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Abstract

Background: Characterized by rapid metastasis and a significant death rate, lung cancer presents a formidable
challenge, which underscores the critical role of early detection in combating the disease. This study addresses
the urgent need for early lung cancer detection using deep learning models applied to computed tomography

(CT) images.

Methods: Our study introduced a unique non-cancer pneumonia dataset, a publicly available large-scale
collection of high-quality pneumonia CT scans with detailed descriptions. We utilized this dataset to fine-tune
nine pretrained models, including DenseNet121, MobileNetV2, InceptionV3, InceptionResNetV2, ResNet50,
ResNet101, VGG16, VGG19, and Xception for the classification of lung cancer and pneumonia.

Results: ResNet50 demonstrated the highest accuracy and sensitivity (97.7% and 100%, respectively), while
InceptionV3 excelled in precision (97.9%) and specificity (98.0%). The study also highlighted the contribution
of the gradient-weighted class activation mapping (Grad-CAM) technique in examining the effectiveness of the
model-training process via the visualization of features learned across different layers. Grad-CAM revealed that
among the best-performed models, InceptionV3 successfully identified cancerous lesions in CT scans. Our
findings demonstrated the potential of deep learning models in early lung cancer screening and improving the

accuracy of the diagnosis procedure.

Data availability: The pneumonia CT scan dataset used in this study is extracted from peer-reviewed

publications and can be accessed at https://github.com/ReiCHU31/CT-pneumonia-dataset
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1. Introduction

Lung cancer remains the leading mortality globally, accounting for over 18% of all cancer-
associated deaths in 2020 [1]. The symptoms of lung cancer are similar to common pulmonary
diseases, and they often begin to stand out at advanced stages when the prognosis is less favorable
[2]. Aside from clinical tests, non-invasive imaging techniques play an essential role in the
screening and diagnosis of lung cancer. Patients are often prescribed chest X-rays, computed
tomography (CT), positron emission tomography (PET), or magnetic resonance imaging (MRI)
[3]. Among these, chest X-rays, also known as radiographs, are the most widely employed due to
their simplicity and cost-effectiveness, yet they lack the high resolution required for early disease
detection. MRIs, while offering exceptional image quality, are rarely used due to their high cost
and stringent facility requirements, particularly posing challenges in resource-limited settings such
as developing countries [4]. Meanwhile, CT scans provide significantly higher-resolution two-
dimensional images that can reveal small pulmonary nodules, which are instrumental for early

lung cancer diagnosis [5].

Despite the superiority in resolution, clinicians still face challenges when using CT scans to
distinguish between lung cancer and other pulmonary diseases, particularly pneumonia. Also
characterized by consolidation, pneumonia may mask the manifestations of lung carcinomas in CT
scans, leading to a considerable delay of 3 to 5 months for accurately diagnosing lung cancer for
patients with pneumonia symptoms [6—8]. Moreover, it typically requires physicians 9 to 12 years
of training to effectively carry out the diagnostic process. In poor and developing countries, where
professionals and healthcare resources are limited, it is crucial to develop automatic systems that

alleviate these burdens to ensure timely and accurate diagnoses.

The development of data-driven models opens a promising area for systematically analyzing
medical results, where artificial intelligence (Al) and deep learning (DL) techniques are utilized
to detect various diseases based on imaging test results. Convolutional neural networks (CNN), a
class of deep neural networks (DNN), are commonly employed, involving convolutional layers,
pooling layers, and fully connected layers to extract features from input data and feed this
information to a classifier [9]. Numerous methods based on CNNs for lung disease risk prediction
and diagnosis have been introduced (Table 1). However, limited effort has been put into applying

this technique in classifying lung cancer and other pulmonary diseases, including pneumonia and
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COVID-19, due to the lack of an official large-scale pneumonia dataset. A CADx-based attempt

to handle the limited data issue used a dataset of 33,676 images of both CT and X-ray scans labeled

as lung cancer, COVID-19, and normal lung, but only X-ray scans of pneumonia, and no official

CT dataset of pneumonia was introduced [10]. Aside from the limited availability of data, another

difficulty of utilizing cancerous CT scans as training data for Al models is the introduction of

noise. Though most cancer patients develop community-acquired pneumonia during their illness,

cancer datasets have not been tested to identify images containing both pneumonia and pulmonary

cancer features [11, 12].

Table 1. Current application of deep learning in lung cancer image diagnosis.

