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Abstract

Introduction: T1-weighted MRI is widely used in clinical neuroimaging for studying brain structure and
its changes, including those related to neurodegenerative diseases, and as anatomical reference for
analysing other modalities. Ensuring high-quality T1-weighted scans is vital as image quality affects
reliability of outcome measures. However, visual inspection can be subjective and time-consuming,
especially with large datasets. The effectiveness of automated quality control (QC) tools for clinical
cohorts remains uncertain. In this study, we used T1w scans from elderly participants within ageing
and clinical populations to test the accuracy of existing QC tools with respect to visual QC and to
establish a new quality prediction framework for clinical research use.

Methods: Four datasets acquired from multiple scanners and sites were used (N = 2438, 11 sites, 39
scanner manufacturer models, 3 field strengths — 1.5T, 3T, 2.9T, patients and controls, average age 71
+ 8 years). All structural T1w scans were processed with two standard automated QC pipelines (MRIQC
and CAT12). The agreement of the accept-reject ratings was compared between the automated
pipelines and with visual QC. We then designed a quality prediction framework that combines the QC
measures from the existing automated tools and is trained on clinical datasets. We tested the classifier
performance using cross-validation on data from all sites together, also examining the performance
across diagnostic groups. We then tested the generalisability of our approach when leaving one site
out and explored how well our approach generalises to data from a different scanner manufacturer
and/or field strength from those used for training.

Results: Our results show significant agreement between automated QC tools and visual QC
(Kappa=0.30 with MRIQC predictions; Kappa=0.28 with CAT12’s rating) when considering the entire
dataset, but the agreement was highly variable across datasets. Our proposed robust undersampling
boost (RUS) classifier achieved 87.7% balanced accuracy on the test data combined from different sites
(with 86.6% and 88.3% balanced accuracy on scans from patients and controls respectively). This

classifier was also found to be generalisable on different combinations of training and test datasets



(leave-one-site-out = 78.2% average balanced accuracy; exploratory models = 77.7% average balanced
accuracy).

Conclusion: While existing QC tools may not be robustly applicable to datasets comprised of older
adults who have a higher rate of atrophy, they produce quality metrics that can be leveraged to train
a more robust quality control classifiers for ageing and clinical cohorts.
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Introduction
Large big brain MRI datasets hold immense value for well-powered statistical analyses and cross-cohort

investigations (Madan, 2022). The emergence of open science initiatives and platforms for sharing data
has made it possible to combine data from multiple sites and studies (Markiewicz et al., 2021;
Wilkinson et al., 2016). With the emergence of comprehensive neuroimaging pipelines (e.g., UK
Biobank, Human Connectome Project, etc.), it is now feasible to obtain imaging derived outcome
measure on other datasets, including clinical populations (Littlejohns et al., 2020; Van Essen et al.,
2013). Inthe ageing and dementia space there is a wealth of clinical datasets, made available through
initiatives such as the Alzheimer’s Disease Neuroimaging Initiative (ADNI) and Dementias Platform UK
(DPUK) (Bauermeister et al., 2020; Petersen et al.,, 2010). The aggregation of neuroimaging data
obtained from clinical populations not only increases sample sizes but also facilitates the generation
of reproducible and generalisable outcome measures, thus paving the way for innovative approaches
in detecting brain biomarkers (Khanna et al., 2018; Van Horn & Toga, 2009). A substantial focus of
neuroimaging research revolves around enhancing automated pipelines to produce reliable and
relevant outcome measures from extensive datasets (Esteban et al., 2019; Frazier-Logue et al., 2022;
Notter et al., 2023; Sherif et al.,, 2014). However, analysing large-scale datasets requires robust
automated pipelines to ensure the generation of consistent measures across varied datasets. Despite
the benefits, dealing with clinical datasets pose an additional challenge in big data analysis due to
higher heterogeneity, motion artefacts, and disease-related factors like atrophy or other abnormalities
(Andre et al., 2015; Narai et al., 2022). Consequently, the critical task arises of identifying useable
scans for processing through the automated pipelines to obtain reliable results.

While the MRI protocol may vary across datasets, a core component is a structural T1-weighted (T1w)
scan. Tlw MRI is used to examine brain structures, assess brain volume changes, and detect
abnormalities, for example those associated with neurodegenerative diseases. It is also used as
anatomical reference for the analysis of other structural and functional imaging modalities, as it
provides detailed anatomical information. The initial and crucial step in brain imaging analysis involves
assessing the quality of Tlw MRI scans. The effectiveness of subsequent steps, such as multimodal

registration and morphometry estimation, relies heavily on the quality of these scans. Traditionally,



researchers visually inspect scans before analysis, but this practice isn't always feasible when dealing
with large datasets. Removing too many scans after quality assessment can decrease the sample size,
while including poor-quality scans can introduce biases into the resulting outcomes (Gilmore et al.,
2021).

Several automated approaches have been developed for quality control (QC) on T1w brain MRI scans
(Hendriks et al., 2023). Various rule-based QC approaches have been proposed considering the image
background to assess scan quality e.g. using measures such as - distortion (Woodard & Carley-Spencer,
2006), noise and ghosting artifacts (Gedamu et al., 2008), derived from image background (Mortamet
et al., 2009), etc. Other rule-based QC approaches considered the image foreground to assess quality
of the scans (Jang et al., 2018; Osadebey et al., 2018). Several automated machine learning approaches
have been proposed, which extract quality measures from the images and are trained using visual QC
labels to predict scan quality (pass or fail)(Alfaro-Almagro et al., 2018; Esteban et al., 2017; Pizarro et
al., 2016). Various other studies used deep learning approaches to classify the scans as pass or fail
using the entire image instead of specific quality measures (Bottani et al., 2022; Keshavan et al., 2019).
Tools for brain morphometric analysis like Computational Anatomy Toolbox (CAT12) also offer quality
control ratings based on tissue segmentation to evaluate scan quality (Gaser et al., 2022). While
current automated QC tools are valuable, they are usually designed using data from healthy and/or
young population or optimised for a specific dataset or type of scanner. To perform successful quality
control in large clinical datasets, it is important to establish a framework that offers broader
applicability across various clinical cohorts, age range and scanner types.

In this study, we tested two existing automated QC tools: MRIQC and CAT12. MRIQC is an open-source
tool, offering an extensive array of metrics for evaluating quality on raw T1w images (based on noise,
information theory, and specific artifacts), and it has become a standard reference in numerous studies
(Chen et al., 2023; Elliott et al., 2023; Lorenzini et al., 2022). CAT12 is widely utilized in the field and
encompasses a variety of quality control options (based on noise contrast, inhomogeneity contrast,
resolution) applicable to images processed within the tissue segmentation pipeline (Besteher et al.,
2022; Hahn et al., 2022; Sakreida et al., 2022). To classify the scans into pass or fail, MRIQC additionally
provides a pre-trained supervised classifier which can be utilised to predict the quality of scans. In
contrast CAT12 provides image quality ratings for each measure which can be used to determine usable
or unusable scans from the analysis. Due to their wide use and broad range of comprehensive
measures available in both tools from raw and tissue-segmented scans, we selected these tools as
good candidates to perform QC on clinical datasets. We first tested the agreement between MRIQC
and CAT12 with visual quality inspection on a large sample of clinical research data (N = 2438) from an

extensive spectrum of datasets spanning ageing and neurodegenerative cohorts. We studied the



relationship between the QC metrics produced by the two tools and tested the tools’ performance
when adjusting the accept-reject threshold. We then proposed a new classification framework which
uses a combination of QC metrics from both automated tools as features and visual QC as gold
standard. We tested the generalisability of the proposed classifier on various test datasets that differed
in terms of population and scanner. Finally, by looking at the distribution of QC measures that
contributed most to the higher classification accuracy, we explored how they could be used to inform
data harmonisation strategies. The code is openly available, and the proposed classifier will be made

accessible on the DPUK data portal, to support future clinical research studies.

