapping TP53 motif is 

highlighted.  
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Fig. 4: Utility of the NCRE atlas and BRAIN-MAGNET for prioritizing genomic variants 

found at GWAS associated regions 

a) Illustration showing how BRAIN-MAGNET can be used to prioritize functional SNPs 

amongst multiple SNPs in LD at GWAS loci.  

b) Genome browser view showing ChIP-STARR-seq RNA for ESCs (blue) and NSCs (red) 

and plasmid library sequencing tracks of a locus on chromosome 6 which GWAS studies have 

shown to be associated with increased risk for schizophrenia. 7 associated SNPs in LD which 

were also present on NCREs tested in our study are highlighted.  

c) Line plot showing the BRAIN-MAGNET cb scores (cb_all) for the 7 SNPs found at the 

schizophrenia risk locus from b). The rs200483 SNP has relatively the highest normalized cb 

score compared to the other 6 SNPs, and indeed rs200483 is one of the identified daSNVs 
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from the MPRA studies by Guo et al46. BRAIN-MAGNET thus independently confirms 

previously experimentally tested data.  

d) As b), but now showing a GWAS locus associated with major depression on chromosome 

1, with 4 GWAS associated SNPs in LD that overlap with NCREs in our study highlighted.  

e) As c), but now showing the BRAIN-MAGNET cb scores (cb_all) for the 4 SNPs found at the 

major depression risk locus from d). Again, the daSNV (rs301806) found by Guo et al46 has 

the relatively highest cb score amongst the 4 candidate SNPs. 
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Fig. 5: Utility of the NCRE atlas and BRAIN-MAGNET for prioritizing genomic variants 

found in rare disease 

a) Flow diagram showing the filtering of the Genomics England 100,000 Genomes Project 

(GEL) data for rare variants overlapping with 20 bp fragments centred on the high confidence 

motifs found in the most active (category 4 and 5) NSC NCREs for which BRAIN-MAGNET 

predicts a major impact when disturbed.  
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b) Functional validation of 4 rare heterozygous variants identified in GEL overlapping with 

NCREs for which BRAIN-MAGNET predicts an effect on NCRE function. Upper diagram 

shows experimental validation strategy. Bar plot showing the percentage of GFP+ cells in 

NSCs upon cell transfection experiments with reporter plasmids containing either empty 

reporter plasmid control (grey), wild type NCREs (blue) or the same NCREs with patient 

mutations found in GEL (pink). The motifs predicted from JASPAR, the BRAIN-MAGNET cb 

score, the patient mutation and other variant prioritization outputs displayed as heatmap are 

indicated in the right panel. NCREs are indicated with the name of the presumed target gene. 

Plotted on the left is the percentage of GFP+ in cells co-transfected with an mCherry 

expressing plasmid, to correct for transfection efficiency. Bars show the average from two 

independent experiments, with each NCRE tested in duplicate. Error bars represent standard 

deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed 

by multiple comparison test (Fisher’s LSD test)).  

c) Genome browser view of the RAB7A locus, a gene implicated in an autosomal dominant 

form of Charcot-Marie-Tooth disease, showing ChIP-STARR-seq RNA for ESCs (blue) and 

NSCs (red) tracks and plasmid library sequencing results. This identified a RAB7A NCRE 

(highlighted) located ~45kb upstream of RAB7A that interacts with the main RAB7A 

transcriptional start site as confirmed by HiC. Zoom-in shows BRAIN-MAGNET cb scores and 

predicted functional motifs in the RAB7A NCRE. The inserted IGV browser view shows whole 

genome sequencing data from GEL identifying a heterozygous rare variant that affects the 

NCRE predicted functional YY1 motif. This variant significantly affects NCRE function (as 

tested in b), and was detected in a genetically unexplained individual clinically affected by 

Charcot-Marie-Tooth disease, possibly indicating a novel enhanceropathy.   

d) CRISPRi experiment in HEK293T cells. Schematic on the left shows the targeting by gRNAs 

of the RAB7A NCRE by ZIM3-KRAB-dCas9. Right diagram shows qRT-PCR detecting RAB7A 

expression (normalized to TBP as housekeeping control) upon targeting with 2 different gRNA 

combinations. Wild type expression levels for RAB7A are depicted using the dashed line. Error 

bars represent standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-

way ANOVA test followed by multiple comparison test (Fisher’s LSD test). 

e) NCRE in vivo reporter assay in zebrafish. Upper diagram illustrates experimental approach. 

