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Abstract 

Background: Characterized by rapid metastasis and a significant death rate, lung cancer presents a formidable 

challenge, which underscores the critical role of early detection in combating the disease. This study addresses 

the urgent need for early lung cancer detection using deep learning models applied to computed tomography 

(CT) images. 

Methods: Our study introduced a unique non-cancer pneumonia dataset, a publicly available large-scale 

collection of high-quality pneumonia CT scans with detailed descriptions. We utilized this dataset to fine-tune 

nine pretrained models, including DenseNet121, MobileNetV2, InceptionV3, InceptionResNetV2, ResNet50, 

ResNet101, VGG16, VGG19, and Xception for the classification of lung cancer and pneumonia. 

Results: ResNet50 demonstrated the highest accuracy and sensitivity (97.7% and 100%, respectively), while 

InceptionV3 excelled in precision (97.9%) and specificity (98.0%). The study also highlighted the contribution 

of the gradient-weighted class activation mapping (Grad-CAM) technique in examining the effectiveness of the 

model-training process via the visualization of features learned across different layers. Grad-CAM revealed that 

among the best-performed models, InceptionV3 successfully identified cancerous lesions in CT scans. Our 

findings demonstrated the potential of deep learning models in early lung cancer screening and improving the 

accuracy of the diagnosis procedure. 

Data availability: The pneumonia CT scan dataset used in this study is extracted from peer-reviewed 

publications and can be accessed at https://github.com/ReiCHU31/CT-pneumonia-dataset  
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1. Introduction 

Lung cancer remains the leading mortality globally, accounting for over 18% of all cancer-

associated deaths in 2020 [1]. The symptoms of lung cancer are similar to common pulmonary 

diseases, and they often begin to stand out at advanced stages when the prognosis is less favorable 

[2]. Aside from clinical tests, non-invasive imaging techniques play an essential role in the 

screening and diagnosis of lung cancer. Patients are often prescribed chest X-rays, computed 

tomography (CT), positron emission tomography (PET), or magnetic resonance imaging (MRI) 

[3]. Among these, chest X-rays, also known as radiographs, are the most widely employed due to 

their simplicity and cost-effectiveness, yet they lack the high resolution required for early disease 

detection. MRIs, while offering exceptional image quality, are rarely used due to their high cost 

and stringent facility requirements, particularly posing challenges in resource-limited settings such 

as developing countries [4]. Meanwhile, CT scans provide significantly higher-resolution two-

dimensional images that can reveal small pulmonary nodules, which are instrumental for early 

lung cancer diagnosis [5].  

Despite the superiority in resolution, clinicians still face challenges when using CT scans to 

distinguish between lung cancer and other pulmonary diseases, particularly pneumonia. Also 

characterized by consolidation, pneumonia may mask the manifestations of lung carcinomas in CT 

scans, leading to a considerable delay of 3 to 5 months for accurately diagnosing lung cancer for 

patients with pneumonia symptoms [6–8]. Moreover, it typically requires physicians 9 to 12 years 

of training to effectively carry out the diagnostic process. In poor and developing countries, where 

professionals and healthcare resources are limited, it is crucial to develop automatic systems that 

alleviate these burdens to ensure timely and accurate diagnoses. 

The development of data-driven models opens a promising area for systematically analyzing 

medical results, where artificial intelligence (AI) and deep learning (DL) techniques are utilized 

to detect various diseases based on imaging test results. Convolutional neural networks (CNN), a 

class of deep neural networks (DNN), are commonly employed, involving convolutional layers, 

pooling layers, and fully connected layers to extract features from input data and feed this 

information to a classifier [9]. Numerous methods based on CNNs for lung disease risk prediction 

and diagnosis have been introduced (Table 1). However, limited effort has been put into applying 

this technique in classifying lung cancer and other pulmonary diseases, including pneumonia and 
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COVID-19, due to the lack of an official large-scale pneumonia dataset. A CADx-based attempt 

to handle the limited data issue used a dataset of 33,676 images of both CT and X-ray scans labeled 

as lung cancer, COVID-19, and normal lung, but only X-ray scans of pneumonia, and no official 

CT dataset of pneumonia was introduced [10]. Aside from the limited availability of data, another 

difficulty of utilizing cancerous CT scans as training data for AI models is the introduction of 

noise. Though most cancer patients develop community-acquired pneumonia during their illness, 

cancer datasets have not been tested to identify images containing both pneumonia and pulmonary 

cancer features [11, 12].   

