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Summary 

Background: As deep learning becomes increasingly accessible for automated detection 

of diabetic retinopathy (DR), questions persist regarding its performance equity among 

diverse identity groups. We aimed to explore the fairness of current deep learning models 

and further create a more equitable model designed to minimize disparities in 

performance across groups.  

Methods: This study used one proprietary and two publicly available datasets, containing 

two-dimensional (2D) wide-angle color fundus images, scanning laser ophthalmoscopy 

(SLO) fundus images, and three-dimensional (3D) Optical Coherence Tomography (OCT) 

B-Scans, to assess deep learning models for DR detection. We developed a Fair Adaptive 
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Scaling (FAS) module that dynamically adjusts the significance of samples during model 

training for DR detection, aiming to lessen performance disparities across varied identity 

groups. FAS was incorporated into both 2D and 3D deep learning models to facilitate the 

binary classification of DR and non-DR cases. The area under the receiver operating 

characteristic curve (AUC) was adopted to measure the model performance. Additionally, 

we devised an equity-scaled AUC metric, which evaluates model fairness by balancing 

overall AUC against disparities among groups. 

Findings: Using in-house color fundus images on the racial attribute, the overall AUC 

and ES-AUC of EfficientNet, after integrating with FAS, improved from 0.88 and 0.83 to 

0.90 and 0.84 (p < 0.05), with AUCs for Asians and Whites improving by 0.04 and 0.03, 

respectively (p < 0.01). Regarding gender, both the overall AUC and ES-AUC of 

EfficientNet improved by 0.01 (p < 0.05) after integrating with FAS. While using in-house 

SLO fundus images based on race, the overall AUC and ES-AUC of EfficientNet improved 

from 0.80 to 0.83 (p < 0.01), with AUCs for Asians, Blacks, and Whites improving by 0.02, 

0.01 and 0.04, respectively (p < 0.05). On gender, FAS improved the overall AUC and 

ES-AUC of EfficientNet by 0.02, with both genders showing an improvement of 0.02 (p < 

0.01). Using the 3D deep learning model DenseNet121 on in-house OCT-B-Scans based 

on race, FAS improved the overall AUC and ES-AUC from 0.875 and 0.81 to 0.884 and 

0.82 respectively, where the AUCs for Asians and Blacks improved by 0.03 and 0.02 (p 

< 0.01). On gender, FAS improved the overall AUC and ES-AUC of DenseNet121 by 0.04 

and 0.03, while the AUCs for Females and Males improved by 0.05 and 0.04 (p < 0.01), 

respectively. 



Interpretation: Existing deep learning models indeed exhibit variable performance 

across diverse identity groups in DR detection. The FAS proves beneficial in enhancing 

model equity and boosting DR detection accuracy, particularly for underrepresented 

groups. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Introduction 

Diabetic retinopathy (DR) is a common complication of diabetes that affects blood vessels 

in the retina,1,2 and is the leading cause of blindness in adults aged 20 to 74 years in the 

United States.3–5 As DR can develop at any point in the lifespan of a diabetic patient, 

regular eye examinations conducted by an ophthalmologist are crucial for the timely 

detection of DR, which enables prompt treatment vital in preserving vision. However, 

regular access to ophthalmic care is often hindered by a scarcity of eye care resources 

and the high costs associated with specialty care. It has been reported that racial and 

ethnic minorities such as Blacks and Hispanics are disproportionally affected, with DR 

prevalence 50% higher than non-Hispanic Whites.6–9 Additionally, Black and Hispanic 

patients with DR (Odds ratios: 1.78 and 1.68, respectively) are more likely to present with 

worse vision loss compared with non-Hispanic Whites.10,11 Although the DR disease 

burden is significantly greater in minorities, various studies have reported that the rate of 

eye examination for DR screening is significantly lower in these minority groups (49%) 

compared to non-Hispanic Whites (59%).12  

        In recent years, automated DR detection using deep learning13–16 through retinal 

imaging has emerged as an affordable solution, providing frequent and regular eye 

examinations for timely DR detection. This innovation aims to alleviate societal disease 

burdens and reduce health disparities among different demographic groups. Numerous 

studies have been conducted to develop deep learning models for automated DR 

detection,13,14,16,17 yet it remains unclear if these deep learning models perform equitably 

across different identity groups. Ensuring equitable performance is vital in any disease 

screening model to uphold the principles of social justice and fairness. The performance  



 

Figure 1. An illustration of the fairness issue in DR detection. Exiting deep learning models 
demonstrate significant group performance disparities measured by equality-scaled AUC. We 
proposed a fair adaptive scaling module to improve model performance disparities across 
different identity groups. 
 

inequality observed in deep learning models may primarily stem from two factors: data 

inequality and data characteristic variability among different identity groups. For example, 

fewer Black and Asian DR patients are present in ophthalmic care, representing data 

inequality.5 Moreover, prior studies have shown that retinal anatomy varies with sex and 

racial information,18,19 which exemplifies data characteristic variability. Mitigating data 

inequality and addressing data characteristic variability is imperative to reduce 

performance disparities and achieve more equitable outcomes in deep learning. As of 

now, studies elucidating and harnessing the underlying performance disparities among 

demographic identity groups for DR screening with deep learning are limited.  