Methods

Data & visual QC of T1w brain scans
Structural T1w brain images from 4 clinical research datasets (N = 2438) acquired on 39 scanners from

three different manufacturers (Siemens, Philips, GE) were used: 1) Oxford Brain Health Clinic (BHC)
(Griffanti et al., 2022) [age range: 65 - 101 years], 2) Oxford Parkinson's Disease Centre (OPDC)
(Griffanti et al., 2020) [age range: 39 - 116 years], 3) Whitehall Il imaging study (Filippini et al., 2014)
[age range: 60 — 85 years], 4) Alzheimer’s Disease Neuroimaging Initiative (ADNI) (Petersen et al., 2010)
[age range: 55 - 92 years]. Information on scanner, manufacturing model, counts, acquisition matrix
and voxel size for these datasets is provided in Table 1.

Table 1. Dataset-wise and scanner-wise counts of T1w scans of datasets used in this study

Dataset Scanner Field strength Model Tiw Count No. of slices Voxel size
BHC Siemens 3T Prisma 160 208 Ix1x1
OPDC Siemens 3T Trio 383 174 1x1x1
Whitehalll Siemens 3T Verio 552 176 Ix1x1
Whitehall2 Siemens 3T Prisma 223 174 Ix1x1
ADNI Siemens 3T Allegra 12 160 1x1x1.2
Biograph_mMR 9 176 1x1x1, 1x1x1.2
Prisma 27 208
Prisma_fit 82 175, 176, 208, 240 1x1x1, 1x1x1.2
Skyra 41 176, 208 1x1x1, 1x1x1.2
Skyra_fit 8 160,176 1x1x1
Trio 15 160 1x1x1.2
TripTim 132 110, 160, 176 1x1x1, 1x1x1.2
Verio 99 176 1x1x1, 1x1x1.2
1.5T Sonata 25 78, 160 1x1x1.2
SonataVision 3 160 1x1x1.2
Symphony 72 23, 145, 160 1x1x1.2, 1x1x3
SymphonyTim 15 23,160 1x1x1.2, 1x1x3
Avanto 54 160, 176 1x1x1.2
Espree 2 160 1x1x1.2
NUMARIS/4 1 160 1x1x1.2




29T Allegra 7 160 1x1x1.2

Trio 6 160 1x1x1.2
GE 3T GENESIS_SIGNA 3 166 1x1x1.2
SIGNA_EXCITE 10 166 1x1x1.2
SIGNA_HDx 11 166 1x1x1.2
1.5T GENESIS_SIGNA 34 180 1x1x1.2
SIGNA_EXCITE 129 166, 180 1x1x1.2
SIGNA_HDx 47 32, 166, 180 1x1x1.2
Signa_HDxt 14 166 1x1x1.2
Philips 3T Achieva 93 170, 211 1x1x1, 1x1x1.2
Achieva dStream 16 170, 211 1x1x1, 1x1x1.2
GEMINI 6 170 1x1x1.2
Ingenia 31 170, 211 1x1x1, 1x1x1.2
Ingenuity 5 170 1x1x1.2
Intera 49 170, 211 1x1x1, 1x1x1.2
1.5T Achieva 9 170 1x1x1.2
Gyroscan Inera 1 170 1x1x1.2
Gyroscan NT 3 170 1x1x1.2
Intera 49 150, 170, 184 1x1x1.2

Oxford Brain Health Clinic - BHC (N=160)

The Oxford BHC is a joint clinical-research service for memory clinic patients which offers high-quality
assessments not routinely available, including a multimodal brain MRI scan (Griffanti et al., 2022).
Images are acquired on a Siemens 3T Prisma scanner using a protocol matched with the UK Biobank
imaging study (Miller et al., 2016). The visual quality ratings were obtained from the dataset owners.
These images were originally rated into low, medium, high quality. We categorised medium and high-
quality images into accept label and low-quality images into reject label.

Oxford Parkinson’s Disease Centre Discovery Cohort - OPDC (N=383)

The OPDC study aims to identify biomarkers of Parkinson’s disease for early detection and progression.
The dataset includes multimodal brain MRI data (acquired on a 3T Siemens Verio scanner) along with
deep longitudinal clinical phenotyping in patients with Parkinson’s, at-risk individuals, and healthy
elderly volunteers (Griffanti et al., 2020). For this dataset, the visual ratings were not available from
dataset owners hence each image was visualised and rated into low, medium, and high quality by one
rater. The medium and high-quality images were grouped into accept category and low-quality images
were in reject category.

Whitehall Il imaging sub-study (N=775)

The Whitehall Il study is a longitudinal study of British civil servants to explore the factors affecting
brain health and cognitive ageing (Filippini et al., 2014). In this dataset, 552 scans were acquired on a
Siemens Verio 3T scanner (referred as Whitehalll in the manuscript — protocol details in ((Filippini et

al., 2014) and 223 scans on a Siemens Prisma 3T (referred as Whitehall2 in the manuscript — protocol



details in (Zsoldos et al., 2020)). We treated the data from these two scanners separately in all the
analyses for our work. The visual quality ratings (accept and reject) were obtained from the dataset
owners.

Alzheimer’s Disease Neuroimaging Initiative - ADNI (N=1120)

The ADNI (adni.loni.usc.edu) was launched in 2003 as a public-private partnership, led by Principal

Investigator Michael W. Weiner, MD. The primary goal of ADNI has been to test whether serial MRI,
positron emission tomography (PET), other biological markers, and clinical and neuropsychological
assessment can be combined to measure the progression of mild cognitive impairment (MCl) and early
Alzheimer’s disease (AD). In this study we included all the baseline T1w brain images from ADNI 1,2,3
and GO (first run in each session). Due to the highly variable numbers of scans for each scanner, we
grouped data from the same manufacturer and field strength together, for a total of 7 ADNI sites. The
visual quality ratings were available on a scale from 1 (excellent quality) to 4 (unusable). Upon careful
inspection of the quality description, we decided to label images with a rating of 1 or 2 into the accept

category and those with a rating of 3 or 4 into the reject category.

T1w processing in automated tools
All the images were named and organised in Brain Imaging Data Structure (BIDS) (Gorgolewski et al.,

2016) and defaced (to preserve the privacy of individuals) before processing.

MRIQC pipeline
MRIQC is an open-source pipeline that extracts image quality metrics (IQMs) from structural (T1w and

T2w) and functional MRI data (Esteban et al., 2017). It uses modular sub-workflows from neuroimaging
software toolboxes such as FSL (Jenkinson et al., 2012), ANTs (Avants BB et al., 2013)and AFNI at the
background (Cox & Hyde, 1997). MRIQC also provides a random forest classifier (mrigc_clf) pre-trained
on 1102 T1w scans (17 sites) from the Autism Brain Imaging Data Exchange (ABIDE) dataset. The
classifier generates probability value for each scan (range 0 - 1) and any scan with probability more
than or equal to 0.5 (default threshold) is categorised to reject label.

Each defaced T1w brain image was processed in MRIQC pipeline (singularity version 0.15.1). The list
of image quality metrics (IQMs) and their description are provided in Table 2 (a detailed explanation
can be found in the user manual of MRIQC). From each image 68 metrics were extracted. We used

MRIQC’s random forest classifier (mrigc_clf) and labelled images into binary accept and reject labels.

Table 2: List of MRIQC image quality metrics

QC category QC measure Explanation References

Noise measurements Coefficient of joint variation (CJV) Higher values indicate (Ganzetti et al., 2016)
heavy head motion and
large image non-
uniformity artifacts


https://adni.loni.usc.edu/

Contrast-to-noise ratio (CNR)

Signal-to-noise ratio (SNR)

Dietrich’s SNR (SNRd)

Mortamet’s quality index 2 (Ql2)

Higher values indicate (Magnotta et al., 2006)
better separation of GM
and WM tissue distribution
Calculated for each tissue
class

SNR calculated with air
background as reference
Goodness-of-fit on the air (Mortamet et al., 2009)
mask once the artifactual

(Dietrich et al., 2007)

intensities are removed;
lower values are better

Specific artifacts

Intensity non-uniformity (INU)

Mortamet’s quality index 1 (Ql1)

White matter to maximum intensity
ratio (wm2max)

Summary statistics of INU (Tustison et al., 2010)
field by N4ITK; values away
from zero indicate higher
inhomogeneity

Ratio of proportion of (Mortamet et al., 2009)
voxels with artifacts

normalized by background

voxels; lower values are

better

detecting the hyper-

intensity of the carotid

vessels and fat by

calculating the median

intensity within WM mask

over 95% percentile of the

full intensity distribution;

Good values are around

[0.6,0.8]

Information theory

Entropy focused criterion (EFC)

Foreground to background energy
ratio (FBER)

Higher values indicate (Atkinson et al., 1997)
more ghosting and
blurring induced by head
motion

Higher values indicate (zarrar et al., 2015)
better signal within the

head relative to outside

the head

Other

Full width at half maximum
(FWHM)

Volume fraction (icvs_*)
Residual partial volumes (rpve_*)

Overlap with tissue probability
maps (overlap_*_*)

Summary statistics (summary_*_*)

FWHM of the spatial
distribution of intensity

(Forman et al., 1995)

values in voxel units;
Higher values indicate
blurrier images

ICV fractions of GM, WM
and CSF

rpve of GM, WM, CSF
Overlap of tissue
probability maps of ICBM
nonlinear asymmetric
2009c template and maps
estimated from image
Summary measures of
each tissue class with
respect to voxels in the
background

CAT12 pipeline

CAT12 (Computational Anatomy Toolbox) is an extension of SPM12 covering diverse morphometric
methods to provide computational anatomy (Gaser et al., 2022). CAT12 provides a retrospective QC

framework for empirical quantification of image quality parameters.