Left lower panel shows representative confocal microscopy of transgenic zebrafish larvae 

(with transposase) at 24 hpf in lateral view. Numbers indicated in the images present the GFP 

positive zebrafish larvae per condition. Right lower panel shows quantification (**** p < 0.0001, 

P_value (Chisq test)). Compared to the wild type, the patient-specific mutant RAB7A NCRE 

showed reduced expression in the central nervous system. Also, a larger proportion of larvae 
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with the patient-specific mutant NCRE showed bright, non-specific expression at aberrant 

locations not seen with the wild type RAB7A NCRE. Together, this confirms that the patient-

specific variant RAB7A NCR leads to an altered in vivo spatiotemporal NCRE expression 

pattern indicating NCRE dysfunction. 
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Fig. 6: Graphical abstract summarizing BRAIN-MAGNET and its application to prioritize 

genetic variants in NCREs in rare and common disease 
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Extended Data Fig. 1: Experimental strategy and quality control for ChIP-STARR-seq. 

a) Schematic representation of the experimental strategy used in this study. 



55 
 

b) ChIP-qPCR in NSC showing the average fold enrichment over total input, normalized to a 

non-bound site in NCAPD2 (for H3K4me1 and H3K27ac histone ChIP) or in ACTB (for YY1 

and SOX2 ChIP). Boxes represent the average of 2 replicates. Error bars represent standard 

deviations. 

c) Scatterplot depicting the correlation between read counts (ln(CPM)) per genomic regions 

between the H3K27ac and H3K4me1 ChIP-seq and the HIST ChIP-STARR-seq plasmid 

libraries. Reported is the Pearson correlation coefficient. 

d) As in c) but now for YY1 and SOX2 ChIP-seq and for the TF ChIP-STARR-seq plasmid 

libraries. 

e) Genome browser tracks surrounding the PAX6 locus showing good representation of 

H3K27ac, H3K4me1, YY1 and SOX2 ChIP-seq signals (light blue) in the HIST and TF ChIP-

STARR-seq plasmid libraries (dark blue), and correlation between ChIP-STARR-seq RNA 

tracks (green) 

f) FACS plot showing GFP expression of NSCs transfected with the HIST or TF ChIP-STARR-

seq plasmid libraries. 

g) Scatterplot depicting the correlation between read counts (ln(CPM)) per genomic regions 

between the HIST ChIP-STARR-seq RNA replicates from transfection of HIST plasmid 

libraries in NSCs (i.e., NSC ChIP-STARR-seq). Reported is the Pearson correlation 

coefficient. 

h) As in g) but now for TF ChIP-STARR-seq RNA replicates from transfections of TF plasmid 

libraries in NSCs (i.e., NSC ChIP-STARR-seq). 

i) As in g) but now for HIST ChIP-STARR-seq RNA replicates from transfections of HIST 

plasmid libraries in ESCs (i.e., comparative ChIP-STARR-seq in ESCs). 

j) As in g) but now for TF ChIP-STARR-seq RNA replicates from transfections of TF plasmid 

libraries in ESCs (i.e., comparative ChIP-STARR-seq in ESCs). 
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Extended Data Fig. 2: Extended data for identification of active NCREs in NSCs 

a) Bar graph showing the number of NCRE scaffold regions per chromosome (left) and bar 

graph showing the ratio between total NCRE scaffold size divided by chromosome size (right). 



57 
 

Both graphs exclude chromosome Y and chromosome M (mitochondrial DNA) which  were 

not included in the analysis scaffold.  

b) Genome browser tracks surrounding the CHD8 locus showing two NCREs belonging to the 

top-10% category of activity. 

c) Bar plot showing the percentage of GFP+ cells in NSCs upon cell transfection experiments 

with reporter plasmids containing either empty reporter plasmid control (grey) or 15 different 

wild type NCREs (blue). NCREs are indicated with the name of the presumed target gene. 