Table 1. Current application of deep learning in lung cancer image diagnosis. 

No. Approach Input data Major tasks Performance Reference 

1 A detection AI based on 
Faster R-CNN 

a. 1997 CT scans 
(containing from 1- 20 
nodules) for training 
b. 2 datasets of 70 and 
294 cases for validation 

Lung cancer 
diagnosis 

The best model: 
Sensitivity: 98.8% 

[13] 

2 CNN CT images of over 1,500 
patients (about 150,000 
scans) 

Lung cancer 
classification 

The best model (on 
training): 
Accuracy: 98.91%% 
Sensitivity: 100% 

[14] 

3 Multi-scale Convolutional 
Neural Networks (MCNN) 

CT scans of 1,010 
patients  

Lung nodule 
diagnostic 
classification 

Accuracy (on training): 
86.84% 

[15] 

4 CNN  
DNN 
Stacked Autoencoder (SAE) 

CT scans of 1,010 
patients 

Lung nodule 
diagnostic 
classification 

The best model (on 
testing): CNN 
Accuracy: 84.15% 
Sensitivity: 83.96% 
Specificity: 84.32% 

[16] 

5 CNN 
Deep Belief Networks 
(DBNs)  
Stacked Denoising 
Autoencoder (SDAE) 

CT scans: 174,412 
images 

Lung cancer 
diagnosis 

The best model: DBNs 
Accuracy: 81.19% 

[17] 

6 Three models including 
a. CNN 
b. CNN-Long Short Term 
Memory (LSTM)  
c. InceptionV3-LSTM 

X-ray images of COVID-
19, lung cancer, and 
pneumonia 

Lung disease 
diagnosis of lung 
cancer, COVID-19, 
and pneumonia  

The best model (CNN-
LSTM): 
 Accuracy: 94.5% 

[18] 

7 CNN & RNN CT images of 268 
patients (759 scans) 

Prediction of lung 
carcinoma treatment 
outcomes 

The combined model: 
AUC: 0.67 

[19] 
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In this study, to explicitly distinguish patients from those with lung cancer and pneumonia, we 

collected chest CT scans from published scientific papers and open-access databases, then 

segmented the data into two categories: with lung cancer and pneumonia without lung cancer. The 

lung cancer data was extracted from The Cancer Imaging Archive (TCIA) [23, 24], while the 

pneumonia-only data was generated by collecting from peer-reviewed scientific publications. To 

our knowledge, our pneumonia CT scan dataset is the only published large-scale dataset compiled 

specifically for pneumonia detection. All CT scans were manually retrieved and image editing was 

performed to remove noise that may impede the classification process. Then, our team investigated 

whether lung cancer and pneumonia CT scans could be accurately differentiated by training nine 

deep-learning models. We adopted the fine-tuning approach, a transfer learning technique that 

takes advantage of models previously trained on a general domain, and then transfers the learned 

knowledge to another task of interest, allowing a high accuracy without the need for task-specific 

large-scale datasets or exhaustive training [25]. While a certain part of the pretrained weights was 

maintained, a custom classifier was applied on top of each deep neural architecture to achieve high 

accuracy and sensitivity. Furthermore, gradient-weighted class activation mapping (Grad-CAM) 

8 CNN region-of-interest 
(ROI) detection models 
modified from RetinaNet47 
& 3D Inception model used 
for cancer risk prediction 
model 

a. CT scans of 
14,851 patients (about 
42,290 scans) for training 
b. CT scans of 1,139 
cases used for 
independent validation 