No. Approach Input data Major tasks Performance Reference
1 A detection Al based on a. 1997 CT scans Lung cancer The best model: [13]
Faster R-CNN (containing from 1- 20 diagnosis Sensitivity: 98.8%
nodules) for training
b. 2 datasets of 70 and
294 cases for validation
2 CNN CT images of over 1,500 Lung cancer The best model (on [14]
patients (about 150,000  classification training):
scans) Accuracy: 98.91%%
Sensitivity: 100%
3 Multi-scale Convolutional CT scans of 1,010 Lung nodule Accuracy (on training): [15]
Neural Networks (MCNN)  patients diagnostic 86.84%
classification
4 CNN CT scans of 1,010 Lung nodule The best model (on [16]
DNN patients diagnostic testing): CNN
Stacked Autoencoder (SAE) classification Accuracy: 84.15%
Sensitivity: 83.96%
Specificity: 84.32%
5 CNN CT scans: 174,412 Lung cancer The best model: DBNs [17]
Deep Belief Networks images diagnosis Accuracy: 81.19%
(DBNs)
Stacked Denoising
Autoencoder (SDAE)
6  Three models including X-ray images of COVID- Lung disease The best model (CNN- [18]
a. CNN 19, lung cancer, and diagnosis of lung LSTM):
b. CNN-Long Short Term pneumonia cancer, COVID-19, Accuracy: 94.5%
Memory (LSTM) and pneumonia
c. InceptionV3-LSTM
7 CNN & RNN CT images of 268 Prediction of lung The combined model: [19]

patients (759 scans)

carcinoma treatment
outcomes

AUC: 0.67
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8  CNN region-of-interest a. CT scans of Prediction the risk of The best model: [20]
(ROI) detection models 14,851 patients (about malignant lung Accuracy: 94.4%
modified from RetinaNet47 42,290 scans) for training cancer and nodule
& 3D Inception model used  b. CT scans of 1,139 localization
for cancer risk prediction cases used for
model independent validation
9 DenseNetl21 Chest X-ray: 112,367 Lung cancer The best model (on [21]
images detection testing): Model A
Accuracy: 84.02%
Sensitivity: 32.71%
Specificity: 85.34%
10 Two models with CNN as CT images of 311 Lung cancer The best model (on [22]
core models patients histological testing): Model A with
phenotype VGG-16
identification Accuracy: 68.60%
Sensitivity: 37.50%
Specificity: 82.90%
11 Four models including A total of 33,676 images Multi-classification ~ The best model [10]

a. VGG19-CNN
b. ResNet152V2
c. ResNet152V2 + Gated

including (1) X-ray and
CT scans of COVID-19,
lung cancer, and normal

model for lung
diseases: COVID-19,
pneumonia, and

(VGG19 +CNN):
Accuracy: 98.05%
Sensitivity: 98.05%

Recurrent Unit (GRU) lung; and (2) only X-ray  cancer Precision: 98.43%
d. ResNet152V2 + images of pneumonia Specificity: 99.5%
Bidirectional GRU (Bi-

GRU)

In this study, to explicitly distinguish patients from those with lung cancer and pneumonia, we
collected chest CT scans from published scientific papers and open-access databases, then
segmented the data into two categories: with lung cancer and pneumonia without lung cancer. The
lung cancer data was extracted from The Cancer Imaging Archive (TCIA) [23, 24], while the
pneumonia-only data was generated by collecting from peer-reviewed scientific publications. To
our knowledge, our pneumonia CT scan dataset is the only published large-scale dataset compiled
specifically for pneumonia detection. All CT scans were manually retrieved and image editing was
performed to remove noise that may impede the classification process. Then, our team investigated
whether lung cancer and pneumonia CT scans could be accurately differentiated by training nine
deep-learning models. We adopted the fine-tuning approach, a transfer learning technique that
takes advantage of models previously trained on a general domain, and then transfers the learned
knowledge to another task of interest, allowing a high accuracy without the need for task-specific
large-scale datasets or exhaustive training [25]. While a certain part of the pretrained weights was
maintained, a custom classifier was applied on top of each deep neural architecture to achieve high

accuracy and sensitivity. Furthermore, gradient-weighted class activation mapping (Grad-CAM)
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was implemented to create visual explanations for CNN models in the form of heatmaps. These
heatmaps function as localization maps, highlighting regions within CT images that have a

significant impact on the model's decision-making process [26].