Each defaced T1lw brain image was processed in CAT12 segmentation pipeline (standalone version
r2042 running on v93 of MATLAB compiler runtime). The surface processing option was enabled during
the segmentation. Post segmentation, CAT12 generates a segmentation report for each image and
provides image quality ratings (IQRs) based on noise, resolution, bias and aggregates these ratings to
weighted IQR [range A+ (excellent) to F (unacceptable/failed)]. Additionally, (for the proposed classifier
work) we also considered additional quality measures which are not provided in the CAT12
visualisation report but saved in the output of segmentation (named as, cat_<subjdirname>.mat). The
description of all the quality measures is provided in

Table 3, (a detailed explanation can be found in the user manual of CAT12). From each image 36 quality
measures were extracted (Pravesh Parekh, 2021). To label the images into accept and reject quality,
each image with weighted image quality rating (IQR) of C minus and below (selected as ‘default
threshold’) was labelled into reject class.

Table 3. List of CAT12 image quality measures

QC category QC measure Explanation References
QC measures in CAT12 report Noise contrast ratio (NCR) Local standard deviation in the  (Dahnke et al., n.d.) (Collins et
optimized WM segment and al., 1998) (Reuter et al., 2015;
scaled by the minimum tissue Winterburn et al., 2013)

contrast; Graded from A+
(excellent quality to F
unacceptable/failed quality)
Inhomogeneity contrast ratio (ICR) Global standard deviation
within the optimized WM
segment and is scaled by the
minimum tissue contrast;
Graded from A+ (excellent
quality to F
unacceptable/failed quality)
Root-mean-square resolution (RES)  Root-mean-square value of the
voxel size; Graded from A+
(excellent quality to F
unacceptable/failed quality)
Weighted average image quality Average rating obtained from
rating (IQR) NCR, ICR, RES; Graded from A+
(excellent quality to F
unacceptable/failed quality)

Other additional measures calculated after segmentation (added to classifier)

Surface measures . Mean Surface Euler (Dahnke et al., 2013; Yotter,
number Dahnke, et al., 2011; Yotter,
. Mean surface defect Thompson, et al., 2011)
number

. Mean surface defect
area

. Surface intensity RMSE

. Surface position RMSE

Tissue measures . Absolute and relative
mean & standard
deviation of GM, WM,
CSF tissue intensities

. Absolute and relative
contrast between the
tissue classes




. Absolute and relative
volume of GM, WM,
CSF tissues and WM
hyperintensities

Comparison of MRIQC and CAT12 quality measures
We first compared the quality measures between the two automated tools. The quality measures

derived from MRIQC and CAT12 were correlated using Pearson’s correlation. The correlation analysis
was conducted in MATLAB2022b (The MathWorks Inc. (2022). MATLAB Version: 9.13.0.2105380
(R2022b), 2022).

Comparison of ratings between automated tools and visual QC
We calculated the percentage of scans that would pass QC and compared the agreement between

visual QC, MRIQC classifier predictions (default threshold, MRIQC(D)) and CAT12’s weighted IQR
(default threshold, CAT12(D)) using Kappa coefficient of inter-rater reliability (IRR) (Landis & Koch, 1977
McHugh, 2012). Three comparisons were performed: 1) CAT12 ratings vs. MRIQC ratings, 2) CAT12
ratings vs. visual QC ratings, 3) MRIQC ratings vs. visual QC ratings.

Further, we explored the effect of changing the labelling threshold from MRIQC classifier and CAT12’s
weighted IQR. We investigated this by changing the CAT12’s weighted IQR threshold to — 1) strict
(CAT12 (-)): any scan with weighted IQR rating C and below were labelled to reject category, 2) lenient
(CAT12 (+)): any scan with weighted IQR rating D+ and below were labelled to reject category. Similarly,
for the MRIQC classifier we changed the threshold of acceptance to — 1) strict (MRIQC (-)): scans with
probability equal to or more than 0.4 were labelled to reject category, 2) lenient (MRIQC (+)): scans
with probability equal to or more than 0.6 were labelled to reject category. We then re-calculated the
Kappa coefficient for the above three comparisons. The Kappa coefficient was calculated using IRR

package in R (Matthias Gamer et al., 2019; R Core Team, 2022).

Proposed QC classifier
In this section we present our proposed QC classifier. The primary model (combined data model) was

trained and tested on a mix of data from multiple datasets and sites. We then tested the
generalisability of our classification framework in a leave-one-site-out approach and in cases where
training and test data differ in terms of field strength and/or scanner manufacturer.

Combined data model

Data and classifiers
We designed a binary QC classifier which combines the MRIQC and CAT12 quality measures as

features. Binary visual QC ratings were used as target. For the combined data model, we first randomly
divided our entire sample (N = 2438) into 80% training (N = 1955) and 20% test data (N = 483). The
data was divided ensuring fair representation of target labels, sites, and proportion of patients and
controls (when applicable) among both the training and test datasets. The site-wise and label-wise

split for training and test datasets is provided in Table 4. We tested three options for the underlying



machine learning classification: support vector machine, random forest, and random under-sampling

boost.

Table 4. Site-wise split of training and test data for the combined data model

Datasets Train data Test data
Reject  Accept Total | Reject Accept Total
ADNI GE 1.5T 8 172 180 1 43 44
ADNI GE 3T 4 16 20 0 4 4
ADNI Philips 1.5T 1 49 50 0 12 12
ADNI Philips 3T 7 153 160 2 38 40
ADNI Siemens 3T 8 332 340 2 83 85
ADNI Siemens 1.5T 10 128 138 2 32 34
ADNI Siemens 2.9T 2 9 11 0 2 2
OPDC Siemens 3T 47 260 307 12 64 76
BHC Siemens 3T 12 116 128 4 28 32
Whitehalll Siemens 3T 35 407 442 101 110
Whitehall2 Siemens 3T 6 173 179 1 43 44
Total 140 1815 1955 33 450 483

Support vector machine (SVM) is one of the most common supervised classifiers, simple to train for
hyperparameters, effectively handles high dimensional data and less prone to overfitting than non-
linear classifiers (Cortes & Vapnik, 1995). We used the ‘fitcsvm’ implementation in MATLAB (MATLAB
Version 9.14.0.2239454 (R2023a), 2023). Two hyperparameters were optimised in nested cross-
validation (CV): box constraint (0.01, 0.1, 1, 10, 100, 1000) and Kernel function (linear, radial basis
function). The remaining hyperparameters were maintained at their default settings. Random forest
(RF) is a supervised classifier robust to outliers and non-linear data, faster to train and handles
unbalanced classes in the data (as in our data ‘reject’ class samples are substantially lower than ‘accept’
class) (Breiman, 2001). We used the ‘fitcensemble’ implementation in MATLAB (MATLAB Version
9.14.0.2239454 (R2023a), 2023). Two hyperparameters were optimised in nested CV: Maximal
number of decision splits (10,50) and number of ensemble learning cycles (10, 50, 100). The remaining
hyperparameters were maintained at their default settings. We selected random under-sampling
boost (RUS) as third classifier due to its ease of implementation, effective handling of imbalanced
classes, rapid processing speed, and reduced computational complexity (Seiffert et al., 2008). It is a
supervised classifier that under samples the majority class labels in the training process to balance the
minority class. Given the imbalance of classes in our data, we used random under-sampling to avoid
skewing towards the majority class (accept) and improve the detection of the minority class (reject) in
our datasets. We used the ‘fitcensemble’ implementation in MATLAB (MATLAB Version

9.14.0.2239454 (R2023a), 2023). Three hyperparameters were optimized in nested CV: Maximal
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number of decision splits (10, 50), number of ensemble learning cycles (10, 50, 100), and learning rate

for shrinkage (0.01, 0.1). The remaining hyperparameters were maintained at their default settings.