        In this study, we conducted a thorough assessment of state-of-the-art deep learning 

models for detecting DR using two-dimensional (2D) fundus images and three-

dimensional (3D) optical coherence tomography (OCT) B-Scans. We examined 
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disparities in model performance across various identity groups, including race, gender, 

ethnicity, marital status, and preferred language. Furthermore, we developed an equitable 

deep learning model that enhances equity in automated DR detection (Figure 1). The 

core idea of our approach is to introduce a Fair Adaptive Scaling (FAS) module that 

dynamically adjusts the significance of individual samples during training to achieve 

equitable DR detection performance among different identity groups. We tested the 

effectiveness of these models using a comprehensive proprietary dataset and two public 

datasets designed for DR detection, encompassing wide-angle color fundus, Scanning 

Laser Ophthalmoscopy (SLO) fundus, and OCT B-Scans. We used the area under the 

receiver operating characteristic curve (AUC) to compare the DR detection performance 

of various models. In addition, to balance the overall AUC with performance disparities 

among diverse identity groups, we introduced a novel metric termed equity-scaled AUC 

(ES-AUC), designed to measure and compare the fairness of different deep learning 

models. 

Methods 

Ethics statement 

The fundus and OCT data used for developing the equitable deep learning model were 

from Massachusetts Eye and Ear (MEE) between 2021 and 2023. The institutional review 

boards (IRB) of MEE approved the creation of the database in this retrospective study. 

This study complied with the guidelines outlined in the Declaration of Helsinki. In light of 

the study's retrospective design, the requirement for informed consent was waived.  

Datasets 



We adopted three different datasets to validate the existing and proposed equitable deep 

learning methods for DR detection. They are described as follows. 

        MEE Inhouse Data: This dataset spans three different data modalities, including 

wide-angle color fundus images, SLO fundus images, and 3D OCT B-Scans, where SLO 

fundus images and OCT B-scans are exactly paired from the same eye at the same visit. 

The wide-angle color fundus images were collected from 22,622 patients with an average 

age of 57.4 ± 19.4 years. The demographic distributions are as follows (Supplemental 

Figure 1): Gender: Female: 51.6%, Male: 48.4%; Race: Asian 6.5%, Black: 9.3%, White: 

84.2%. Ethnicity: Non-Hispanic: 96.7%, 3.3% Hispanic; Preferred Language: English: 

93.1%, Spanish: 1.3%, Others: 5.6%; Marital Status: Married or Partnered: 53.6%, Single: 

29.7%, Divorced: 6.2%, Legally Separated: 0.7%, Widowed: 6.7%, Unknown: 3.1%. The 

SLO fundus images and OCT B-scans were collected from 49,164 patients with an 

average age of 63.9 ± 17.4 years. The demographic distributions are as follows 

(Supplemental Figure 2): Gender: Female: 58.3%, Male 41.7%; Race: Asian 7.9%, 

Black: 12.4%, White: 79.6%. Ethnicity: Non-Hispanic: 96.2%, Hispanic: 3.8%; Preferred 

Language: English: 91.4%, Spanish: 1.7%, Others: 6.9%; Marital Status: Married or 

Partnered: 55.0%, Single: 25.1%, Divorced: 7.0%, Legally Separated: 0.9%, Widowed: 

8.2%, Unknown: 3.7%. Each subject was categorized into two classes, including non-

vision-threatening DR and vision-threatening DR. Vision-threatening DR comprises 

severe non-proliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy 

(PDR), while non-vision-threatening DR comprises normal, mild, and moderate NPDR. 

The diagnosis information of DR or non-DR was extracted from the International 

Classification of Diseases (ICD) codes in the patient’s electronic health records. For color 



fundus, 95.3% and 4.7% of patients were identified as non-vision-threatening DR and 

vision-threatening DR, respectively. For SLO fundus and OCT B-Scans, 97.7% and 2.3% 

of patients were identified as non-vision-threatening DR and vision-threatening DR, 

respectively. 

        Harvard-FairVision30k: This is a public dataset proposed to study the fairness issue 

in eye disease screening, including SLO fundus images and OCT B-Scans collected from 

10,000 patients for DR detection.20 The average age was 64.5 ± 16.5 years. The 

demographic distributions are as follows (Supplemental Figure 3): Gender: Female: 

55.5%, Male 44.5%; Race: Asian 7.6%, Black: 14.6%, White: 77.8%. Ethnicity: Non-

Hispanic: 96.1%, 3.9% Hispanic; Preferred Language: English: 90.9%, Spanish: 2.0%, 

Others: 7.1%; Marital Status: Married or Partnered: 54.0%, Single: 25.2%, Divorced: 7.1%, 

Legally Separated: 1.0%, Widowed: 8.4%, Unknown: 4.3%. Of the patients, 90.9% were 

identified as non-vision-threatening DR and 9.1% as vision-threatening DR. 

        ODIR-5K: This is a public dataset proposed to study eye disease screening using 

color fundus images.21 After processing, 6,392 fundus images were collected from 3,358 

patients, with an average age of 57.9 ± 11.7 years. Gender is available in this dataset, 

where Females and Males account for 46.4% and 53.6% of the subjects, respectively. Of 

the subjects, 66.8% were identified as non-DR and 33.2% as DR. 