Plotted on the left is the percentage of GFP+ in cells co-transfected with an mCherry 

expressing plasmid, to correct for transfection efficiency. Bars show the average from two 

independent experiments, with each NCRE tested each in duplicate. Error bars represent 

standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test 

followed by multiple comparison test (Fisher’s LSD test)). 

d) Expression level (log2(RPKM+1)) of the genes linked to each of the 5 NCRE activity 

categories, to the top-10% most active NCREs and of the OMIM disease-related genes linked 

to the top-10% most active NCREs, considering only the genes unique for each NCRE 

category. Boxes represent the interquartile range (IQR); lines represent the median; whiskers 

extend to 1.5 the IQR; dots represent outliers. (* p < 0.05; ** p < 0.01, Wilcoxon test). 

e) Bar plot showing the ratio between the overlap of each NCRE category with each ChIP-seq 

and the total overlap of the 148,198 scaffold regions with each ChIP-seq, both normalized for 

the group size. 

f) Kernel density plot showing the distribution of loss-of-function tolerance scores for non-

coding sequences for all the NCRE categories from NSC ChIP-STARR-seq.  

g) Density plot showing the distance in bps to the TSS for all NCRE categories. 

h) Bar graph showing the 10 most enriched transposable elements (TEs) overlapping with the 

NCREs belonging to the different activity categories in NSCs. Plotted is a ratio between the 

observed (O) number of TEs over the expected (E).  
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Extended Data Fig. 3: Extended data for comparative ChIP-STARR-seq using NSC 

derived plasmid libraries in ESCs 
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a) Pie chart showing the fraction of NSC ChIP-STARR-seq scaffold regions overlapping with 

our previously studied ESC scaffold regions from ESC ChIP-STARR-seq9. 

b) Density plot showing the distance in bps to the TSS for all NCRE categories. 

c) Bar graph showing the 10 most enriched TF motifs in the NCREs belonging to the different 

activity categories from comparative ChIP-STARR-seq in ESCs. Plotted is the -log10 p-value, 

as calculated by Homer. 

d) Bar graph showing the 10 most enriched transposable elements (TEs) overlapping with the 

NCREs belonging to the different activity categories from comparative ChIP-STARR-seq in 

ESCs. Plotted is a ratio between the observed (O) number of TEs over the expected (E). 

e) Epigenome profiling of NCREs with comparative ChIP-STARR-seq activity in ESCs 

(plasmid libraries derived from ChIP experiments in NSCs). Results are shown for the 148,198 

scaffold regions that overlap (top row) or do not overlap (bottom row) with the scaffold regions 

used earlier in ESC ChIP-STARR-seq9. For each row at the Top: line plot showing the average 

enrichment of ChIP-seq (or ATAC-seq) signal from ESCs (left panel) or NSCs (right panel) 

across the genomic regions encompassed by NCREs from the 5 categories of NCRE activity 

detected by comparative ChIP-STARR-seq in ESCs (bins of 3 kb up and down centred at the 

middle of the NCRE). For each row at the Bottom: corresponding heatmaps of H3K27ac, 

H3K4me1, YY1, SOX2, NANOG, OCT4, H3K4me2, H3K4me3 and H3K27me3 ChIP-seq 

signals and ATAC-seq in ESCs, or H3K27ac, H3K4me1, YY1, SOX2, H3K4me2, H3K4me3 

and H3K27me3 ChIP-seq signals and ATAC-seq in NSCs across the assessed scaffold 

regions ranked by comparative ChIP-STARR-seq activity in ESCs from the highest to the 

lowest. 
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Extended Data Fig. 4: Comparative ChIP-STARR-seq identifies differentially active 

NCREs in NSCs and ESCs. 
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a) Schematic overview of the process to define common-high (green arrow), NSC-high (red 

arrow) and ESC-high (blue arrow) NCREs. 

b) Venn diagram showing the overlap between the top-10% most active NCREs in NSCs and 

ESCs. 

c) Genome browser tracks surrounding the CHD2 locus showing ChIP-STARR-seq RNA-seq 

and DNA-seq (plasmid) tracks. 

d) Density plot showing the distance to the TSS of differentially active NCREs (NSC-high (red) 

and ESC-high (blue)) and common highly active NCREs in ESCs and NSCs (common-high, 

green). 

e) Bar graphs showing the fraction of differentially active NCREs (NSC-high (red) and ESC-

high (blue)) and common highly active NCREs in ESCs and NSCs (common-high, green) per 

genomic region using Homer. UTR = untranslated region; non-coding = non-coding RNAs 

such as snRNA, lncRNA, etc; TSS = Transcriptional start site; TTS = Transcriptional 

termination site. 

f) Kernel density plot showing the distribution of loss-of-function tolerance scores for non-

coding sequences for differentially active NCREs (NSC-high (red) and ESC-high (blue)) and 

common highly active NCREs in ESCs and NSCs (common-high, green). 

g) pLI score of the genes linked to differentially active NCREs (NSC-high (red) and ESC-high 