Our study successfully developed a new supplementary tool for the early detection and
distinguishing lung tumors via (1) careful processing and noise removal in CT scans, (2) data
augmentation for enlarging the dataset size, (3) optimizing and training CNN classification models
and (4) using Grad-CAM for visual explanation of the models’ prediction process. Nine potential
CNNs were trained and evaluated for automatic identification of whether a lung CT lesion includes

cancerous regions with high accuracy, precision, and sensitivity.

2. Materials and Methods

2.1. Dataset building

Due to the lack of a publicly available database of pneumonia-only CT scans, a novel pneumonia
dataset consisting of 1014 images was generated by curating CT scans from 192 peer-reviewed
scientific literature and published databases. The CT images chosen are standard CT, contrast CT,
and high-quality CT. The accepted types of pulmonary pneumonia are any infection due to
bacteria, viruses, and fungi. The exclusion criteria are lung cancer, SARS-CoV-2 pneumonia,
cryptogenic organizing pneumonia (COP), bronchiolitis obliterans organizing pneumonia
(BOOP), and other lung damage that is not caused by bacteria, viruses, and fungi. All information,
including the age and sex of patients, types of infection, and the source scientific articles, were
recorded and stored in a metadata document. However, there is no information regarding the
number of pneumonia patients those papers covered. Our complete dataset of pneumonia CT scans

was established at https://github.com/ReiCHU31/CT-pneumonia-dataset.

For the cancerous dataset, a large-scale open-access library containing approximately 251,135
scans of 355 lung cancer patients has been employed [23, 24]. All lung cancer images in this study
are collected from 101 random patients. The cancerous CT scans were evaluated by adept lung
cancer radiologists to ensure validity. Clinical information was summarised in a metadata

document containing patients’ ID, sex, age, weight, cancer stages, histopathological grading, and
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smoking history. Datasets’ means and medians are computed to understand the sample
distribution. Our cancerous and pneumonia dataset consists of a total of 2028 CT scans, with an

equal number of cases in each class.
2.2. Data processing and augmentation

All the collected CT scans were processed using Adobe Photoshop CS6 (64-bit) software to
eliminate captions and annotations such as arrows or text symbols. These elements were not parts
of the original images and were only useful in clinical examination, yet might introduce noise to
the training data. Next, the edited CT images were labeled as one of the two classes: non-cancer
(pneumonia) and cancer. The dataset was randomly split into a training set, validation set, and
testing set. The training set consisted of 714 images of each class, while both the validation set and
the testing set comprised 150 images of each class. To prevent overfitting and enhance model
performance, data augmentation was performed in real time during the training process, in which
CT images were subjected to random flipping, rotation, zooming, and distortion with varying

degrees.

2.3. Model architecture and hyper-parameter tuning

______________________________

X,y 2) (4x, 4y, z) 222

Up-Sampling

Global Average Pooling

One of nine transfer learning models: /) Batch Normalization

Input images were

processed and resized

DenseNet121, MobileNetV2, InceptionV3,
InceptionResNetV2, ResNet50, ResNet101,
VGG16, VGG19, and Xception.

(x, y, 2) is the dimension of the output layer.
70% of the layers were frozen

Fully Connected Layer with 512, 256 or 128 nodes
“—) Sigmoid
< Dropout with 0.0, 0.3 or 0.5 probability

Figure 1. Overview of CNN architectures used in this study

The fine-tuning method was adopted to classify cancer versus non-cancer lung CT scans. To
evaluate the effects of different model architectures for classification, we implemented 9 CNNs

including DenseNet121, MobileNetV2, InceptionV3, InceptionResNetV2, ResNet50, ResNet101,
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VGG16, VGG19, and Xception. All models were pretrained on the ImageNet dataset [27]. Since
the deepest layers of CNNs contain data-specific features while the first layers extract general
features, in our experiments, 70% of the layers of each model were frozen to retain the pretrained
weights, and only 30% last layers were set to be trainable. For each base architecture, the last fully
connected layers were removed and replaced by our customized classifiers, which were designed
and optimized specifically to achieve the highest possible accuracy and stability for each model.
All classifiers consisted of an up-sampling layer (4x4), followed by batch normalization and fully
connected layers (Fig. 1). During the optimization process, the number of layers and nodes were
altered for each model to improve accuracy. Dropout layers with 0.3 to 0.5 probabilities were also
applied for the majority of models to enhance their stability, except for VGG16 and VGG19 since

they performed better and with lower final loss in our experiments.