Prediction the risk of 
malignant lung 
cancer and nodule 
localization 

The best model:  
Accuracy: 94.4%  

[20] 

9 DenseNet121 Chest X-ray: 112,367 
images 

Lung cancer 
detection 

The best model (on 
testing): Model A 
Accuracy: 84.02% 
Sensitivity: 32.71% 
Specificity: 85.34% 

[21] 

10 Two models with CNN as 
core models 

CT images of 311 
patients  

Lung cancer 
histological 
phenotype 
identification 

The best model (on 
testing):  Model A with 
VGG-16 
Accuracy: 68.60% 
Sensitivity: 37.50% 
Specificity: 82.90% 

[22] 

11 Four models including 
a. VGG19-CNN 
b. ResNet152V2 
c. ResNet152V2 + Gated 
Recurrent Unit (GRU) 
d. ResNet152V2 + 
Bidirectional GRU (Bi-
GRU) 

A total of 33,676 images 
including (1) X-ray and 
CT scans of COVID-19, 
lung cancer, and normal 
lung; and (2) only X-ray 
images of pneumonia 

Multi-classification 
model for lung 
diseases: COVID-19, 
pneumonia, and 
cancer 

The best model 
(VGG19 +CNN): 
Accuracy: 98.05%  
Sensitivity: 98.05% 
Precision: 98.43% 
Specificity: 99.5%  

[10] 
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was implemented to create visual explanations for CNN models in the form of heatmaps. These 

heatmaps function as localization maps, highlighting regions within CT images that have a 

significant impact on the model's decision-making process [26]. 

Our study successfully developed a new supplementary tool for the early detection and 

distinguishing lung tumors via (1) careful processing and noise removal in CT scans, (2) data 

augmentation for enlarging the dataset size, (3) optimizing and training CNN classification models 

and (4) using Grad-CAM for visual explanation of the models’ prediction process. Nine potential 

CNNs were trained and evaluated for automatic identification of whether a lung CT lesion includes 

cancerous regions with high accuracy, precision, and sensitivity.  

 

2. Materials and Methods  

2.1. Dataset building 

Due to the lack of a publicly available database of pneumonia-only CT scans, a novel pneumonia 

dataset consisting of 1014 images was generated by curating CT scans from 192 peer-reviewed 

scientific literature and published databases. The CT images chosen are standard CT, contrast CT, 

and high-quality CT. The accepted types of pulmonary pneumonia are any infection due to 

bacteria, viruses, and fungi. The exclusion criteria are lung cancer, SARS-CoV-2 pneumonia, 

cryptogenic organizing pneumonia (COP), bronchiolitis obliterans organizing pneumonia 

(BOOP), and other lung damage that is not caused by bacteria, viruses, and fungi. All information, 

including the age and sex of patients, types of infection, and the source scientific articles, were 

recorded and stored in a metadata document. However, there is no information regarding the 

number of pneumonia patients those papers covered. Our complete dataset of pneumonia CT scans 

was established at https://github.com/ReiCHU31/CT-pneumonia-dataset. 

For the cancerous dataset, a large-scale open-access library containing approximately 251,135 

scans of 355 lung cancer patients has been employed [23, 24]. All lung cancer images in this study 

are collected from 101 random patients. The cancerous CT scans were evaluated by adept lung 

cancer radiologists to ensure validity. Clinical information was summarised in a metadata 

document containing patients’ ID, sex, age, weight, cancer stages, histopathological grading, and 
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smoking history. Datasets’ means and medians are computed to understand the sample 

distribution. Our cancerous and pneumonia dataset consists of a total of 2028 CT scans, with an 

equal number of cases in each class. 