(blue)) and common highly active NCREs in ESCs and NSCs (common-high, green). 

h) Expression level (log2(RPKM+1)) in ESCs and NSCs of the genes linked to differentially 

active NCREs (NSC-high (red) and ESC-high (blue)) and common highly active NCREs in 

ESCs and NSCs (common-high). Boxes represent the interquartile range (IQR); lines 

represent the median; whiskers extend to 1.5 the IQR; dots represent outliers. (* p < 0.05; 

Wilcoxon test).   

i) Gene ontology analysis using Enrichr for the protein-coding genes linked to differentially 

active NCREs (NSC-high (red) and ESC-high (blue)) and common highly active NCREs in 

ESCs and NSCs (common-high). 

j) Heat maps of ATAC-seq and ChIP-seq signals in NSCs, ESCs, neurons and astrocytes 

across the 7,968 NSC-high, 7,968 ESC-high and the 6,850 common-high active NCREs 
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k) Line plots showing the average enrichment of ATAC-seq and ChIP-seq signal for H3K27ac, 

H3K4me1, H3K4me2 and H3K4me3 in NSCs (red), ESCs (blue), neurons (black) and 

astrocytes (grey) 

l) Density plot showing the distance to the TSS of the 1,100 ESC-high NCREs with high 

H3K4me2/3 

m) Bar graphs showing the 10 most enriched TF motifs in the 1,100 ESC-high NCREs and 

the 1,200 common highly active NCREs with high H3K4me2/3. Plotted is the -log10 p-value. 

Flanking the bar graphs is a heatmap showing the expression (log2(RPKM+1)) of each TF in 

ESCs and NSCs. 

n) Bar graph showing the distribution of the 1,100 ESC-high NCREs with high H3K4me2/3 

across the different categories of NCRE activity in NSCs. Indicated is the fraction of regions 

per category. 
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Extended Data Fig. 5: Extended data on rare variants in NCREs  

Plot showing the odds ratio of observed and expected rare variants (minor allele frequency 

<0.1%) from 76,215 genomes from individuals that did not present with early onset 

neurodevelopmental phenotypes from gnomAD v41 that overlap with the various categories of 

genomic sequences: NSC category 1-5 and NSC top-10%, NCRE activity categories in NSCs; 

ESC category 1-5 and ESC top-10%, NCRE activity categories in ESCs; NSC_high, 

ESC_high and common_high, NCRE categories from the differential activity analysis (see 

Extended Data Fig. 4); VISTA38, ENCODE candidate cis regulatory elements39, nDAEs and 

DAEs26, 5’ and 3’ UTR regions and coding exome obtained from the UCSC Genome browser; 

148,114 random regions. For reference, the odds ratio was also plotted for the various 

individual chromosomes (amongst others, the acrocentric chromosomes and chromosome X 

are depleted for rare variants).  
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Extended Data Fig. 6: Extended data on BRAIN-MAGNET 

a) Scatter plot depicting the correlation between DeepSTARR50 predictions (using the 

housekeeping or developmental enhancer DeepSTARR model) of NCRE activity and 

experimentally obtained ChIP-STARR-seq data from NSC ChIP-STARR-seq or comparative 

ChIP-STARR-seq. Indicated are the Pearson (r) correlation and p-value.   
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b) Scatter plot indicating relationship between BRAIN-MAGNET predicted and observed 

NCRE activity scores for each cell type. Also indicated are the mean square error (MSE), 

Pearson (r) and Spearman (rho) correlation values after concatenating the observations and 

predictions for the train, valid or test set of data. 

c)  Receiver Operating Characteristic (ROC) (upper panel) and Precision-Recall (PR) curves 

(lower panel) for a classification task comparing  different NCRE activity groups and the  top-

10% NCRE activity class using the R package PRROC78 for NSC ChIP-STARR-seq (left) and 

Comparative ChIP-STARR-seq in ESCs (right). The PR curve reflects the precision-recall 

trade-off, and the ROC curve portrays the true positive and false positive rate trade-off. 

d) Bar plot indicating the correlation between cb percentiles and GERP, CADD, LINSIGHT 

and ncER scores for all nucleotides contained in the test set of NCREs. Indicated are the 

Pearson (r) correlation and p-value. 

e) Scatter plots depicting the correlations between cb percentiles and GERP, CADD, 

LINSIGHT and ncER scores for all nucleotides contained in the 15 NCRE motifs that were 

experimentally studied in Fig. 3d. Indicated are the Pearson (r) correlation and p-value. 
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Extended Data Fig. 7: Example loci of OAT and PAFAH1B for which BRAIN-MAGNET 
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prioritized NCREs and motifs, including functional validation.  