Before training, all images in the dataset were resized to the default input size of each model
according to the Keras API documentation [28], which was 224x224 for DenseNet121, ResNet50,
ResNet101, 299x299 for InceptionV3, InceptionResNetV2, and Xception, which yielded desirable
accuracy. However, for MobileNetV2, VGG16, and VGG19, we found the 320x320 image size
delivered the best results and stability, therefore this size was used for these specific models. In
addition, normalization of all images was performed according to each model’s requirements.

Pixel values were either scaled to range from 0 to 1, from -1 to 1, or zero-centered without scaling.

All models were trained using the binary cross entropy loss function and Adam optimizer. Similar
to the classifier optimization, the learning rate and epsilon values were adjusted for each model.
Since our experiments follow the fine-tuning approach, low learning rates ranging from 5e-7 to
le-3 were employed, and epsilon values were set from 0.001 to 0.1. All models were trained until

converged using a batch size of 16 and epoch numbers ranging from 100 to 150.

The training process and optimization were performed using Google Colaboratory Pro's NVIDIA

Tesla T4s (50GB GPU, 32GB RAM) using Python 3.10 and Tensorflow Keras 2.15.
2.4. Model evaluation

All trained models were tested using a testing set containing 150 images of each class to evaluate

the models’ performance on unseen data. The evaluation metrics including accuracy, precision,
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recall (i.e., sensitivity), specificity, and F1 score were calculated to assess model performance. The

metrics were calculated as follows:

A ~ TP + TN
Ceuracy = TP TN + FP + FN

Precision — TP
recision = ;oo
Recall itivity) = v
ecall (sensitivity) = TP TN
Specificity = ™
ety = TN+ FP

Precision * Recall
F1 score = 2 *

Precision + Recall

The true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) were
derived directly from the confusion matrices that stored the classification results of the models
when applied to the testing set. We consider true positives to be the data point correctly classified
as cancer, and true negatives are those correctly predicted as pneumonia. In addition, we measured
the area under the receiver operating characteristic curve (AUC), a metric used to assess the

models' performance across varying classification thresholds.
2.5. Gradient-weighted Class Activation Map (Grad-CAM)

After training the models according to the appropriate configuration, we applied Grad-CAM for
all models using a sample of images from the dataset. While Grad-CAM can be applied to various
layers within CNN models, the last convolutional layer is often preferred as it captures class-
discriminative features that are crucial to a model's decision on the input image [26]. This
information was visualized with different color intensities in heatmaps for comparison between
different models. Additionally, to evaluate the learned features in the CT scans across different
learning stages, we averaged the gradients computed for both untrainable and trainable layers of
each model. All Grad-CAM heatmaps were compared to assess whether meaningful insights could
be derived from deep learning architectures, potentially informing faster and more accurate clinical

diagnosis.
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3. Results and discussion

3.1. Dataset evaluation

Two separate datasets were built from two primary sources (1) the pneumonia CT scans collected
from scientific publications and (2) the Cancer Imaging Archive (TCIA) [23, 24]. This non-cancer
pneumonia dataset is built differently from other datasets as it contains pneumonia scans only.
Recent studies often used the input data that included COVID-19 CT images. To our knowledge,
these COVID-19-included imaging data often lack detailed descriptions of clinical statuses such
as the emergence of tumors or the signs of pneumonia caused by other pathogens rather than the
SARS-CoV-2 viruses. We thoroughly dealt with many inadequacies of data to separate the two
labels. The most significant challenge was the mixed input between cancer-only and cancer-with-
pneumonia scans, which was extremely difficult to classify due to its inherently indistinguishable
features reflected by CT images. After careful selection, two datasets including 2028 chest CT
images, 1014 with a cancer label and 1014 with a non-cancer pneumonia-only label, were built. To
date, our dataset is the only publicly accessible repository of pneumonia CT scans distinct from

other pulmonary conditions.

The diversity of both datasets was also assessed. The lung cancer database includes all typical
pulmonary cancer types, i.e., small cell lung cancer (SCLC) and non-small cell lung cancer
(NSCLC, including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). The
distribution of the data is similar to the actual disease rate in clinical settings. The 1014 lung cancer
scans cover all stages of the TNM classification system, including four primary-tumor stages (T1,
T2, T3, T4), four regional-lymph-nodes stages (NO, N1, N2, N3), and two metastasis-distance
stages (MO, Mb) [29]. The non-cancer database is also an abundant collection of the infection
causes with 32.56% bacterial, 48.64% viral, and 17.59% fungal pneumonia (Table S1). About
38.61% of cancer patients recorded in this dataset have a smoking habit. With the wide range of
CT images, diverse pneumonia types, and without intended limitation in age, sex, lifestyle, or
clinical status, the newly built pneumonia dataset allows the employed models to maximize the

case-covering and the applicability in real-world situations.
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3.2. Model evaluation