Equitable deep learning model with fair adaptive scaling 

We aimed to devise a fairness learning module to enhance existing deep learning models 

to achieve equitable DR detection performance across different identity groups. The 

model takes an image as input to predict the binary DR and non-DR category while 

considering the associated identity attributes (e.g., gender, race, and ethnicity) of the  



 

Figure 2. The comparison of existing deep learning model and the proposed model with 
fair adaptive scaling. Existing deep models learn features from the fundus image or OCT B-
Scans for DR detection without considering the identity information. In contrast, the proposed 
model with fair adaptive scaling leverages the identity information to guide the model dynamically 
adjust the contributions of individual samples, thus achieving equitable DR detection across 
different identity groups. 

 

input image. The goal is to maximize the overall DR detection accuracy of all samples 

while minimizing the discrepancies across different identity groups. We proposed a Fair 

Adaptive Scaling (FAS) module (Figure 2), which can be integrated with existing models 

to improve model performance equity. FAS employs learnable group weights and past 

individual loss data to adjust the loss function during the current training batch. The idea 
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is that samples that had higher group weights and individual loss values in the prior batch 

will be given more weight in the current batch’s loss function. Note that the group weight 

is a learnable parameter dynamically updated instead of an empirically selected fixed 

value. This approach combines both group and individual scaling not only to address 

fairness at the group level but also manage within-group sample variations. This is done 

to avoid issues that may arise if only group scaling is used, as it could overly weight or 

underweight most samples within a group due to isolated outliers, consequently 

deteriorating the model. FAS can be integrated with state-of-the-art 2D or 3D deep 

learning models for DR detection by taking the identity information into account. In this 

work, we adopted EfficientNet22 and ViT-B23 as backbones to validate the effectiveness 

of FAS, namely EfficientNet + FAS and ViT-B + FAS,  as they performed the best in most 

comparisons. Specifically, for the 2D model, it takes a batch of color fundus or SLO fundus 

images together with identity attributes as inputs. The backbone model is used to extract 

features from the images, which are subsequently used for the binary (i.e. DR and non-

DR) classification. During the supervised training, each sample’s contribution is 

dynamically scaled by the learnable group and individual weight values. Such a 

mechanism allows naturally underrepresented samples to adjust themselves to obtain 

equal importance during the model training.  

        To handle 3D OCT B-Scans, we adopted two types of deep learning backbones 

combined with the FAS. The first type of backbone is adapted from the 2D models 

EfficientNet22 and ViT-B23 by adding a mapping initial layer to transform 200-channel OCT 

images into corresponding 3-channel image, while the remaining learning architectures 



remain unchanged. The second type of backbone is the 3D versions of ResNet18 and 

DenseNet121, which feature 3D convolutions dedicated to 3D medical images.24  

Baseline models for comparison 

We selected seven state-of-the-art baseline deep learning models to compare DR 

detection performance and performance equity across different identity groups. These 

models are VGG-1625, Swin-B26, ResNet27, ConvNeXt28, DenseNet29, EfficientNet22, and 

ViT-B23, all of which have been widely used for processing medical images. For these 

comparative methods, we used a consistent training pipeline, similar to that of the 

proposed models in this work. A validation dataset was used to tune the hyperparameters 

for individual models to achieve a competitive performance. In addition, we included 

respective variants of the above models by introducing an adversarial training loss or 

using a data oversampling process. Both techniques are deemed useful in mitigating 

performance disparities between subgroups in prior research.30–32 In particular, 

adversarial training forces the model not to learn identity-specific information from the 

images, thus avoiding the performance bias caused by identity information, while 

oversampling addresses data imbalance issue. We also investigated the transfer learning 

technique with EfficientNet and ViT-B models to further optimize the performance for each 

specific identity group.33,34 In this approach, a global model was first trained using all 

available training data. Subsequently, the model was fine-tuned for each individual 

identity group using the group-specific training data. 

Evaluation metrics and statistical analysis 

Statistical analyses were performed in Python 3.8 (available at http://www.python.org) on 

a Linux system. The scikit-learn package was used to calculate the area under the 



receiver operating characteristic curve (AUC). To account for the potential tradeoff 

between overall AUC and group disparity, we proposed a new metric called equity-scaled 

AUC (ES-AUC) to compare model performance equity. The ES-AUC is defined as the 

overall AUC divided by one plus the sum of the absolute differences between the overall 

AUC and each group’s AUC, formulated as 𝑨𝑼𝑪𝑬𝑺 = 𝑨𝑼𝑪𝒐𝒗𝒆𝒓𝒂𝒍𝒍/(𝟏 + 𝚺ห𝑨𝑼𝑪𝒐𝒗𝒆𝒓𝒂𝒍𝒍 −

𝑨𝑼𝑪𝒈𝒓𝒐𝒖𝒑ห). We used t-test and bootstrapping with replacement to compare the DR 

screening AUC and ES-AUC of different deep learning models, with or without FAS. The 

basic idea of bootstrapping is that inference about a population from sample data can be 

modeled by resampling the sample data and performing inference about a sample from 

resampled data. This method is a straightforward way to derive estimates of standard 

errors and confidence intervals. All statistical tests were two-sided, and p < 0.05 was 

considered to indicate a statistically significant result. We also calculated the overall 

sensitivity performance and corresponding ES-sensitivity at the thresholds of 0.9 and 0.95 

specificities, which were reported in the Supplemental Material due to page limits. 