2.2. Data processing and augmentation 

All the collected CT scans were processed using Adobe Photoshop CS6 (64-bit) software to 

eliminate captions and annotations such as arrows or text symbols. These elements were not parts 

of the original images and were only useful in clinical examination, yet might introduce noise to 

the training data. Next, the edited CT images were labeled as one of the two classes: non-cancer 

(pneumonia) and cancer. The dataset was randomly split into a training set, validation set, and 

testing set. The training set consisted of 714 images of each class, while both the validation set and 

the testing set comprised 150 images of each class. To prevent overfitting and enhance model 

performance, data augmentation was performed in real time during the training process, in which 

CT images were subjected to random flipping, rotation, zooming, and distortion with varying 

degrees.   

2.3. Model architecture and hyper‐parameter tuning 

 

Figure 1. Overview of CNN architectures used in this study 

The fine-tuning method was adopted to classify cancer versus non-cancer lung CT scans. To 

evaluate the effects of different model architectures for classification, we implemented 9 CNNs 

including DenseNet121, MobileNetV2, InceptionV3, InceptionResNetV2, ResNet50, ResNet101, 
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VGG16, VGG19, and Xception. All models were pretrained on the ImageNet dataset [27]. Since 

the deepest layers of CNNs contain data-specific features while the first layers extract general 

features, in our experiments, 70% of the layers of each model were frozen to retain the pretrained 

weights, and only 30% last layers were set to be trainable. For each base architecture, the last fully 

connected layers were removed and replaced by our customized classifiers, which were designed 

and optimized specifically to achieve the highest possible accuracy and stability for each model. 

All classifiers consisted of an up-sampling layer (4x4), followed by batch normalization and fully 

connected layers (Fig. 1). During the optimization process, the number of layers and nodes were 

altered for each model to improve accuracy. Dropout layers with 0.3 to 0.5 probabilities were also 

applied for the majority of models to enhance their stability, except for VGG16 and VGG19 since 

they performed better and with lower final loss in our experiments.  

Before training, all images in the dataset were resized to the default input size of each model 

according to the Keras API documentation [28], which was 224x224 for DenseNet121, ResNet50, 

ResNet101, 299x299 for InceptionV3, InceptionResNetV2, and Xception, which yielded desirable 

accuracy. However, for MobileNetV2, VGG16, and VGG19, we found the 320x320 image size 

delivered the best results and stability, therefore this size was used for these specific models. In 

addition, normalization of all images was performed according to each model’s requirements. 

Pixel values were either scaled to range from 0 to 1, from -1 to 1, or zero-centered without scaling.  

All models were trained using the binary cross entropy loss function and Adam optimizer. Similar 

to the classifier optimization, the learning rate and epsilon values were adjusted for each model. 

Since our experiments follow the fine-tuning approach, low learning rates ranging from 5e-7 to 

1e-3 were employed, and epsilon values were set from 0.001 to 0.1. All models were trained until 

converged using a batch size of 16 and epoch numbers ranging from 100 to 150.  

The training process and optimization were performed using Google Colaboratory Pro's NVIDIA 

Tesla T4s (50GB GPU, 32GB RAM) using Python 3.10 and Tensorflow Keras 2.15. 

2.4. Model evaluation 

All trained models were tested using a testing set containing 150 images of each class to evaluate 

the models’ performance on unseen data. The evaluation metrics including accuracy, precision, 
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recall (i.e., sensitivity), specificity, and F1 score were calculated to assess model performance. The 

metrics were calculated as follows: 

Accuracy =
TP + TN

TP + TN + FP + FN 

Precision =
TP

TP + FP 

Recall	(sensitivity) =
TP

TP + FN 

Specificity	 =
TN

TN + FP 

F1	score = 2 ∗	
Precision ∗ Recall
Precision + Recall 

The true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) were 

derived directly from the confusion matrices that stored the classification results of the models 

when applied to the testing set. We consider true positives to be the data point correctly classified 

as cancer, and true negatives are those correctly predicted as pneumonia. In addition, we measured 

the area under the receiver operating characteristic curve (AUC), a metric used to assess the 

models' performance across varying classification thresholds.  