Nested cross validation approach
The classifiers were trained in a nested cross validation (CV) framework consisting 5 outer folds and 3

inner folds (See Figure 1). In the training phase, within every CV iteration, the features were
standardized for each site separately. During the feature standardization of test data, only the mean
and standard deviation from train data were applied to avoid data leakage. Within the CV, features
were ranked using multiple filter-type feature selection methods (ReliefF, Chi-square, Minimum
Redundancy Maximum Relevance, class separability criteria — t-test, entropy, Bhattacharya distance,
Wilcoxon, Receiver Operating Characteristics). The ranks were then aggregated using robust ranking
aggregation (Kolde et al., 2012). For each feature size (iterative; 10, 20, 30, 40, 50, 60, 70, 80, 90, 100,
104 (all)), the classifier was trained on the inner fold’s train data and tested on the inner fold’s test
data for the grid of hyperparameters. For each outer CV iteration and for each feature size, the
classification performance was averaged over all the inner CV folds and the combination of
hyperparameters achieving the best performance were chosen. Finally, for each feature size the outer
cross validation iteration was executed with the chosen combination of hyperparameters from the
inner folds, models were re-trained, and tested on the outer test data. To get precise estimates of
model’s performance, we ran a total 100 iterations of the nested CV in the training phase and obtained
the best combination of hyperparameters for each feature size for each classifier. In the final model
design, we aggregated feature ranks from all outer cross validation folds across 100 iterations and
derived a final ranking of the features. The final model was then trained by using all the training data
with the best combination of hyperparameters for each feature size and feature ranking across 100 CV

iterations.
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Figure 1. Nested cross validation workflow for training the QC classifier. The model was trained for 5 outer folds
and 3 inner folds. The hyperparameters of the model were optimised on the inner test data and the combination
giving the best performance (balanced accuracy) were selected for the outer folds. The nested cross validation
process was repeated for 100 times. The best performing hyperparameters for each feature size and feature
ranks across 100 iterations were used to train the final model and tested on the hold-out data.

Assessment and comparison of prediction performance
The final model’s performance on the test data was assessed by balanced accuracy (Eq. 1 - 3).

(TP) (Eq.2)
(TP + FN)

(TN)
(TN+FP)

Sensitivity = (Eq. 1) Specificity =

Sensitivity+Specificity
2

Balanced accuracy = (Eq.3)

True positive (TP) — the model correctly predicts the accept label; True negative (TN): correctly predicts
reject label; False positive (FP) — wrongly predicts accept label for a scan that should be rejected; False

negative (FN) — wrongly predicts reject label a scan that should be accepted.

The choice to use balanced accuracy as our primary metric is based on the fact that our datasets have
imbalance in the accept and reject classes and we are interested in both classes being predicted well
for unseen datasets.

For each classifier (SVM, RF, RUS) we selected the feature size that gave the best performance. We
then compared the prediction performance of the three optimised classifiers with each other and with
MRIQC and CAT12. This comparison of prediction performance was done for - 1) combined test data
(N = 483), 2) test data categorised by site (see Table 4 for number of scans in each site in each class),

3) patients and controls separately within the test data (see Table 5 for number of scans for in each

12



class), 4) each sub-category of diagnosis within the test data (see Table 5 for number of scans in each

class for each category).

Table 5. Diagnosis group-wise number of scans in accept and reject labels

Diagnosis group Reject Accept  Total
ADNI 2 71 73
OPDC 2 14 16
Controls Whitehalll 9 101 110
Whitehall2 1 43 44
Total 14 229 243
ADNI Dementia 2 26 28
ADNI MCI 3 117 120
OPDC RBD 4 23 27
Patients
OPDCiPD 6 27 33
BHC 4 28 32
Total 19 221 240

MCI: mild cognitive impairment, RBD: REM sleep behaviour disorder (at risk group for PD), iPD: idiopatic

Parkinson's disease

Feature importance
We investigated the distribution of the top 10 ranked features derived from the final combined data

model by employing kernel density and scatter plots. To ascertain potential statistical variations in the
distribution among sites, we conducted a two-sample Kolmogorov-Smirnov test. Subsequently, to

address multiple comparisons, we applied the Bonferroni correction to obtain adjusted p-values.
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Leave-one-site out models
To further validate our approach, we created leave-one-site out CV models using the best performing

classifier on the combined data (among SVM, RF and RUS) to see how well our training workflow
generalises to an unseen site. From this classifier, we extracted the combinations of hyperparameters,
feature ranking and feature size at which the best performance was observed on the combined test
data. These parameters were then used to re-train classifier on data from remaining sites while keeping
each site as test data. Finally, the classification performance on each test site was assessed, comparing
them against MRIQC and CAT12, and against the best performance of a combined data model on each
site in the test data. The split of data for training and testing for each model is provided in Table 6.

Table 6. Train and test split for leave-one-site-out models.

Test Dataset Train Reject  Train Accept  Train Total Test Reject  Test Accept  Test Total
ADNI GE 1.5T 132 1643 1775 9 215 224
ADNI GE 3T 136 1799 1935 4 20 24
ADNI Philips 1.5T 139 1766 1905 1 61 62
ADNI Philips 3T 133 1662 1795 9 191 200
ADNI Siemens 3T 132 1483 1615 10 415 425
ADNI Siemens 1.5T 130 1687 1817 12 160 172
ADNI Siemens 2.9T 138 1806 1944 2 11 13
OPDC Siemens 3T 93 1555 1648 59 324 383
BHC Siemens 3T 128 1699 1827 16 144 160
Whitehalll Siemens 3T 105 1408 1513 44 508 552
Whitehall2 Siemens 3T 134 1642 1776 7 216 223

Exploratory models
Finally, we explored how well our approach generalises when the model is trained on data from one

field strength and/or manufacturer and tested on data from other field strengths/manufacturers.

These exploratory models were designed to test:

1. Generalisability across field strength: the majority of the datasets were acquired on 3T scanners
(N = 1967) hence we trained the model on data from all 3T scanners and tested on the data from
1.5T field strengths.

2. Generalisability across manufacturer: the majority of the datasets were acquired from Siemens
scanners (N=1928) hence we trained the model combining Siemens data from all field strengths
and tested on data from other manufacturers.

3. Generalisability across manufacturer and field strength: the majority of the data is from 3T
Siemens scanners (N = 1743) hence we trained the model only from 3T Siemens scanner data and
tested on the remaining data.

The data split for training and test data is provided in Table 7. Similar to the leave-one-site out models,

we chose the best performing classifier (among SVM, RF and RUS) on the combined test data and re-

trained and tested the classifier for three different cases. As explained above, the training process used

hyperparameter combinations, feature ranking and feature size at which the best performance was
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observed on the combined test data. The classification performances were assessed for each model,

comparing them against MRIQC and CAT12, and against the performance of the combined data model

on the test data from each case individually.