Results 

Results for color fundus images. For racial attribute, ViT-B achieved the best overall AUC 

of 0.90 and ES-AUC of 0.84 among seven state-of-the-art baseline deep learning models, 

followed by the EfficientNet with its overall AUC and ES-AUC being 0.88 and 0.83, 

respectively (Figure 3a). Data oversampling and adversarial training significantly 

improved the overall AUC performances of VGG, ResNet and ConvNeXt (p < 0.05), but 

were not shown useful for other models (Supplemental Figure 4). With transfer learning,  

EfficientNet significantly improved the AUC performances for Asians and Whites up to 

0.04 (p < 0.01) and 0.01 (p < 0.05) respectively (Figure 3b). After integrating with FAS,  



 

Figure 3. Results on Color Fundus Images on race attributes of the In-house Dataset. (a) 
The accuracy of various baseline models. (b) The accuracy of EfficientNet and its integration with 
oversampling, adversarial, transfer learning and our FAS techniques. (c) The accuracy of ViT-B 
and its integration with oversampling, adversarial, transfer learning and our FAS techniques. 

 
Figure 4. Results on Color Fundus Images on gender attributes of the In-house Dataset. 
(a) The accuracy of various baseline models. (b) The accuracy of EfficientNet and its integration 
with oversampling, adversarial, and our FAS techniques. (c) The accuracy of ViT-B and its 
integration with oversampling, adversarial, transfer learning and our FAS techniques. 

 

(a)

(b)

(c)

(c)

(b)

(a)



the overall AUC and ES-AUC of EfficientNet improved from 0.88 and 0.83 to 0.90 and 

0.84 (p < 0.05), where the AUCs for Asians and Whites improved by 0.04 and 0.03, 

respectively (p < 0.01, Figure 3b). Similarly, with FAS, the AUCs of ViT-B for Asians and 

Whites improved by 0.02 and 0.01 (p < 0.05), respectively. For the gender attribute, ViT-

B and EfficientNet remained the best performing baseline models with both ES-AUC 

being 0.88 (Figure 4a). Adversarial training boosted the AUC of EfficientNet for Females 

by 0.02 (p < 0.01), while the oversampling and transfer learning did not bring significant 

AUC improvements for either EfficientNet and ViT-B (Figures 4b and 4c). With FAS, the 

overall AUC and ES-  AUC of EfficientNet both improved by 0.01 (p < 0.05), while the 

AUC and ES-AUC for ViT-B increased by 0.02 and 0.03 (p < 0.01) respectively. For ethnic 

attribute, oversampling, transfer learning and adversarial training could not enhance 

EfficientNet and ViT-B (Figures 5b and 5c). In contrast, the overall AUC and AUC of 

EfficientNet with FAS for non-Hispanic group both improved by 0.01(p < 0.05, Figure 5b). 

The overall AUC, ES-AUC and AUC of ViT-B with FAS for Hispanic group all increased 

by 0.01 (p < 0.05, Figure 5c). 

        Similar results can be observed when using ODIR-5K dataset for the gender attribute. 

With FAS, the overall AUC and ES-AUC both improved by 0.01 (p < 0.05, Supplemental 

Figure 8). The overall AUC and ES-AUC for ViT-B improved by 0.03 and 0.02 

respectively, after integrating the FAS (p < 0.01, Supplemental Figure 8). The AUCs for 

Females and Males improved from 0.75 and 0.76 to 0.78 and 0.78, respectively. 

Results for SLO fundus images. Using in-house MEE dataset on the racial attribute, ViT-

B achieved the highest overall AUC of 0.82, while Swin-B achieved the highest ES-AUC  

 



 
Figure 5. Results on Color Fundus Images on ethnicity attributes of the In-house Dataset. 
(a) The accuracy of baseline models. (b) The accuracy of EfficientNet and its integration with 
oversampling, adversarial, transfer learning and our FAS techniques. (c) The accuracy of ViT-B 
and its integration with oversampling, adversarial, transfer learning and our FAS techniques. 

 

Figure 6. Results on SLO Fundus Images on race attributes of the In-house Dataset. (a) 
The accuracy of various baseline models. (b) The accuracy of EfficientNet and its integration with 
oversampling, adversarial, transfer learning and our FAS techniques. (c) The accuracy of ViT-B 
and its integration with oversampling, adversarial, transfer learning and our FAS techniques. 
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of 0.77 (Figure 6a). In general, the strategies of oversampling, transfer learning and 

adversarial training could not improve the overall AUC and ES-AUC performances for 

both EfficientNet and ViT-B (Figures 6b and 6c). In contrast, with FAS, the overall AUC 

of EfficientNet significantly improved from 0.80 to 0.83 (p < 0.01), where the AUCs for 

Asians, Blacks and Whites improved by 0.02, 0.01 and 0.04, respectively (p < 0.05, 

Figures 6b). The overall AUC and ES-AUC of ViT-B with FAS increased from 0.82 and 

0.71 to 0.84 and 0.75, respectively. In subgroups, the AUCs for Asians, Blacks and Whites 

significantly improved by 0.02, 0.03, and 0.02, respectively (p < 0.01, Figure 6c). On the 

gender attribute, conventional strategies such as oversampling, transfer learning, and 

adversarial training strategies failed to boost model performance and equity, while FAS 

significantly boosted EfficientNet and ViT-B (Figures 7b and 7c). Specifically, FAS 

improved EfficientNet’s overall AUC and ES-AUC by 0.02 (p < 0.01), where the same 

improvement of 0.02 was achieved for Females and Males (p < 0.01, Figures 7b). 