A) Genome browser view of the OAT and CHST15 locus, showing an NCRE in an intron of 

CHST15 that interacts by HiC in foetal brain with OAT. Top panel: genome browser tracks 

showing ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and sequencing of ChIP-

STARR-seq plasmids (grey); highlighted region in magenta indicates the NCRE. The zoom-in 

of the NCRE shows the BRAIN-MAGNET cb scores from the NSC model and the ncER scores 

of the same region. A region with high cb scores and an overlapping TP53 motif is highlighted. 

Lower panel shows the motif from JASPAR, a visualization of the cb score, the generated 

deletion (left) or point mutation (right) that was introduced in the NCRE and the outputs per 

nucleotide of GERP, LINSIGHT, CADD, ncER and cb scores visualized in a heatmap. Bar 

plots show the results from experimental testing of the created deletion (left) or point mutation 

(right). Plotted is the percentage of GFP+ in cells co-transfected with an mCherry expressing 

plasmid, to correct for transfection efficiency. Bars show the average from two independent 

experiments, with each NCRE tested each in duplicate. Error bars represent standard 

deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed 

by multiple comparison test (Fisher’s LSD test). 

b) As a, but now for an NCRE in PAFAH1B for which BRAIN-MAGNET predicts a functional 

role for a YY1 motif.  
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Extended Data Fig. 8: Example locus of ASHL1, for which BRAIN-MAGNET prioritized 

NCRE and motif, including functional validation. 

Genome browser view of the ASHL1 locus and flanking genes, showing an NCRE in YY1AP1 

that interacts by HiC in foetal brain with ASHL1. Top panel: genome browser tracks showing 

ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and sequencing of ChIP-STARR-seq 

plasmids (grey); highlighted region in magenta indicates the NCRE. The zoom-in of the NCRE 

shows the BRAIN-MAGNET contribution (cb) scores from the NSC model and the ncER 

scores of the same region. A region with high cb scores and an overlapping YY1 motif is 

highlighted. Lower panel shows the motif from JASPAR, a visualization of the cb score, the 

generated deletion (left) or point mutation (right) that was introduced in the NCRE and the 

outputs of per nucleotide GERP, LINSIGHT, CADD, ncER and cb scores visualized in a 

heatmap. Bar plots show the results from experimental testing of the created deletion (left) or 
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point mutation (right). Plotted is the percentage of GFP+ in cells co-transfected with an 

mCherry expressing plasmid, to correct for transfection efficiency. Bars show the average from 

two independent experiments, with each NCRE tested each in duplicate. Error bars represent 

standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test 

followed by multiple comparison test (Fisher’s LSD test).  
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Extended Data Fig. 9: Example loci of LAMB2 and ADAR for which BRAIN-MAGNET 

prioritized NCREs and motifs, including functional validation. 

a) Genome browser view of the LAMB2 locus and flanking genes, showing an NCRE located 

between RHOA and GPX1 that interacts by HiC in foetal brain with LAMB2. Left panel: 

genome browser tracks showing ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and 

sequencing of ChIP-STARR-seq plasmids (grey); highlighted region in magenta indicates the 

NCRE. The zoom-in of the NCRE shows the BRAIN-MAGNET contribution (cb) scores from 
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the NSC model and the ncER scores of the same region. A region with high cb scores and an 

overlapping TP53 motif is highlighted. Upper right panel shows the motif from JASPAR, a 

visualization of the cb score, the generated deletion that was introduced in the NCRE and the 

outputs per nucleotide of GERP, LINSIGHT, CADD, ncER and cb scores visualized in a 

heatmap. Lower bar plots show the results from experimental testing of the created deletion. 