Table 7. Training and test data split for exploratory models

Models

Training sites

N training — Total
(accept)

Test dataset

N test — Total
(accept)

Generalisability
across field
strength

3T (Siemens,
Philips, GE)

1576 (1457)

Siemens 1.5T,
Philips 1.5T, GE
1.5T

458 (436)

Generalisability
across
manufacturer

3T, 2.9T, 1.5T
(Siemens)

1545 (1425)

3T (Philips, GE),
1.5T (Philips, GE)

510 (487)

Generalisability
across
manufacturer and
field strength

3T (Siemens)

1396 (1288)

3T (Philips, GE),
1.5T (Siemens,
Philips, GE), 2.9T
(Siemens)

695 (658)
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Results

Comparison of quality measures (CAT12 vs MRIQC)
We analysed the correlation between CAT12 quality measures and MRIQC IQMs (Figure 2) to explore

both common and distinct metrics within these tools. We observed various statistically significant
correlation coefficients between pairs of measures from these automated tools. For instance, CAT12's
resolution measure exhibited significant correlation with MRIQC's summary-based metrics derived
from tissues, FWHM, image size, image spacing, and overlap of CSF with tissue probability maps (TPM).
The absolute volume of tissues measured by CAT12 demonstrated significant correlations with
MRIQC's intra-cranial volume fraction of tissues and overlap of tissue classes with TPM. The relative
intensity of background in CAT12 exhibited a significant correlation with MRIQC measures
encompassing noise-based metrics, measures tied to specific artifacts (such as image nonuniformity),
as well as other parameters like size, spacing, FWHM, and residual partial volumes of tissues. Relative
intensities from CSF and GM in CAT12 were significantly correlated with summary measures from
background, CSF, and GM in MRIQC. Summary measures derived from WM in MRIQC significantly
correlated with CAT12's resolution, relative intensity of CSF, and absolute volumes of GM and WM
tissues. Similarly, CAT12's relative contrast showed a significant correlation with summary measures
from CSF and GM in MRIQC. On the other hand, non-significant or low correlations (below +0.5)
suggest that the two tools are also capturing unique information about the image. Measures falling in
this category for CAT12 are noise, mean intensity from tissues, and surface measures while for MRIQC
are QI1, QI2 (targeting specific artifacts), EFC, FBER (informed by information theory). For detailed
correlation coefficients, p-values, and the upper and lower bounds of a 95% confidence interval for

each pair of measures, refer to Supplementary material.
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Figure 2. Correlation plot between MRIQC IQMS (columns) and CAT12 quality measures (rows). MRIQC generated
total 68 IQMs and from CAT12 we extracted 36 quality measures.
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Comparison of ratings between automated tools and visual QC

Percentage of scans passing QC
We first compared the percentage of scans that passed (accept category) QC using visual QC, MRIQC,

and CAT12. The results are reported in Table 8. Overall, CAT12 showed the highest percentage of
accepted scans compared to visual QC and MRIQC. MRIQC showed a more similar percentage of
accepted scans to visual QC overall, but with over 8% difference in 3 datasets (ADNI 3T GE, ADNI 1.5T
Philips and BHC)

Table 8. Percentage of scans passing visual QC and QC from automated tools

Total N scans % accept % a(c,f,le,fth'\CAEIQc %Scccrcp;éf_lz

Dataset Field Strength Scanner available Visual QC Visual) Visual)
ADNI 1.5T GE 224 96 96 (0) 98.7 (2.7)
ADNI 3T GE 24 83.3 91.7 (8.4) 95.8 (4.1)
ADNI 1.5T Philips 62 98.4 90.3 (-8.1) 100 (9.7)

ADNI 3T Philips 200 95.5 88 (-7.5) 98 (10)
ADNI 3T Siemens 425 97.6 94.1(-3.5) 98.8 (4.7)
ADNI 1.5T Siemens 172 93 89 (-7.7) 98.8 (9.8)
ADNI 297 Siemens 13 84.6 76.9 (-7.7) 100 (23.1)
OPDC 3T Siemens 383 84.6 91.4 (6.8) 98.7 (7.3)
BHC 3T Siemens 160 90 80 (-10) 91.9 (11.9)
Whitehalll 3T Siemens 552 92 92.9 (0.9) 94.6 (1.7)
Whitehall2 3T Siemens 223 96.9 96.4 (-0.5) 98.7 (2.3)

All datasets 2438 92.9 91.8 97.3

Classification agreement
We computed Kappa coefficient to measure the agreement between the automated tools and with

visual QC (Figure 3). A detailed table of Kappa coefficients, associated p-values, and percentage

agreement for all the pairs of ratings is provided in supplementary material.

Automated tools vs visual QC
When evaluating the agreement on all datasets together (Figure 3 panel 1), MRIQC and visual QC

showed higher value of Kappa coefficient (k=0.3) than CAT12 and visual QC (k=0.28). However, when
looking at each dataset separately, in some cases the agreement was higher between CAT12 and visual
QC (panels a, b, ¢, f, h, k, Kappa between 0.27 and 0.59), while other datasets showed higher Kappa
coefficient between MRIQC and visual QC (panels d, e, g, i, j, Kappa between 0.26 and 0.51). Notably,
ADNI 1.5T Philips and 2.9T Siemens showed no agreement between CAT12 and visual QC (panels e, g).

CAT12 vs MRIQC ratings
For all datasets together, we found significant agreement between the ratings from CAT12 and MRIQC

ratings (k=0.23). When considered each dataset separately, Whitehall2 dataset showed the highest
agreement (k=0.54). Notably, some datasets in ADNI (3T GE, 1.5T Siemens, 1.5T Philips, 2.9T Siemens)
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showed no agreement or worse than expected agreement (zero or negative values of Kappa coefficient

in Figure 4 panels a, f, e, g).

a) ADNI 3T GE Visual MRIQC b) ADNI 3T Philips Visual MRIQC
CAT12 CAT12
MRIQC 0.25 MRIQC
c) ADNI 3T Siemens Visual MRIQC d) ADNI 1.5T GE Visual MRIQC
CAT12 CAT12
MRIQC 0.14 MRIQC
e) ADNI 1.5T Philips Visual MRIQC f) ADNI 1.5T Siemens Visual MRIQC

CAT12

MRIQC

CAT12

MRIQC

|

g) ADNI 2.9T Siemens Visual h) BHC 3T Siemens
CAT12 CAT12

MRIQC MRIQC

i) OPDC 3T Siemens j) Whitehall1 3T Siemens
CAT12 CAT12

MRIQC MRIQC

k) Whitehall2 3T Siemens

CAT12

MRIQC

N )

1) All datasets Visual
CAT12 0.28
MRIQC

MRIQC

Figure 3. Kappa coefficient values comparing the agreement of ratings between visual QC and automated tools.
The colours indicate the lowest (red), medium (yellow) and highest values (green) in each dataset. See
supplementary material for details.

Impact of threshold on classification agreement

Given that the inter-rater reliability did not show consistency across datasets on which tool produced

more similar ratings to visual QC using their default threshold (0.28 for CAT12, 0.30 for MRIQC), we

explored the effect of using a lenient and stricter threshold of acceptance on the automated tools. The

percentage of accepted scans upon adjusting the threshold are provided in Table 9. A detailed table of

Kappa coefficients, associated p-values, and percentage agreement for all the pairs of ratings is

provided in Supplementary material.

Table 9. Percentage of accepted scans after adjusting acceptance thresholds for MRIQC and CAT12 (“-* for strict
threshold and ‘+’ for lenient threshold).
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% accept