Similarly, with FAS, the overall AUC and ES-AUC of ViT-B improved by 0.02 and 0.01, 

where Females and Males had improvements of 0.03 and 0.02, respectively (p < 0.05, 

Figure 7c). On the ethnic attribute, after integrating FAS, the overall AUC and ES-AUC 

of EfficientNet improved by 0.02 and 0.04, respectively (p < 0.01, Figure 8b). The AUC 

for non-Hispanic group improved 0.02, but no improvement was observed for the Hispanic 

group (Figure 8b). With FAS, the overall AUC of ViT-B improved from 0.82 to 0.84, where 

the non-Hispanic group improved by 0.03 (p < 0.01, Figure 8c), although no improvement 

was observed for the Hispanic group.  

         

 



 

Figure 7. Results on SLO Fundus Images on gender attributes of the In-house Dataset. (a) 
The accuracy of various baseline models. (b) The accuracy of EfficientNet and its integration with 
oversampling, adversarial, transfer learning and our FAS techniques. (c) The accuracy of ViT-B 
and its integration with oversampling, adversarial, transfer learning and our FAS techniques. 

 

Figure 8. Results on SLO Fundus Images on ethnicity attributes of the In-house Dataset. 
(a) The accuracy of various baseline models. (b) The accuracy of EfficientNet and its integration 
with oversampling, adversarial, transfer learning and our FAS techniques. (c) The accuracy of 

ViT-B and its integration with oversampling, adversarial, transfer learning and our FAS techniques. 
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        On the Harvard-FairVision30k dataset, FAS was also shown to be effective in 

boosting the overall AUC performance and reducing group performance disparities. For 

example, on the racial attribute, the AUC and ES-AUC of EfficientNet with FAS improved 

from 0.79 and 0.67 to 0.81 and 0.74, respectively. Notably, significant AUC improvements 

(0.04 and 0.07) were achieved for Asians and Blacks, respectively (p < 0.01, 

Supplemental Figure 13). Similarly, the performance disparities were significantly 

improved for ViT-B after integrating the FAS, with the ES-AUC and AUCs for Asians and 

Blacks all improved by 0.02 (p < 0.01). 

Results for OCT B-Scans. DenseNet121 and ResNet18, based on 3D convolutions with 

or without integrating the FAS, were evaluated on Race, Gender, and Ethnicity. 

Compared with DenseNet121 on the racial attribute using in-house OCT B-Scans, 

DenseNet121 + FAS  improved the overall AUC and ES-AUC from 0.875 and 0.81 to 

0.890 and 0.83, respectively (p < 0.01, Table 1), where the AUCs for Asians and Blacks 

improved by 0.032 and 0.02. Similarly, for Resnet18 with FAS, the overall AUC and ES-

AUC both improved by 0.012 (p < 0.05, Table 1), with a more prominent AUC 

improvement for Asians (0.026) compared with Blacks (0.011) and Whites (0.011).  On 

the gender attribute, FAS improved the overall AUC and ES-AUC of DenseNet121 by 

0.044 and 0.027, where the AUCs for Females and Males improved by 0.054 and 0.035, 

respectively (p < 0.01, Table 1). After integrating FAS with Resnet18 on Gender, the 

overall AUC and ES-AUC significantly increased from 0.872 and 0.856 to 0.903 and 0.882, 

respectively. On the ethnic attribute, the overall AUC for DenseNet121 integrating the 

FAS improved by 0.019, although the ES-AUC showed no improvement (Table 1). The 

overall AUC and ES-AUC for ResNet18 + FAS improved over ResNet18 by 0.022 and  



Race ES-AUC 
Overall 
AUC 

Asian Black White 
Mean 

Disparity 
Max 

Disparity 
DenseNet121 0.810 0.875 0.814 0.893 0.875 0.047 0.090 

Resnet18 0.818 0.872 0.903 0.897 0.863 0.025 0.046 
DenseNet121 + FAS 0.830 0.890 0.846 0.913 0.886 0.038 0.075 

Resnet18 + FAS 0.820 0.884 0.929 0.908 0.874 0.031 0.062 

Gender ES-AUC 
Overall 
AUC 

Female Male 
Mean 

Disparity 
Max 

Disparity 
 

DenseNet121 0.843 0.875 0.890 0.853 0.030 0.042  

Resnet18 0.856 0.872 0.879 0.860 0.015 0.022  

DenseNet121 + FAS 0.870 0.919 0.944 0.888 0.043 0.061  

Resnet18 + FAS 0.882 0.903 0.910 0.887 0.018 0.025  

Ethnicity ES-AUC 
Overall 
AUC 

Non-
Hispanic 

Hispanic 
Mean 

Disparity 
Max 

Disparity 
 

DenseNet121 0.846 0.875 0.876 0.843 0.027 0.038  

Resnet18 0.835 0.872 0.870 0.913 0.035 0.049  

DenseNet121 + FAS 0.823 0.894 0.899 0.812 0.069 0.097  

Resnet18 + FAS 0.897 0.904 0.904 0.912 0.006 0.009  

Table 1. Experimental results on in-house OCT B-Scans using 3D deep learning models. 