Plotted is the percentage of GFP+ in cells co-transfected with an mCherry expressing plasmid, 

to correct for transfection efficiency. Bars show the average from two independent 

experiments, with each NCRE tested each in duplicate. Error bars represent standard 

deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed 

by multiple comparison test (Fisher’s LSD test).  

b) As a), but now for an NCRE located in KCNN3 that interacts by HiC in foetal brain with 

ADAR.  
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Extended Data Fig. 10: Example loci of TKT, IRF2BPL and ZBTB11 for which BRAIN-

MAGNET prioritized NCREs and motifs, including functional validation. 
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a) Genome browser view of the TKT locus, showing a distal NCRE that interacts by HiC in 

foetal brain with TKT. Left panel: genome browser tracks showing ChIP-STARR-seq RNA in 

ESCs (blue) and NSCs (red) and sequencing of ChIP-STARR-seq plasmids (grey); highlighted 

region in magenta indicates the NCRE. The zoom-in of the NCRE shows the BRAIN-MAGNET 

contribution (cb) scores from the NSC model and the ncER scores of the same region. A 

region with high cb scores and an overlapping TP53 motif is highlighted. Upper right panel 

shows the motif from JASPAR, a visualization of the cb score, the generated deletion that was 

introduced in the NCRE and the outputs per nucleotide of GERP, LINSIGHT, CADD, ncER 

and cb scores visualized in a heatmap. Lower bar plots show the results from experimental 

testing of the created deletion. Plotted is the percentage of GFP+ in cells co-transfected with 

an mCherry expressing plasmid, to correct for transfection efficiency. Bars show the average 

from two independent experiments, with each NCRE tested each in duplicate. Error bars 

represent standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way 

ANOVA test followed by multiple comparison test (Fisher’s LSD test).  

b) As a), but now for a distal NCRE that interacts by foetal brain HiC with IRF2BPL. 

c) As a), but now for an NCRE upstream of ZBTB11 that contains a ZFP42/YY1 motif.  
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Extended Data Fig. 11: Example loci of DNMT3A, NAT8L and NAA20 for which BRAIN-

MAGNET prioritized NCREs and motifs, including functional validation. 



75 
 

a) Genome browser view of the DNMT3A locus, showing an intronic NCRE. Left panel: 

genome browser tracks showing ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and 

sequencing of ChIP-STARR-seq plasmids (grey); highlighted region in magenta indicates the 

NCRE. The zoom-in of the NCRE shows the BRAIN-MAGNET contribution (cb) scores from 

the NSC model and the ncER scores of the same region. A region with high cb scores and an 

overlapping TP53 motif is highlighted. Upper right panel shows the motif from JASPAR, a 

visualization of the cb score, the generated deletion that was introduced in the NCRE and the 

outputs per nucleotide of GERP, LINSIGHT, CADD, ncER and cb scores visualized in a 

heatmap. Lower bar plots show the results from experimental testing of the created deletion. 

Plotted is the percentage of GFP+ in cells co-transfected with an mCherry expressing plasmid, 

to correct for transfection efficiency. Bars show the average from two independent 

experiments, with each NCRE tested each in duplicate. Error bars represent standard 

deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed 

by multiple comparison test (Fisher’s LSD test).  

b) as for a), but now for a distal NCRE located near NELFA harboring a ZFP42/YY1 motif, that 

interacts with NAT8L as confirmed by HiC in foetal brain. 

c) as for a), but now a distal NCRE that interacts by foetal brain HiC with NAA20.  
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Extended Data Fig. 12: Example loci of ATP6A1V, CIC and TRIO for which BRAIN-

MAGNET prioritized NCREs and motifs, including functional validation. 
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a) Genome browser view of the ATP6A1V locus, showing an intronic NCRE. Left panel: 

genome browser tracks showing ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and 

sequencing of ChIP-STARR-seq plasmids (grey); highlighted region in magenta indicates the 

NCRE. The zoom-in of the NCRE shows the BRAIN-MAGNET contribution (cb) scores from 

the NSC model and the ncER scores of the same region. A region with high cb scores and an 

overlapping TP53 motif is highlighted. Upper right panel shows the motif from JASPAR, a 

visualization of the cb score, the generated deletion that was introduced in the NCRE and the 

outputs per nucleotide of GERP, LINSIGHT, CADD, ncER and cb scores visualized in a 

heatmap. Lower bar plots show the results from experimental testing of the created deletion. 