Table 2. Classification performance of all selected CNNs

Accuracy Precision Recall F1 score AUC Specificity
DenseNet121 0.907 0.843 1.000 0.915 0.992 0.813
MobileNetV2 0.943 0.903 0.993 0.946 0.994 0.893
InceptionV3 0.967 0.979 0.953 0.966 0.993 0.980
InceptionResNetV2 0.937 0.888 1.000 0.940 0.989 0.873
ResNet50 0.977 0.955 1.000 0.977 0.999 0.953
ResNet101 0.963 0.954 0.973 0.964 0.990 0.953
VGG16 0.963 0.932 1.000 0.965 0.999 0.927
VGG19 0.967 0.938 1.000 0.968 0.998 0.933
Xception 0.963 0.948 0.980 0.964 0.994 0.947

The novel dataset was used to train nine deep-learning models using the fine-tuning method to
classify cancer and pneumonia from lung CT scans. 150 lung cancer CT scans and 150 pneumonia
CT scans were used to evaluate all models. The performance of all models was assessed using
accuracy, precision, recall, F1 score, specificity, and AUC, which were reported in Table 2. Each
of these metrics provides insights into different aspects of the model's capabilities. Our results
revealed that all nine models achieved excellent performance across most metrics. ResNet50 stood
out as the best model with an accuracy and F1 score of 97.7%, followed by VGG19 with 96.7%
and 96.8% in these two metrics, respectively. Meanwhile, DenseNet121, despite its large number
of layers and parameters, achieved lower accuracy (90.7%), precision (84.3%), F1 score (91.5%),
and specificity (81.3%) compared to other models. Even though it demonstrated a comparable
sensitivity value of 100%, the overall results indicated that DenseNet121 may be less ideal for our

classification task.

10
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Additionally, recall values, or sensitivity, remained exceptionally high for all models, with seven
out of nine models achieving higher than 98%, indicating that most models were able to correctly
identify all cancer cases in the testing set. This shows the effectiveness of our training approach
since failing to detect cancer at an early stage might impede the diagnosis and treatment process
in clinical settings. Models including InceptionV3, ResNet50, and ResNet101 exhibited high
precision and specificity, with InceptionV3 being the top model with 97.9% and 98.0% in the two
metrics. However, interestingly, InceptionV3 gained the lowest sensitivity of 95.3% out of all,
indicating that though this model tended to accurately predict normal scans with minimum false
positives, it might miss a slightly higher proportion of actual cancer-positive cases. A contrasting
pattern was observed for VGG16 and VGG19. These models achieved perfect sensitivity, meaning
they successfully identified all true cancer cases (with no false negatives). However, their
specificity was much lower (92.7% for VGG16 and 93.3% for VGG19) compared to InceptionV3,
due to classifying some pneumonia scans as cancer, leading to a higher number of false positives.
This is a common trade-off between sensitivity and specificity. Ideally, high values of sensitivity
and specificity suggest that the models were not only accurate in their classifications but also
consistent in identifying both cancer-positive and negative cases correctly. Since our goal was to
distinguish lung cancer cases from pneumonia cases to assist in timely diagnosis and treatment,
models with higher sensitivity including ResNet50 and VGG19 might be more appropriate.
Nonetheless, the F1 scores, a harmony of precision and recall, reported for the majority of models
achieved more than 96%, indicating that our models are sufficient for the classification of cancer

and non-cancer pneumonia CT scans.

We further confirm this observation by comparing the AUC values of all models (Figure 3). Rather
than using a fixed decision threshold as the previously described metrics, AUC values correspond
to the model's ability to distinguish between positive and negative cases regardless of the chosen
classification threshold [30]. Except for InceptionResNetV2, which gained 98.9% in AUC, all
models achieved values higher than 99%. These findings collectively suggest that our deep
learning models hold significant promise for aiding the classification of lung cancer and

pneumonia from CT scans.
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Figure 2. ROC curve and AUC values of all trained models