Race ES-AUC 
Overall 
AUC 

Asian Black White 
Mean 

Disparity 
Max 

Disparity 
DenseNet121 0.812 0.914 0.849 0.869 0.929 0.046 0.087 

Resnet18 0.805 0.876 0.855 0.825 0.893 0.039 0.078 
DenseNet121 + FAS 0.867 0.924 0.900 0.893 0.934 0.024 0.044 

Resnet18 + FAS 0.852 0.889 0.858 0.879 0.892 0.019 0.038 

Gender ES-AUC 
Overall 
AUC 

Female Male 
Mean 

Disparity 
Max 

Disparity 
 

DenseNet121 0.904 0.914 0.916 0.905 0.009 0.012  

Resnet18 0.862 0.876 0.864 0.880 0.013 0.018  

DenseNet121 + FAS 0.909 0.919 0.921 0.911 0.008 0.011  

Resnet18 + FAS 0.882 0.893 0.883 0.896 0.010 0.015  

Ethnicity ES-AUC 
Overall 
AUC 

Non-
Hispanic 

Hispanic 
Mean 

Disparity 
Max 

Disparity 
 

DenseNet121 0.910 0.914 0.914 0.910 0.003 0.004  

Resnet18 0.864 0.876 0.876 0.862 0.011 0.016  

DenseNet121 + FAS 0.897 0.919 0.917 0.941 0.018 0.026  

Resnet18 + FAS 0.857 0.895 0.892 0.937 0.036 0.050  

Table 2. Experimental results on Harvard-FairVision30k OCT B-Scans using 3D deep 
learning models. 

 

0.062, respectively, with the non-Hispanic group improving from 0.87 to 0.904, and 

Hispanic groups remaining nearly unchanged (Table 1).    

        On the Harvard-FairVision30K dataset, we can observe consistent improvement after 

integrating FAS with DenseNet121 and ResNet18 (Table 2). On the racial attribute, FAS 

improved the overall AUC of DenseNet121 by 0.01 and ES-AUC by 0.055, with significant  



 

Figure 9. The distribution of features learned from in-house SLO fundus images by the 
existing baseline EfficientNet model and the EfficientNet + FAS model. (a) EfficientNet on 

Race.  (b) EfficientNet on Gender. (c) EfficientNet on Ethnicity. (d) EfficientNet + FAS on Race.  

(e) EfficientNet + FAS on Gender. (f) EfficientNet + FAS on Ethnicity. 

 

AUC improvements of 0.051 and 0.024 for Asians and Blacks, respectively (p < 0.01, 

Table 2). For DenseNet18 + FAS, the overall AUC and ES-AUC improved by 0.023 and 

0.047, respectively. The AUCs for Blacks significantly improved from 0.825 to 0.879. On 

the gender attribute, the improvements in model performance and disparity were marginal 

for DenseNet121 after integrating with FAS. In contrast, with FAS, DenseNet18’s overall 

AUC and ES-AUC significantly improved by 0.017 and 0.02 (p < 0.01, Table 2). For the 

ethnic attribute, the overall AUC DenseNet18 after integrating the FAS improved from 

0.876 to 0.895, while the improvement for DenseNet18 + FAS was not significant. 

Discussion 



As deep learning models are widely used for automatic disease screening, it is essential 

to investigate existing models and pursue equitable model performance across different 

identity groups. In this work, we thoroughly examined seven state-of-the-art deep learning 

models for DR detection and analyzed their performance disparities across diverse 

identity groups. Three different datasets encompassing 2D color fundus, SLO fundus, and 

3D OCT B-Scans were included in the evaluation. The experimental results demonstrated 

that existing deep models generally suffer from the performance disparities, which are 

particularly unfair for underrepresented groups. For example, for the racial attribute on 

the in-house SLO fundus images, ViT-B achieved the lowest AUC score of 0.72 for Blacks, 

compared to 0.83 for Whites (Figure 6a). We proposed a Fair Adaptive Scaling (FAS) 

module to enhance existing model performance and mitigate model performance 

disparities across different identity groups. We demonstrated the effectiveness of FAS 

through its integration with EfficientNet and ViT-B and compared it with three conventional 

strategies for reducing group performance disparities, including data oversampling, 

transfer learning, and adversarial training. FAS proved helpful in boosting model 

performance in DR detection as well as reducing subgroup performance disparities. For 

example, for the racial attribute on the in-house SLO fundus images, ViT-B combined with 

FAS improved the AUCs for Blacks and Whites from 0.72 to 0.83 to 0.75 and 0.85, 

respectively (Figure 6c). As a result, the corresponding ES-AUC improved from 0.71 to 

0.75, indicating that the ViT-B model has become fairer for subgroup DR detection after 

integrating with FAS.  

        The major idea of FAS is to dynamically learn the contribution of each individual 

sample for DR detection, conditioned on the associated identity attributes. This is 



achieved by employing learnable group weights (i.e. group scaling) and past individual 

loss data (i.e. individual scaling) to adjust the loss function during the current training 

batch. Essentially, samples that had higher group weights and individual loss values in 

the prior batch will be given more weight in the current batch’s loss function. This 

approach of combining both group and individual scaling is taken to not only address 

fairness at a group level but also manage within-group sample variations. FAS can affect 

the way the model learns features from the input image sample in order to achieve 

improved model performance and reduce group disparities (Figure 9).  The distribution 

of features learned by the existing deep learning model was highly indistinguishable 

across different identity groups and centralized (Figures 9a and 9b). In contrast, the 

distribution of features from the deep learning model with FAS had clearer boundaries 

and was more spread out in the feature space. Such a reformed feature distribution, 

incurred by FAS, may have contributed to the improvement of overall model performance 

and reduced group disparities in DR detection. Compared with conventional strategies of 

data oversampling, transfer learning and adversarial training for mitigating group 

disparities, FAS was able to demonstrate superior effectiveness and robustness for 

different identity attributes for all three datasets used in the evaluation.  