Plotted is the percentage of GFP+ in cells co-transfected with an mCherry expressing plasmid, 

to correct for transfection efficiency. Bars show the average from two independent 

experiments, with each NCRE tested each in duplicate. Error bars represent standard 

deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed 

by multiple comparison test (Fisher’s LSD test).  

b) as for a), but now for an intronic NCRE in CIC.  

c) as for a), but now for an intronic NCRE in TRIO.   
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Extended Data Fig. 13: Utility of the NCRE atlas and BRAIN-MAGNET for prioritizing 

genomic variants to fine map GWAS associated regions 
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a) Box plot showing the distribution of BRAIN-MAGNET cb scores (normalized cb_all >60) for 

daSNVs (pink) and non-daSNVs (blue) from Guo et al46 that overlap with NCREs assessed in 

our study, and GERP, LINSIGHT, CADD, and ncER scores for the same SNPs. Boxes 

represent the interquartile range (IQR); lines represent the median; whiskers extend to 1.5 the 

IQR; dots represent outliers. (* p < 0.05; t.test).   

b) Zoom-in showing the normalized BRAIN-MAGNET cb scores (cb_all) for the 4 NCREs from 

our data set that overlap with the GWAS associated risk locus for schizophrenia on 

chromosome 6. The 7 SNPs in LD and their cb scores are indicated. Of note is that within 

each NCRE, there are nucleotides which are not common SNPs not assessed in GWAS 

studies that have higher individual cb scores and might thus impact more on NCRE function 

if mutant.  

c) Heatmap depicting the GERP, LINSIGHT, CADD, ncER and BRAIN-MAGNET cb score 

(cb_all and cb_each) for the 7 SNPs in LD at the schizophrenia associated GWAS locus at 

chromosome 6 from b).   

d) As b), but now for the 4 NCREs that overlap with a GWAS associated locus for major 

depression on chromosome 1.  

e) As c), but now for the 4 SNPs in LD at the major depression associated GWAS locus on 

chromosome 1 from d).  
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Extended Data Fig. 14: Extended data showing the utility of the NCRE atlas and BRAIN-

MAGNET for prioritizing genomic variants found in rare disease 

a) Density plots depicting the number of de novo variants found in 4,415 genetically 

unexplained individuals with neurological and neurodevelopmental disorders from the 

Genomics England 100,000 Genomes project, located in NCREs from the different NCRE 

categories for NSCs (left) or ESCs (right) stratified for their BRAIN-MAGNET cb percentile. 
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b) Density plots depicting the number of de novo variants found in 4,558 genetically 

unexplained individuals with other rare disorders (including cardiovascular disorders, hearing 

an ear disorders, ultra-rare disorders, dermatological disorders, gastroenterological disorders, 

renal and urinary tract disorders, respiratory disorders, endocrine disorders, dysmorphic and 

congenital abnormality syndromes, growth disorders, skeletal disorders, ophthalmological 

disorders, metabolic disorders, hematological and immunological disorders and 

rheumatological disorders) from the Genomics England 100,000 Genomes project, located in 

NCREs from the different NCRE categories for NSCs (left) and ESCs (right), stratified for their 

BRAIN-MAGNET cb percentile. 

c) Extended data of NCRE in vivo reporter assay in zebrafish at 24 hfp (with transposase). 

Shown are representative confocal microscopy images of transgenic zebrafish larvae at 24 

hpf, generated by injection of empty vector, or transgenic reporter construct containing wild 

type (wt-RAB7A) or patient-specific mutant RAB7A NCRE (mut-RAB7A), in the presence of 

transposase. Images are shown in dorsal view. Compare to Fig. 5e. 

d) NCRE in vivo reporter assay in zebrafish. Shown are representative confocal microscopy 

of transgenic zebrafish larvae (generated without transposase) at 24 hpf, in lateral and dorsal 

view. Numbers indicated in the images present the GFP positive zebrafish larvae per 

condition. Compared to the wild type, the patient-specific mutant RAB7A NCRE showed 

reduced expression in the central nervous system. Also, a larger proportion of larvae with the 

patient-specific mutant NCRE showed bright, non-specific expression at aberrant locations 

not seen with the wild type RAB7A NCRE. Together, this confirms that the patient-specific 

variant RAB7A NCR leads to an altered in vivo spatiotemporal NCRE expression pattern 

indicating NCRE dysfunction. 

d) Quantification of NCRE in vivo reporter assay in zebrafish shown in panel d) (****p < 0.0001, 

Chi-square test). 

f) Genome browser view showing an NCRE ~87 kb upstream of NEFL, a gene implicated in 

various forms of autosomal dominant Charcot-Marie-Tooth disease48. The NCRE interacts 

with the NEFL promotor region as confirmed by HiC. Top panel: genome browser tracks 

showing ChIP-STARR-seq RNA in ESCs (blue) and NSCs (red) and sequencing of ChIP-

STARR-seq plasmids (grey); highlighted region in magenta indicates the NCRE. The IGV 

browser view insert shows a heterozygous ~5.7 kb deletion encompassing the NEFL NCRE, 

identified in a genetically undiagnosed adult with motor and sensory neuropathy. Given the 

phenotypic overlap with Charcot-Marie-Tooth disease, the NCRE deletion is considered to be 

possibly disease implicated. No consent for recontacting was obtained, preventing further 

clinical evaluation and functional studies.  
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Extended Data Fig. 15: Selected variants from the Genomics England 100,000 Genomes 