2.5. Gradient-weighted Class Activation Map (Grad-CAM) 

After training the models according to the appropriate configuration, we applied Grad-CAM for 

all models using a sample of images from the dataset. While Grad-CAM can be applied to various 

layers within CNN models, the last convolutional layer is often preferred as it captures class-

discriminative features that are crucial to a model's decision on the input image [26]. This 

information was visualized with different color intensities in heatmaps for comparison between 

different models. Additionally, to evaluate the learned features in the CT scans across different 

learning stages, we averaged the gradients computed for both untrainable and trainable layers of 

each model. All Grad-CAM heatmaps were compared to assess whether meaningful insights could 

be derived from deep learning architectures, potentially informing faster and more accurate clinical 

diagnosis. 
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3. Results and discussion 

3.1. Dataset evaluation 

Two separate datasets were built from two primary sources (1) the pneumonia CT scans collected 

from scientific publications and (2) the Cancer Imaging Archive (TCIA) [23, 24]. This non-cancer 

pneumonia dataset is built differently from other datasets as it contains pneumonia scans only. 

Recent studies often used the input data that included COVID-19 CT images. To our knowledge, 

these COVID-19-included imaging data often lack detailed descriptions of clinical statuses such 

as the emergence of tumors or the signs of pneumonia caused by other pathogens rather than the 

SARS-CoV-2 viruses. We thoroughly dealt with many inadequacies of data to separate the two 

labels. The most significant challenge was the mixed input between cancer-only and cancer-with-

pneumonia scans, which was extremely difficult to classify due to its inherently indistinguishable 

features reflected by CT images. After careful selection, two datasets including 2028 chest CT 

images, 1014 with a cancer label and 1014 with a non-cancer pneumonia-only label, were built. To 

date, our dataset is the only publicly accessible repository of pneumonia CT scans distinct from 

other pulmonary conditions. 

The diversity of both datasets was also assessed. The lung cancer database includes all typical 

pulmonary cancer types, i.e., small cell lung cancer (SCLC) and non-small cell lung cancer 

(NSCLC, including adenocarcinoma, squamous cell carcinoma, and large cell carcinoma). The 

distribution of the data is similar to the actual disease rate in clinical settings. The 1014 lung cancer 

scans cover all stages of the TNM classification system, including four primary-tumor stages (T1, 

T2, T3, T4), four regional-lymph-nodes stages (N0, N1, N2, N3), and two metastasis-distance 

stages (M0, Mb) [29]. The non-cancer database is also an abundant collection of the infection 

causes with 32.56% bacterial, 48.64% viral, and 17.59% fungal pneumonia (Table S1). About 

38.61% of cancer patients recorded in this dataset have a smoking habit. With the wide range of 

CT images, diverse pneumonia types, and without intended limitation in age, sex, lifestyle, or 

clinical status, the newly built pneumonia dataset allows the employed models to maximize the 

case-covering and the applicability in real-world situations. 
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3.2. Model evaluation 

Table 2. Classification performance of all selected CNNs 

  Accuracy Precision Recall F1 score AUC Specificity 

DenseNet121 0.907 0.843 1.000 0.915 0.992 0.813 

MobileNetV2 0.943 0.903 0.993 0.946 0.994 0.893 

InceptionV3 0.967 0.979 0.953 0.966 0.993 0.980 

InceptionResNetV2 0.937 0.888 1.000 0.940 0.989 0.873 

ResNet50 0.977 0.955 1.000 0.977 0.999 0.953 

ResNet101 0.963 0.954 0.973 0.964 0.990 0.953 

VGG16 0.963 0.932 1.000 0.965 0.999 0.927 

VGG19 0.967 0.938 1.000 0.968 0.998 0.933 

Xception 0.963 0.948 0.980 0.964 0.994 0.947 

 

The novel dataset was used to train nine deep-learning models using the fine-tuning method to 

classify cancer and pneumonia from lung CT scans. 150 lung cancer CT scans and 150 pneumonia 