        Our study had several limitations. First, the proposed deep learning models with 

FAS did not consistently improve the overall AUC performance and group disparities 

quantified by ES-AUC, max disparity, and mean disparity for all five sensitive attributes 

including Race, Gender, Ethnicity, Language, and Marital Status. For example, for in-

house color fundus images, the overall AUC and ES-AUC of EfficientNet (Figures 3b 

and 4b) and ViT-B (Figures 3c and 4c) showed significant improvements on Race and 



Gender after integrating with FAS but did not show improvements on Language 

(Supplemental Figures 7d and 7f). A possible reason is that retinal images from different 

subgroups, identified by certain sensitive attributes (e.g., Language), present 

considerable structural variance, meaning that one subgroup may contain more hard 

classification cases than another. While the model is trained to pursue global 

classification accuracy, this could compromise the accuracy for certain subgroups. 

Therefore, sophisticated strategies need to be designed to explicitly balance the accuracy 

across different identity groups. Second, the experimental results demonstrated that ES-

AUC, mean and max disparity metrics were inconsistent for comparing model equity. In 

this work, the ES-AUC is treated as a more comprehensive equity measurement than 

mean and max disparities, given that mean and max disparities do not fully considered 

the variance of subgroup performances. Additionally, other fairness metrics such as 

demographic parity, equalized odds, and equal opportunity can also be adopted. Third, 

we have thoroughly validated how fair the model would be regarding data sample size for 

different sensitive attributes. The data sample sizes involved in this study were relatively 

large, which could bias the model performance and equity. However, we tested the 

influence of sample sizes using the in-house color fundus images on Race, Gender, and 

Ethnicity. The experiments demonstrated that the issue of model inequity existed at 

different scales of data samples, and the proposed deep learning model with FAS helped 

to mitigate model performance disparities across different identity groups (Supplemental 

Figures 24-26). Lastly, we have not fully explored the efficacy of FAS when paired with 

other supervised deep learning models like the Swin network and unsupervised deep 



learning models like the masked autoencoder, even though FIN has the versatility to be 

paired with various learning frameworks. 

        In conclusion, we proposed a FAS module to promote model performance equity for 

DR detection. FAS is an independent module that can be integrated into many existing 

deep learning models to improve model fairness across different identity groups. 

Extensive experiments using three different datasets for DR detection and comparisons 

with conventional fairness learning strategies demonstrated the effectiveness of FAS in 

boosting both overall model performance and group performance disparities, especially 

for underrepresented groups.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



References 

1. Fong DS, Aiello L, Gardner TW, et al. Retinopathy in Diabetes. Diabetes Care. 
2004;27(suppl_1):s84-s87. doi:10.2337/diacare.27.2007.S84 

2. Mohamed Q, Gillies MC, Wong TY. Management of Diabetic Retinopathy. JAMA. 
2007;298(8):902. doi:10.1001/jama.298.8.902 

3. Lee R, Wong TY, Sabanayagam C. Epidemiology of diabetic retinopathy, diabetic 
macular edema and related vision loss. Eye and Vision. 2015;2(1):17. 
doi:10.1186/s40662-015-0026-2 

4. The Prevalence of Diabetic Retinopathy Among Adults in the United States. Archives of 
Ophthalmology. 2004;122(4):552. doi:10.1001/archopht.122.4.552 

5. Zhang X, Saaddine JB, Chou CF, et al. Prevalence of Diabetic Retinopathy in the United 
States, 2005-2008. JAMA. 2010;304(6):649. doi:10.1001/jama.2010.1111 

6. Harris EL, Feldman S, Robinson CR, Sherman S, Georgopoulos A. Racial Differences in 
the Relationship Between Blood Pressure and Risk of Retinopathy Among Individuals 
With NIDDM. Diabetes Care. 1993;16(5):748-754. doi:10.2337/diacare.16.5.748 

7. Wong TY, Klein R, Islam FMA, et al. Diabetic Retinopathy in a Multi-ethnic Cohort in the 
United States. Am J Ophthalmol. 2006;141(3):446-455.e1. doi:10.1016/j.ajo.2005.08.063 

8. Harris MI, Klein R, Cowie CC, Rowland M, Byrd-Holt DD. Is the Risk of Diabetic 
Retinopathy Greater in Non-Hispanic Blacks and Mexican Americans Than in Non-
Hispanic Whites With Type 2 Diabetes?: A U.S. population study. Diabetes Care. 
1998;21(8):1230-1235. doi:10.2337/diacare.21.8.1230 

9. Harris EL, Sherman SH, Georgopoulos A. Black-white differences in risk of developing 
retinopathy among individuals with type 2 diabetes. Diabetes Care. 1999;22(5):779-783. 
doi:10.2337/diacare.22.5.779 

10. Barsegian A, Kotlyar B, Lee J, Salifu M, McFarlane S. Diabetic Retinopathy: Focus on 
Minority Populations. Int J Clin Endocrinol Metab. 2017;3(1):034-045. 
doi:10.17352/ijcem.000027 