Total % accept CAT12 (+) % accept % accept
. ota 0 CAT12 () MRIQC (-) MRIQC (+)
Dataset Field Strength ~ Scanner scans A?accept (CAT12 () — (C_AJilsig) (MRIQC (1) = (MRIQC (+) —
Visual QC Visual QC) Q<) Visual QC) Visual QC)
ADNI 1.5T GE 224 96 95.1(1.1) 100 (4) 86.6 (-10.6) 97.8 (1.8)
ADNI 3T GE 24 83.3 91.7 (8.4) 100 (16.7) 87.5 (4.2) 95.8 (12.5)
ADNI 1.5T Philips 62 98.4 95.2 (-3.2) 100 (1.6) 85.5(-12.9) 93.5 (-4.9)
ADNI 3T Philips 200 95.5 94 (-1.5) 99 (3.5) 78 (-17.5) 93.5 (-2)
ADNI 3T Siemens 425 97.6 96.9 (-0.7) 99.5(1.9) 83.5(-14.1) 97.2 (-0.4)
ADNI 1.5T Siemens 172 93 96.5 (3.5) 100 (7) 77.3 (-15.7) 97.7 (4.7)
ADNI 2.9T Siemens 13 84.6 100 (15.4) 100 (15.4) 76.9 (-7.7) 84.6 (0)
OPDC 3T Siemens 383 84.6 95.6 (11) 99.2 (146) 69.7 (-14.9) 94.5 (9.9)
BHC 3T Siemens 160 90 79.4 (-10.6) 96.9 (6.9) 65 (-25) 91.3 (1.3)
Whitehalll 3T Siemens 552 92 88.2 (-3.8) 98.2 (6.2) 75.7 (-16.3) 97.3 (5.3)
Whitehall2 3T Siemens 223 96.9 96 (-0.9) 99.6 (2.7) 61.4(-35.5) 98.2 (1.3)
All datasets 2438 92.9 93 (0.1) 99 (6) 75.8 (-17.1) 96.1 (3.2)
a)  ADNI3T b)  ADNI3T
CATI2(+) CAT12(D) CAT12(-)  Visual Philips CATI2(+) CAT12(D) CAT12(-)  Visual
CAT12 (+) 0.00 CAT12 (+) 0.17
CAT12 (D) - CAT12 (D) 0.28
CAT12(-) 0.25 CAT12(-)
MRIQC (+) 0.00 MRIQC (+) 0.12 - 0.19 0.14
MRIQC (D) 0.00 MRIQC (D) 0.06 0.11 0.09 0.06
MRIQC (-) 0.00 MRIQC (-) 0.07 0.13 0.17 -
¢  ADNI3T d)  ADNILST
CATI2(+) CAT12(D) CAT12(-)  Visual CATI2(+) CAT12(D) CAT12(-)  Visual
Siemens
CAT12 (+) 0.16 CAT12 (+)
CAT12 (D) CAT12 (D) 0.15
CAT12(-) CAT12(-) 0.16
MRIQC (+) 0.05 0.16 MRIQC (+)
MRIQC (D) 0.07 0.05 0.12 0.14 MRIQC (D)
MRIQC (-) 0.02 0.06 0.12 0.06 MRIQC (-)
e)  ADNILST f)  ADNILS5T
CATI2(+) CAT12(D) CAT12(-)  Visual CATI2(+) CAT12(D) CAT12(-)  Visual
Philips Siemens
CAT12 (+) CAT12 (+) 0.00
CAT12 (D) CAT12 (D)
CAT12(-) CAT12(-)
MRIQC (+) MRIQC (+) 0.00 -0.02 -0.03 0.09
MRIQC (D) MRIQC (D) 0.00 -0.02 - 0.19
MRIQC (-) MRIQC (-) 0.00 -0.02 -0.02 0.10
g)  ADNI2.9T h)  BHC3T
CATI2(+) CAT12(D) CAT12(-)  Visual CATI2(+) CAT12(D) CAT12(-)  Visual
Siemens Siemens
CAT12 (+) CAT12 (+) 0.25
CAT12 (D) CAT12 (D)
CAT12(-) CAT12(-)
MRIQC (+) MRIQC (+) 0.28 0.23 0.19
MRIQC (D) MRIQC (D) 0.17 0.32
MRIQC (-) MRIQC (-) - 0.28
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i)  opDC3T i) Whitehall1

CAT12 (+) CAT12(D) CAT12(-) Visual CAT12 (+) CAT12(D) CATi12(-) Visual
Siemens 3T Siemens
CAT12 (+) 0.08 CAT12 (+) 0.16
CAT12 (D) 0.14 CAT12 (D) 0.31
CAT12(-) 0.29 CAT12(-) 0.38
MRIQC (+) 0.24 0.37 0.50 0.37 MRIQC (+) 0.30 0.38 0.22 0.21
MRIQC (D) 0.15 0.25 0.41 0.51 MRIQC (D) 0.22 0.37 0.39 0.31
MRIQC (-) 0.04 0.06 0.16 0.35 MRIQC (-) 0.09 0.21 0.29 0.21
k) Whitehall2 1) All
CAT12 (+) CAT12(D) CAT12(-) Visual CAT12 (+) CAT12(D) CATi2(-) Visual
3T Siemens datasets
CAT12 (+) 0.24 CAT12 (+) 0.13
CAT12 (D) 0.59 CAT12 (D) 0.28
CAT12 (-) 0.48 CAT12(-) 0.35
MRIQC (+) 0.40 0.85 0.61 0.72 MRIQC (+) 0.19 0.27 0.26 0.26
MRIQC (D) 0.22 0.54 0.45 0.52 MRIQC (D) 0.13 0.23 0.31 0.30
MRIQC (-) 0.01 0.04 0.08 0.05 MRIQC (-) 0.05 0.12 0.20 0.18

Figure 4. Kappa coefficient values comparing the agreement of ratings between visual QC and automated tools
after adjusting the acceptance thresholds of automated tools. The comparison with default thresholds is also
provided for ease of comparison. The colours indicate the lowest (red), medium (yellow) and highest values
(green) in each panel. See supplementary material for details.

Visual QC vs automated tools
We recalculated the Kappa coefficient values after adjustment of thresholds to find the agreement

between the automated tools and visual QC ratings (see Figure 4). When looking at the Kappa
coefficient values from all datasets together (panel I), we found that the agreement between visual QC
and CAT12 ratings improved after applying a strict threshold to CAT12. We found a similar effect when
looking at each dataset separately on most of our datasets (panels b, d, e, h, |, j). For example, the lack
of agreement between visual QC ratings and default threshold ratings of CAT12 (k =0) for ADNI 1.5T
Philips dataset improved significantly (k=0.43) after applying strict threshold to CAT12 ratings. However,
some datasets did not show any improvement in Kappa coefficient after adjusting thresholds (panels
a,c g k).

For all datasets together, we did not see any improvement in Kappa coefficient when comparing visual
QC with changed thresholds in MRIQC ratings. Some datasets showed increased agreement after
applying lenient threshold to MRIQC ratings (panels b, c, e, g, h, k). For example, the significant
agreement between visual QC and default threshold ratings of MRIQC in Whitehall2 (k = 0.52) was
further improved (k = 0.72) after applying lenient threshold to MRIQC ratings. Only ADNI 1.5T GE
dataset showed significantly improved value of Kappa coefficient after applying strict threshold to
MRIQC ratings (from k = 0.25 to k= 0.5). The rest of the datasets did not show any improvement upon

adjusting the threshold of MRIQC ratings (panels d, f, i, j).

CAT12 vs MRIQC ratings
For all datasets together and each dataset separately, the Kappa coefficient significantly improved

between MRIQC default threshold ratings and CAT12 ratings after applying a strict threshold (from

k=0.23 to k=0.31). Most of the datasets showed similar effect of improvement between default
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threshold ratings of MRIQC and CAT12 ratings after applying strict threshold (panels c, d, e, h, i, j). For
Whitehall2 and ADNI 3T Philips, the Kappa coefficient improved between default ratings of CAT12 and
MRIQC ratings after applying lenient threshold. Only for ADNI 3T GE, the Kappa coefficient value
between default threshold ratings of CAT12 and MRIQC (from k =-0.06 to 0.47) after applying strict
threshold to MRIQC ratings. Notably, ADNI 1.5T Siemens and ADNI 2.9T Siemens did not show any

improvement upon adjustment of thresholds, showing zero agreement.

Classification performance

Combined data model
The optimal feature size selected for SVM (balanced accuracy = 67.4%) and RF was 50 (balanced

accuracy =72.5%), while for RUS was 80 (balanced accuracy = 87.7%) (Figure 5). On an average across
different feature sizes for the combined test data, the proposed RUS classifier showed the highest
balanced accuracy (85.2 + 2.8%) as compared to SVM (62.8 + 4.9%) and RF classifier (65.8 + 3.7%)
(refer to supplementary material for details for performance at each feature size and confusion
matrices for each classifier and automated tools). The comparison of the best performance of the
proposed classifiers with MRIQC and CAT12 showed that CAT12 (56.9%) gave the lowest balanced
accuracy on the test data as compared to all classifiers while MRIQC (71.6%) showed higher balanced
accuracy than SVM but lower than RF and RUS classifiers.