CT scans were used to evaluate all models. The performance of all models was assessed using 

accuracy, precision, recall, F1 score, specificity, and AUC, which were reported in Table 2. Each 

of these metrics provides insights into different aspects of the model's capabilities. Our results 

revealed that all nine models achieved excellent performance across most metrics. ResNet50 stood 

out as the best model with an accuracy and F1 score of 97.7%, followed by VGG19 with 96.7% 

and 96.8% in these two metrics, respectively. Meanwhile, DenseNet121, despite its large number 

of layers and parameters, achieved lower accuracy (90.7%), precision (84.3%), F1 score (91.5%), 

and specificity (81.3%) compared to other models. Even though it demonstrated a comparable 

sensitivity value of 100%, the overall results indicated that DenseNet121 may be less ideal for our 

classification task. 
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Additionally, recall values, or sensitivity, remained exceptionally high for all models, with seven 

out of nine models achieving higher than 98%, indicating that most models were able to correctly 

identify all cancer cases in the testing set. This shows the effectiveness of our training approach 

since failing to detect cancer at an early stage might impede the diagnosis and treatment process 

in clinical settings. Models including InceptionV3, ResNet50, and ResNet101 exhibited high 

precision and specificity, with InceptionV3 being the top model with 97.9% and 98.0% in the two 

metrics. However, interestingly, InceptionV3 gained the lowest sensitivity of 95.3% out of all, 

indicating that though this model tended to accurately predict normal scans with minimum false 

positives, it might miss a slightly higher proportion of actual cancer-positive cases. A contrasting 

pattern was observed for VGG16 and VGG19. These models achieved perfect sensitivity, meaning 

they successfully identified all true cancer cases (with no false negatives). However, their 

specificity was much lower (92.7% for VGG16 and 93.3% for VGG19) compared to InceptionV3, 

due to classifying some pneumonia scans as cancer, leading to a higher number of false positives. 

This is a common trade-off between sensitivity and specificity. Ideally, high values of sensitivity 

and specificity suggest that the models were not only accurate in their classifications but also 

consistent in identifying both cancer-positive and negative cases correctly. Since our goal was to 

distinguish lung cancer cases from pneumonia cases to assist in timely diagnosis and treatment, 

models with higher sensitivity including ResNet50 and VGG19 might be more appropriate. 

Nonetheless, the F1 scores, a harmony of precision and recall, reported for the majority of models 

achieved more than 96%, indicating that our models are sufficient for the classification of cancer 

and non-cancer pneumonia CT scans.  

We further confirm this observation by comparing the AUC values of all models (Figure 3). Rather 

than using a fixed decision threshold as the previously described metrics, AUC values correspond 

to the model's ability to distinguish between positive and negative cases regardless of the chosen 

classification threshold [30]. Except for InceptionResNetV2, which gained 98.9% in AUC, all 

models achieved values higher than 99%. These findings collectively suggest that our deep 

learning models hold significant promise for aiding the classification of lung cancer and 

pneumonia from CT scans.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.24305708doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.12.24305708


 12 

 

Figure 2. ROC curve and AUC values of all trained models 

We also took into account the number of parameters of each model to investigate whether this 

factor affected the training outcome. Our model architectures were optimized with custom layers, 

hence the difference in the number of parameters (Table S3).  A large number of parameters allow 

deep neural networks to learn noise and small variations in the training data, which are known to 

cause overfitting, where the model fails to generalize for unseen data [31]. However, this was not 

the case for our models as evidenced by all evaluation metrics on the testing set, as well as the 

visualization of the training loss and validation loss throughout the training epochs, which 

demonstrated convergence in all models (Fig. S2). We also found no direct correlation between 

the number of parameters and overall accuracy. The best-performing models have moderate 

parameters, 24.1M for ResNet50, 20.1M for VGG19, and 22.3M for InceptionV3. While both 

ResNet50 and ResNet101 come from the same architecture family, with ResNet101 containing 

more layers and parameters, ResNet50 demonstrated a slight superiority in sensitivity and F1 

score, indicating its potential for more accurate positive classifications. The performance of 

ResNet101 was comparable to Xception while containing more than twice the parameter counts. 