11. Zhang X. Diabetes Mellitus and Visual Impairment. Archives of Ophthalmology. 
2008;126(10):1421. doi:10.1001/archopht.126.10.1421 

12. Shi Q, Zhao Y, Fonseca V, Krousel-Wood M, Shi L. Racial Disparity of Eye Examinations 
Among the U.S. Working-Age Population With Diabetes: 2002–2009. Diabetes Care. 
2014;37(5):1321-1328. doi:10.2337/dc13-1038 

13. Gulshan V, Peng L, Coram M, et al. Development and Validation of a Deep Learning 
Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA. 
2016;316(22):2402. doi:10.1001/jama.2016.17216 

14. Gargeya R, Leng T. Automated Identification of Diabetic Retinopathy Using Deep 
Learning. Ophthalmology. 2017;124(7):962-969. doi:10.1016/j.ophtha.2017.02.008 



15. Dai L, Wu L, Li H, et al. A deep learning system for detecting diabetic retinopathy across 
the disease spectrum. Nat Commun. 2021;12(1):3242. doi:10.1038/s41467-021-23458-5 

16. Bora A, Balasubramanian S, Babenko B, et al. Predicting the risk of developing diabetic 
retinopathy using deep learning. Lancet Digit Health. 2021;3(1):e10-e19. 
doi:10.1016/S2589-7500(20)30250-8 

17. Bellemo V, Lim ZW, Lim G, et al. Artificial intelligence using deep learning to screen for 
referable and vision-threatening diabetic retinopathy in Africa: a clinical validation study. 
Lancet Digit Health. 2019;1(1):e35-e44. doi:10.1016/S2589-7500(19)30004-4 

18. Coyner AS, Singh P, Brown JM, et al. Association of Biomarker-Based Artificial 
Intelligence With Risk of Racial Bias in Retinal Images. JAMA Ophthalmol. 
2023;141(6):543. doi:10.1001/jamaophthalmol.2023.1310 

19. Betzler BK, Yang HHS, Thakur S, et al. Gender Prediction for a Multiethnic Population via 
Deep Learning Across Different Retinal Fundus Photograph Fields: Retrospective Cross-
sectional Study. JMIR Med Inform. 2021;9(8):e25165. doi:10.2196/25165 

20. Luo Y, Tian Y, Shi M, Elze T, Wang M. Harvard Eye Fairness: A Large-Scale 3D Imaging 
Dataset for Equitable Eye Diseases Screening and Fair Identity Scaling. Published online 
October 3, 2023. 

21. Mayya V, S SK, Kulkarni U, Surya DK, Acharya UR. An empirical study of preprocessing 
techniques with convolutional neural networks for accurate detection of chronic ocular 
diseases using fundus images. Applied Intelligence. 2023;53(2):1548-1566. 
doi:10.1007/s10489-022-03490-8 

22. Tan M, Le Q V. EfficientNet: Rethinking Model Scaling for Convolutional Neural 
Networks. Published online May 28, 2019. 

23. Dosovitskiy A, Beyer L, Kolesnikov A, et al. An Image is Worth 16x16 Words: 
Transformers for Image Recognition at Scale. Published online October 22, 2020. 

24. Yang J, Huang X, He Y, et al. Reinventing 2D Convolutions for 3D Images. IEEE J 
Biomed Health Inform. 2021;25(8):3009-3018. doi:10.1109/JBHI.2021.3049452 

25. Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image 
Recognition. Published online September 4, 2014. 

26. Liu Z, Lin Y, Cao Y, et al. Swin Transformer: Hierarchical Vision Transformer using 
Shifted Windows. In: 2021 IEEE/CVF International Conference on Computer Vision 
(ICCV). IEEE; 2021:9992-10002. doi:10.1109/ICCV48922.2021.00986 

27. He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. Published 
online December 10, 2015. 

28. Liu Z, Mao H, Wu CY, Feichtenhofer C, Darrell T, Xie S. A ConvNet for the 2020s. In: 
2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; 
2022:11966-11976. doi:10.1109/CVPR52688.2022.01167 



29. Huang G, Liu Z, Van Der Maaten L, Weinberger KQ. Densely Connected Convolutional 
Networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR). IEEE; 2017:2261-2269. doi:10.1109/CVPR.2017.243 

30. Xu H, Liu X, Li Y, Jain AK, Tang J. To be Robust or to be Fair: Towards Fairness in 
Adversarial Training. Published online October 12, 2020. 

31. Yang J, Soltan AAS, Eyre DW, Yang Y, Clifton DA. An adversarial training framework for 
mitigating algorithmic biases in clinical machine learning. NPJ Digit Med. 2023;6(1):55. 
doi:10.1038/s41746-023-00805-y 

32. Qraitem M, Saenko K, Plummer BA. Bias Mimicking: A Simple Sampling Approach for 
Bias Mitigation. In: 2023 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition (CVPR). IEEE; 2023:20311-20320. doi:10.1109/CVPR52729.2023.01945 

33. Serener A, Serte S. Transfer learning for early and advanced glaucoma detection with 
convolutional neural networks. In: 2019 Medical Technologies Congress (TIPTEKNO). ; 
2019:1-4. 

34. Asaoka R, Murata H, Hirasawa K, et al. Using deep learning and transfer learning to 
accurately diagnose early-onset glaucoma from macular optical coherence tomography 
images. Am J Ophthalmol. 2019;198:136-145. 

  