When looking at the performance for each site separately in the test data (Figure 5), the proposed
classifiers showed higher balanced accuracies compared to CAT12 (except for BHC Siemens 3T where
CAT12 showed higher balanced accuracy only when compared to SVM ). We found that RUS achieved
the highest balanced accuracies for 3 sites (ADNI Philips 3T, OPDC Siemens 3T and Whitehall1 Siemens
3T sites). For other sites (ADNI GE 1.5T, ADNI Siemens 1.5T, BHC Siemens 3T, Whitehall2 Siemens 3T),
either MRIQC or RF showed the highest balanced accuracies, but RUS performance was also very close.
For ADNI Siemens 3T site, MRIQC showed the highest balanced accuracy (97.6%), followed by RUS
classifier (73.2%).
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Figure 5. Balanced accuracy of proposed classifiers, MRIQC and CAT12 on combined and site-wise test data.
Number of samples in the test data are provided in brackets for each dataset (x-axis). Note that three sites
(ADNI GE 3T, ADNI Philips 1.5T and ADNI Siemens 2.9T) are not included in the figure due to the absence of
samples in the reject class resulting in NaN values for balanced accuracies.

Performance for patients and controls in test data
Since our aim is to have a classifier that is suitable for clinical data, we evaluated the performance

separately for different disease groups. When grouping scans in broad categories of patients (N=240
in the test set, including AD, MCI, PD, RBD) and controls (N=243 in the test set, generally cognitively
unimpaired and without neurological conditions), the RUS classifier (balanced accuracy: patients =
86.8%, controls = 88.3%) achieved superior performance as compared to both SVM (balanced accuracy:
patients = 75.6%, controls = 56.3%) and RF classifier (balanced accuracy: patients = 78.7%, controls =
64.1%) and existing tools MRIQC (balanced accuracy: patients = 72.5%, controls = 69.9%) and CAT12
(balanced accuracy: patients = 59.8%, controls = 52.9%) (Figure 6).

When looking at the performance for different diagnostic groups within ADNI, for the MCI group
MRIQC, RF and SVM classifiers showed the highest balanced accuracy (>80%) while RUS accuracy was
also very close to these classifiers (78%). The RUS classifier showed the highest balanced accuracy on
the dementia group (69.2%) with MRIQC achieving 67.3%. On BHC data (memory clinic patients) the
proposed SVM (87.5%) showed the highest balanced accuracy with the RUS classifier achieving 85.7%.
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When looking at the performance for different diagnostic groups within OPDC, for the RBD group, the
RUS classifier showed the highest balanced accuracy (89.1%). For the iPD group, the proposed SVM
and RUS classifiers showed the highest balanced accuracies (>85%). Upon comparing balanced
accuracies across control groups from various datasets, the proposed RUS classifier demonstrated
superiority for most datasets, achieving 64.3% for OPDC HC and 90.8% for Whitehall Il controls. The
only exception is the ADNI CN group, where the MRIQC classifier achieved the highest balanced
accuracy at 98.6% with the RUS classifier performing close to MRIQC (95.8%).
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Figure 6. Balanced accuracy of proposed classifiers, MRIQC, and CAT12 analysed separately for scans from
healthy individuals, patients, and each diagnostic sub-category within both healthy and patient groups in the test
dataset. Number of samples in the test data are provided in brackets for each category (x-axis). Legend of
diagnostic subgroups: CN = cognitively normal; HC = Healthy Controls; MCI = Mild Cognitive Impairment; RBD =
REM Sleep Behaviour Disorder; iPD = idiopatic Parkinson’s Disease.

Feature importance
The feature ranking of the final model (combined data model) included features from both CAT12 and

MRIQC in the top ranked features. The top 80 features (feature size showing the best balanced
accuracy for the proposed RUS classifier) included 23 features from CAT12 [noise, contrast ratio,
surface and tissue measures] and 57 features from MRIQC [summary measures, noise measures and
tissue measures]. We selected the top 10 features (from 80 features) and plotted them to explore the

distribution of these QC measures for each site in datasets (See KS density plots in Figure 7 for different
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sites in ADNI and Figure 8 for other sites). The plots reveal significant variations in the distribution of
the top 10 features among different sites, highlighting technical variability despite the datasets
originating from scanners of the same manufacturer. For instance, the disparity in feature distribution
between the BHC dataset and others, despite all being acquired on 3T Siemens scanners, is evident
(refer to Figure 8 panels b, ¢, d, f, i, j). Conversely, the distribution of features in the ADNI dataset
suggests a more consistent pattern across various sites (refer to Figure 7 panels a to I).

The statistical significance test (KS-test) conducted on the 80 features showed notable differences in
the distribution between the pairs of sites. Details of KS-test on each pair of sites are reported in the
Supplementary material. Briefly, significantly different distributions were observed for various features
(>40% of 80 features) between the ADNI sites (Siemens — 1.5T, 3T, GE — 1.5T, 3T, Philips — 1.5T, 3T) with
the BHC, OPDC and Whitehall sites. When comparing the distribution within ADNI sites very few (<13%
of 80 features) or none of the features showed significantly different distribution between the pairs of
sites. Additionally, when comparing the distribution of features within non-ADNI sites (BHC, OPDC,
Whitehall), many features (>67% of 80 features) showed statistically significant distribution.

As an example, Figure 9 presents scatter plots illustrating the relationship of two features:
noiseNCR_rps (CAT12) and snr_total (MRIQC). These plots offer insights into the distribution patterns
of these features across various scenarios. Noticeable clustering is observed between two different
datasets (BHC from Siemens 3T and ADNI GE 1.5T), acquired from distinct scanner manufacturers and
field strengths. However, there is no clustering within the sites of ADNI dataset irrespective of the
difference in the scanner manufacturer (ADNI Philips 3T and ADNI Siemens 3T) and field strength (ADNI
Siemens 1.5T and ADNI Siemens 3T). Another notable observation is the evident clustering observed
between the BHC and Whitehalll datasets, despite both datasets being acquired using Siemens 3T

Prisma scanners.
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Figure 7. Kernel density plots showing the distribution of top 10 ranked features in final combined data model
for sites within ADNI dataset. For a description of the features, please refer to tables Table 2 and Table 3.
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Figure 8. Kernel density plots showing the distribution of top 10 ranked features in final combined data model
for BHC, OPDC, Whitehalll and Whitehall2 sites. For a description of the features, please refer to tables Table 2
and Table 3.
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Figure 9. Scatter plots for two features snr-total from MRIQC on x-axis and noiseNCR-rps from CAT12 on y-axis
showing different levels of overlap for different combinations of dataset, field strength and manufacturer.

Leave-one-site out models
From the results on the combined model, the RUS classifier gave the best performance and was used

for further experiments. Across all sites, the proposed RUS classifier achieved the highest balanced
accuracy (78.2 + 8.3 %) as compared to MRIQC (67.5 + 11.5 %) and CAT12 (60 + 7.2 %) (Figure 10).
When comparing the balanced accuracy for each site, the proposed RUS classifier consistently
performed better than MRIQC except for two sites (ADNI Philips 1.5T, OPDC Siemens 3T) where it
showed 1% lower balanced accuracy than MRIQC. As expected, the balanced accuracy for individual
sites in leave-one-site-out models tended to be lower compared to the results from the combined data
model (average across sites = 85.6 + 10 %, displayed for reference in Figure 10), due to fewer samples
available in the test data and the presence of site-specific data in the training set for the combined

data model.
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Figure 10. Balanced accuracy of MRIQC, CAT12 and the proposed RUS classifier. The total number of samples for

each test site are provided in brackets (x-axis). For RUS classifier, each site was kept as test data and classifier
was trained on remaining sites using the hyperparameters and feature ranking derived from combined data
model (best model with 80 Feature size). For reference, we also provide the balanced accuracy of RUS classifier
for each site within the test data of the combined data model to see how well our classifier generalises to test
data from different sites (diamond marker with grey colour). Note that balanced accuracies for the combined
data model are not included for three sites (ADNI GE 3T, ADNI Philips 1.5T and ADNI Siemens 2.9T) due to the
absence of samples in the reject class of the test data (resulting in NaN values for balanced accuracies)