We also took into account the number of parameters of each model to investigate whether this
factor affected the training outcome. Our model architectures were optimized with custom layers,
hence the difference in the number of parameters (Table S3). A large number of parameters allow
deep neural networks to learn noise and small variations in the training data, which are known to
cause overfitting, where the model fails to generalize for unseen data [31]. However, this was not
the case for our models as evidenced by all evaluation metrics on the testing set, as well as the
visualization of the training loss and validation loss throughout the training epochs, which
demonstrated convergence in all models (Fig. S2). We also found no direct correlation between
the number of parameters and overall accuracy. The best-performing models have moderate
parameters, 24.1M for ResNet50, 20.1M for VGG19, and 22.3M for InceptionV3. While both
ResNet50 and ResNet101 come from the same architecture family, with ResNet101 containing
more layers and parameters, ResNet50 demonstrated a slight superiority in sensitivity and F1
score, indicating its potential for more accurate positive classifications. The performance of
ResNet101 was comparable to Xception while containing more than twice the parameter counts.
Notably, VGG19, having 5.3M parameters more than VGG16, showed a higher precision and F1

SCore.
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In addition, the largest model is InceptionResNetV2 with 55.1M parameters, yet it achieved a
modest precision of 88.8% and an accuracy of 93.7%. DenseNet121 and MobileNetV2 contain
7.3M and 2.6M parameters, respectively, and gained accuracies of 90.7% and 94.3%. Our results
highlighted that specific model architecture and training strategies play a significant role in

achieving high performance.

To assess the suitability of the models for clinical applications, where accuracy in disease
classification is important as well as the ability to provide meaningful insights and interpretations
of input images, we implemented the Grad-CAM technique. Grad-CAM helps identify which
regions are activated when each model predicts a specific class, which are highlighted in the
produced heatmap for each CT image. In clinical practice, CT scans are examined by experts to
detect signs of lung cancer before moving toward further procedures. In cases of SCLC or NSCLC,
the signs often include ground glass nodules, mass lesions (centrally or peripherally located),

pleural effusion, bronchial narrowing, and wall thickening [32-34].
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Patient ID: G0010. T4, N3, M0

Original annotation DenseNet121 InceptionResNetV2 InceptionV3 MobileNetV2

PatientID: A0162. T3, NO, MO

Original annotation DenseNet121 InceptionResNetV2 InceptionV3 MobileNetV2

Patient ID: A0062. T1c, N1, M1

Original annotation DenseNet121 InceptionResNetV2 InceptionV3 MobileNetV2

Figure 3. Grad-CAM visualization for cancer-positive CT scans using computed gradients from
the last convolutional layer of each fine-tuned model. The features learned by each model are
highlighted in a blue-yellow-red gradient, with red denoting the most focused regions in the image.
In the original scans, each pulmonary tumor is denoted by a green bounding box. The coordinates

of the bounding boxes were provided by the database’s annotation files.
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CT scans of three lung cancer patients with different tumor stages and lymph node involvement
which were correctly classified as cancer by all nine models, were selected for Grad-CAM
demonstration. We first examined the Grad-CAM heatmaps produced from the last convolutional
layer of each model (Fig. 3). We considered the detection to be successful if the highlighted regions
clearly indicate the tumor sites or partially cover more than 50% of the tumor. DenseNetl21,
despite yielding the lowest accuracy and precision, successfully detected the advanced pulmonary
tumors while failing to address the stage Tlc tumor. Models of the ResNet family showed a
tendency to focus more on the lower lobes of the lung, with ResNet50 only correctly highlighting
the tumor at the T4 stage. In contrast, MobileNetV2 was able to draw attention to the Tlc
cancerous lesion, yet only focused on the paratracheal nodes and the trachea rather than the
advanced tumors in the remaining scans. A relatively similar tendency could be observed for

Xception, which failed to highlight any signs of lung tumor.

Interestingly, InceptionV3 was the only model that consistently captured the pulmonary tumors in
all three chosen CT images, with the highest coverage on the stage Tlc scan. In the scans of
advanced cancer patients, InceptionV3 was able to concentrate on the tumor, yet its highlighted
regions also included the superior vena cava and the adjacent lymph nodes. Interpretation of these
sites might require further inspections by expert radiologists, as N3 indicates the progressive
spread of cancer to regional lymph nodes [35]. Surprisingly, well-performed models including
VGG19 and VGG16 seemed to concentrate more on the periphery of the lung cavity and did not

provide any direct clue regarding the position of the tumor.

Since each model was fine-tuned to produce the highest possible accuracy, the model’s ability to
rely on indicative regions to classify cancer states may depend on the depth of each model. Deeper
models with more layers are generally known for the ability to capture more 