Notably, VGG19, having 5.3M parameters more than VGG16, showed a higher precision and F1 

score. 
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In addition, the largest model is InceptionResNetV2 with 55.1M parameters, yet it achieved a 

modest precision of 88.8% and an accuracy of 93.7%. DenseNet121 and MobileNetV2 contain 

7.3M and 2.6M parameters, respectively, and gained accuracies of 90.7% and 94.3%. Our results 

highlighted that specific model architecture and training strategies play a significant role in 

achieving high performance. 

To assess the suitability of the models for clinical applications, where accuracy in disease 

classification is important as well as the ability to provide meaningful insights and interpretations 

of input images, we implemented the Grad-CAM technique. Grad-CAM helps identify which 

regions are activated when each model predicts a specific class, which are highlighted in the 

produced heatmap for each CT image. In clinical practice, CT scans are examined by experts to 

detect signs of lung cancer before moving toward further procedures. In cases of SCLC or NSCLC, 

the signs often include ground glass nodules, mass lesions (centrally or peripherally located), 

pleural effusion, bronchial narrowing, and wall thickening [32–34].  
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Figure 3. Grad-CAM visualization for cancer-positive CT scans using computed gradients from 

the last convolutional layer of each fine-tuned model. The features learned by each model are 

highlighted in a blue-yellow-red gradient, with red denoting the most focused regions in the image. 

In the original scans, each pulmonary tumor is denoted by a green bounding box. The coordinates 

of the bounding boxes were provided by the database’s annotation files. 
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CT scans of three lung cancer patients with different tumor stages and lymph node involvement 

which were correctly classified as cancer by all nine models, were selected for Grad-CAM 

demonstration. We first examined the Grad-CAM heatmaps produced from the last convolutional 

layer of each model (Fig. 3). We considered the detection to be successful if the highlighted regions 

clearly indicate the tumor sites or partially cover more than 50% of the tumor. DenseNet121, 

despite yielding the lowest accuracy and precision, successfully detected the advanced pulmonary 

tumors while failing to address the stage T1c tumor. Models of the ResNet family showed a 

tendency to focus more on the lower lobes of the lung, with ResNet50 only correctly highlighting 

the tumor at the T4 stage. In contrast, MobileNetV2 was able to draw attention to the T1c 

cancerous lesion, yet only focused on the paratracheal nodes and the trachea rather than the 

advanced tumors in the remaining scans. A relatively similar tendency could be observed for 

Xception, which failed to highlight any signs of lung tumor. 

Interestingly, InceptionV3 was the only model that consistently captured the pulmonary tumors in 

all three chosen CT images, with the highest coverage on the stage T1c scan. In the scans of 

advanced cancer patients, InceptionV3 was able to concentrate on the tumor, yet its highlighted 

regions also included the superior vena cava and the adjacent lymph nodes. Interpretation of these 

sites might require further inspections by expert radiologists, as N3 indicates the progressive 

spread of cancer to regional lymph nodes [35]. Surprisingly, well-performed models including 

VGG19 and VGG16 seemed to concentrate more on the periphery of the lung cavity and did not 

provide any direct clue regarding the position of the tumor. 

Since each model was fine-tuned to produce the highest possible accuracy, the model’s ability to 

rely on indicative regions to classify cancer states may depend on the depth of each model. Deeper 

models with more layers are generally known for the ability to capture more abstract features, 

while the first layers usually focus on low-level information in the image (e.g., edges, shapes). We 

further assessed the features extracted throughout the model architectures using the CT obtained 

from the patient at the most advanced cancer stage (patient ID: G0010). The heatmaps were 

produced by leveraging gradients computed in different subsets of layers, including fine-tuned 

(trainable) layers, frozen layers, and all layers. Fig. S3 showed that the frozen layers effectively 

delineated anatomical structures such as the lung cavity, along with various internal features. 