Project for which BRAIN-MAGNET predicts an effect on NCRE activity 
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a) Left panel: Genome browser view of the GRIA4 locus showing ChIP-STARR-seq RNA for 

ESCs (blue) and NSCs (red) tracks and plasmid library sequencing results. The identified 

NCRE is highlighted and the zoom-in shows BRAIN-MAGNET cb scores and predicted 

functional motifs. The IGV view insert shows a heterozygous rare variant that affects the 

NCRE predicted functional motifs, detected in a genetically unexplained individual affected 

with a complex neurological phenotype including ataxia and spasticity. GRIA4 is linked to 

autosomal dominant neurodevelopmental disorder with or without seizures and gait 

abnormalities (OMIM #617864), possibly indicating a phenotypic match. Middle panel shows 

the motif from JASPAR, a visualization of the cb score and the outputs of GERP, LINSIGHT, 

CADD, ncER and cb scores visualized in a heatmap for the patient variant and flanking 

nucleotides. Right bar plots show the results from experimental testing of the patient variant 

(pink), the wild type NCRE (blue) or the empty plasmid (grey), in which no significant difference 

for the patient variant was found. Plotted is the percentage of GFP+ in cells co-transfected 

with an mCherry expressing plasmid, to correct for transfection efficiency. Bars show the 

average from two independent experiments, with each NCRE tested each in duplicate. Error 

bars represent standard deviation. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001; ns, not 

significant (one-way ANOVA test followed by multiple comparison test (Fisher’s LSD test).  

b) As a), but now for the KPTN locus. KPTN is linked to autosomal recessive intellectual 

developmental disorder 41 (OMIM #615637). The rare NCRE variant was identified in two 

unrelated individuals affected by epilepsy and ataxia, and significantly increases the NCRE 

activity. We cannot exclude that potentially increased downstream KPTN expression might 

represent a novel disease mechanism linked to this gene.  

c) As a), but now for the MN1 locus. MN1 is linked to autosomal dominant CEBALID syndrome, 

(OMIM #618774), that presents with dysmorphic features, intellectual disability, and brain 

malformations. The identified NCRE variant which significantly reduced NCRE activity was 

found in an unexplained individual reported to have a complicated epilepsy phenotype with 

amongst other features abnormalities of the cerebral cortex possibly presenting a (partial) 

phenotypic match. 
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Extended Data Fig. 16 BRAIN-MAGNET analysis eliminates a clinically suspected 

candidate disease causing non-coding variant in Mowat-Wilson syndrome 

a) Genome browser view of the ZEB2 locus, showing an intronic NCRE in which a rare variant 

was found in a genetically unexplained individual clinically suspected of Mowat-Wilson 

syndrome. Top panel: genome browser tracks showing ChIP-STARR-seq RNA in ESCs (blue) 

and NSCs (red) and sequencing of ChIP-STARR-seq plasmids (grey); highlighted region in 

magenta indicates the NCRE. The zoom-in of the NCRE shows the BRAIN-MAGNET 

contribution (cb) scores from the NSC model and the ncER scores of the same region. A 

region with high cb scores and an overlapping ONECUT1 motif and the mutation site of the 

variant found in the affected individual are highlighted. The IGV browser view show the 

heterozygous variant identified in the individual. The heatmap below depicts the outputs of 

GERP, LINSIGHT, CADD, ncER and cb scores for the patient variant and its flanking 

nucleotides.  

b) Bar plot showing the results from experimental testing of the created deletion of the 

ONECUT1 motif or the NCRE variant identified in the affected individual. Plotted is the 
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percentage of GFP+ in cells co-transfected with an mCherry expressing plasmid, to correct 

for transfection efficiency. Bars show the average from two independent experiments, with 

each NCRE tested each in duplicate. Error bars represent standard deviation. * p < 0.05; ** 

p < 0.01; *** p < 0.001; **** p < 0.0001 (one-way ANOVA test followed by multiple comparison 

test (Fisher’s LSD test).  
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