Conversely, heatmaps generated from the fine-tuned layers tended to exhibit a more localized 
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distribution of intensity, concentrating primarily on specific areas such as the tumor lesions or 

interior anatomical structures, indicating the model's enhanced sensitivity.  

The last convolutional layer is a common choice for Grad-CAM visualization, yet we saw that it 

does not represent the overall features extracted throughout the learning process of the model. 

Thus, we assessed Grad-CAM heatmaps produced by other layers from the fine-tuned architecture 

of ResNet50, VGG19, and InceptionV3. As shown in Fig. 4, each layer highlighted distinct regions 

in the CT scans with varying intensity. The tumor lesion was identified in layer conv5_block3_2 

of the ResNet50 model and was less pronounced in earlier layers. The attention of the VGG19 

model was on various parts of the scans, including the tumor but did not specifically focus on this 

area. Meanwhile, for InceptionV3, the tumor and its adjacent sites were consistently emphasized 

across the selected layers, demonstrating its superiority in tumor detection compared to other 

models.  

 

Figure 4. Grad-CAM heatmaps are derived from different layers of the three best models, namely 

ResNet50, VGG19, and InceptionV3. 

Interpreting chest CT scans is an intricate process. Not only accurate and timely predictions of 

diseases but also the explainability of such decisions are needed for effective medical 

recommendations. Our results suggest that a combination of representations from various layers 

of classification models might be more beneficial in providing a more comprehensive 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 15, 2024. ; https://doi.org/10.1101/2024.04.12.24305708doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.12.24305708


 17 

understanding of the model’s disease predictions. Despite the excellent accuracy and sensitivity of 

our proposed models, including ResNet50 and InceptionV3, further calibration of model 

architectures might be essential to improve interpretability. In addition, our studies have not 

addressed the classification of lung cancer types (i.e., SCLC and NSCLC) versus pneumonia, 

which is crucial for early diagnosis. Thus, future investigations on this matter are crucial. 

Nonetheless, we believe incorporating the Grad-CAM heatmaps into the deep learning-based 

analysis process of lung CT scans would be useful in reducing diagnosis time and producing 

consistent classification results. 

 

4. Conclusions 

We introduced a curated dataset consisting of CT scans of pneumonia compiled from published 

scientific articles. Among other research on lung damage identification and classification, this 

work separated lung damage due to cancer from pneumonia by implementing nine deep-learning 

models using the fine-tuning approach. A total of nine CNNs were optimized and screened to 

determine the most appropriate architecture for the classification of lung cancer and pneumonia. 

All models achieved high accuracy, precision, sensitivity, and AUC, suggesting a promising 

computer-aided cancer detection and diagnosis. Particularly, InceptionV3 stood out with the 

highest precision and specificity and was also successful in detecting tumors in CT scans as 

indicated by Grad-CAM heatmaps. These results also recognized that CNN-based deep learning 

algorithms could be exploited to explicitly screen lung cancer and other diseases. Our newly 

established non-cancer pneumonia dataset is a valuable resource for future research in pulmonary 

CADe and CADx applications. 

 

Data availability 

The lung cancer CT image dataset is obtained from 101 random patients in a large-scale CT and 

PET/CT open-access library containing approximately 251,135 scans of 355 lung cancer patients 

[23, 24]. Meanwhile, the pneumonia dataset is a newly established library extracted from peer-
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reviewed scientific publications and is available at https://github.com/ReiCHU31/CT-pneumonia-

dataset. It is imperative that this dataset be used solely for research purposes with responsibility. 

Ethical approval is not required. The results will be shared through various avenues, including 

peer-reviewed publications, conference presentations, and communication with other segments of 

healthcare and society. 

 

Code availability 

The code for fine-tuning models and Grad-CAM implementation can be accessed at 

https://github.com/NgocVuMinh/Lung-Cancer-Pneumonia-Classification.git  
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