Exploratory models
For all three exploratory models, the proposed RUS classifier consistently showed the highest balanced

accuracies (73.8% - 80.4%) compared to MRIQC (63.8% - 67.9%) and CAT12 (56.6% - 58.3%) (Figure
11). Additionally, when comparing performance across exploratory models, the model trained on 3T
scanners and tested on 1.5T scanners data showed higher balanced accuracy (80.4%) than the other
two cases (manufacturer = 78.9%, field strength and manufacturer = 73.8%), probably due to the
higher number of training samples (See Table 7). The ‘manufacturer’ model trained with Siemens data
(1.5T, 2.9T, 3T) showed 84% balanced accuracy on Philips scanner data (1.5T, 3T) and 75% balanced
accuracy on GE scanner data (1.5T, 3T). The model trained with 3T Siemens data (Field strength +
Manufacturer) showed 72.4% balanced accuracy on test data from Siemens scanner (1.5T, 2.9T), 73.3%
balanced accuracy on test data from GE scanner (1.5T, 3T) and 76.6% balanced accuracy on test data

from Philips scanner (1.5T, 3T).
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Also, in this case the performance on test data from the combined model for each of the three models
(reported for reference in Figure 11) showed higher balanced accuracies (except field strength

exploratory model which achieved 3.4% higher accuracy).
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Figure 11. Balanced accuracy of MRIQC, CAT12 and the proposed RUS classifier for exploratory models. The total
number of samples for each test site are provided in brackets (x-axis). Field strength: performance of models
trained on 3T scanners data (Siemens, Philips, GE) and tested on 1.5T (Siemens, Philips, GE) and 2.9T (Siemens)
scanners data; Manufacturer: performance of models trained on Siemens (1.5T, 2.9T, 3T) data and tested on
Philips (1.5T, 3T) and GE (1.5T, 3T) data; Manufacturer and field strength: performance of models trained on
Siemens 3T data and tested on Siemens (1.5T, 2.9T), Philips (1.5T, 3T) and GE (1.5T, 3T) data. Additionally, the
balanced accuracy of the RUS classifier within the test data for the combined data model for each scenario is
presented for reference (diamond marker with grey colour).

28



Discussion
In this study we investigated approaches for automated quality control of T1w brain scans for ageing

and clinical datasets acquired from multiple sites. The existing tools assessed in this study, MRIQC and
CAT12, offer a broad array of quality metrics both from raw and processed images. We observed that
some of the metrics are common between the tools, either assessing the same measures or highly
correlated measures, while others are unique (i.e. not significantly correlated to measures from the
other tool). When looking at the agreement in the accept or reject ratings between these tools and
with visual QC, we found high variability across datasets, suggesting that these tools might not be
suitable for highly heterogenous clinical datasets and the decision to accept or reject a scan will differ
based on the dataset and the chosen tool. We observed enhanced agreement between visual QC and
these tools after modifying the acceptance threshold. Nevertheless, these enhancements varied
across different datasets, indicating that the adjusted thresholds may not be suitable for all clinical
datasets. We then proposed a QC prediction approach by combining the quality measures from the
automated tools to create a new classifier. The proposed RUS classifier exhibited higher performance
than SVM and RF and good generalisability of prediction on the test datasets from diverse sites,
scanner manufacturers and field strengths (balanced accuracy 87.7% on combined test data; average
balanced accuracy 78 £+ 8.3% on 11 test sites; average balanced accuracy 77.7 + 3.5 % on exploratory
models).

The RUS classifier outperformed MRIQC predictions and CAT12 QC ratings, supporting the benefit of
using a combination of MRIQC and CAT12 quality measures. This is evident from the feature ranking,
where the selected features at the top originated from both tools. Additionally, we explored the
distribution of the quality measures that significantly contributed to the high performance (top ranked
features) and observed that certain measures effectively captured variations across datasets (even for
datasets acquired using scanners from the same field strength and manufacturer, for example, BHC
and Whitehall2 datasets both acquired on Siemens 3T Prisma scanners). This highlights the complex
technical differences among datasets, which might be influenced not solely by scanner manufacturer
or field strength, but also by other factors for (e.g., acquisition parameters, number of channels in
head coil, cohort characteristics such as age, sex, diagnosis etc.). These quality measures, when used
in the context of harmonization techniques such as Neuroharmony (Garcia-Dias et al., 2020), could be
instrumental in mitigating site-related effects in studies involving data from multiple sites.

A limitation of this study arises from the highly curated nature of the datasets, resulting in a significant
imbalance between accept and reject labels. To address this, we focused on optimising balanced
accuracy rather than overall accuracy. We also implemented multiple iterations of nested cross-

validation (total 100) to iteratively validate and train our model on different samples. The use of the
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RUS classifier effectively addressed the issue of class imbalance by implementing under-sampling on
the majority class (accept-labelled scans) to match it with the minority class (reject-labelled scans)
during the training phase. This is clearly demonstrated by the improved specificity in predicting reject
class labels, resulting in a notable enhancement in the balanced accuracy of RUS prediction when
compared to RF, SVM, and other automated tools.

The RUS classifier achieved comparable performance on data from patients and controls (balanced
accuracy of 86.8% and 88.3% respectively). We observed differences in performance across diagnostic
subgroups, but while for ADNI the performance was lower in dementia than controls, in OPDC the
performance was lower for controls than PD patients. This suggests that while diagnostic status of
scans could affect results, the results may also be influenced by the total number of samples and
number of scans in the reject class within each subgroup, making it difficult to perform a fair direct
comparison across subgroups. We used a similar number of samples from both classes (accept and
reject) in the training and test datasets for patients and controls, but not necessarily balanced within
subgroups, due to the differences highlighted above. The performance across test sites (leave-one-
site-out) and datasets in exploratory models indicates that our RUS classifier, when trained with
different training datasets, maintains strong generalisation capabilities across diverse sites, scanners,
and field strengths.

Another limitation of this study arises from the use of defaced T1w scans which involves the removal
of facial features to protect individuals' privacy. This step modifies the image, potentially altering the
characteristics use for quality control. Recent studies have also indicated that defacing might influence
the estimation of brain morphometry in contrast to non-defaced images (Bhalerao et al., 2022;
Rubbert et al.,, 2022). While this issue remains an ongoing concern within the neuroimaging
community, we decided to use defaced images as this is currently the best practice for sharing datasets
and our goal was to develop a QC approach able to work on multiple datasets, likely aggregated from
different sources on a data sharing and analysis platform, like the DPUK portal. For consistency, we
applied the same defacing method (fsl_deface) across all datasets. Another constraint stems from the
fact that the visual QC was performed by different raters, as we relied on visual QC ratings provided by
the dataset owners. While this could have impacted the results as different raters may have had
different subjective threshold for quality control, this setting reflects the real-world scenario of
combining datasets from different sources. Nonetheless, our approach effectively captured the dataset
variability and demonstrated high performance across all test cases, outperforming the other
automated tools. Our primary goal was to develop a classifier using existing datasets available for
sharing. However, as mentioned one of the challenges encountered is the limited availability of poor-

quality scans (reject class), as shared datasets often are already highly curated. In future, obtaining
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more diverse and representative samples from the reject class could enhance the classification
performance. Sharing poor-quality data can help the development of automated QC approaches,
which can enhance the generalizability of classification on new datasets and ultimately to real-world
clinical scans. Another strategy to address this issue involves leveraging synthetic image generation
techniques. For instance, new datasets can be created by artificially introducing image artifacts into
MRI scans derived from real-world data, thereby augmenting the sample size within the reject class
(Ravi et al., 2024). However, the challenge is to create images that simulate realistic artefacts (Giuffre
& Shung, 2023). Another potential future direction would be to test the inclusion of more QC features
(such as from FreeSurfer tool (Dale et al., 1999), UK biobank neuroimaging pipeline etc.(Alfaro-
Almagro et al., 2018) in our classification framework to test if they result in increased performance
(without significantly increasing the computational load) and/or further improve the generalisation of
our classifier to new datasets. Our model is available to the community, and we plan to extend similar

framework to test the quality of other MRI modalities.

Conclusion
We proposed a classification model for quality assessment of T1-weighted scans of clinical datasets

originating from diverse scanners, acquisition protocols, and spanning an elderly age range. Our
approach involved combining the quality measures derived from automated tools, yielding promising
performance, particularly when dealing with heterogeneous datasets from ageing and diseased
cohorts. The code is readily available, and we will also share the QC metrics, trained classifiers, and
outputs of this work through the DPUK data portal. This resource will serve as an asset for further
exploration and robust QC of T1w scans across datasets, promoting comprehensive and reliable image

quality assessment in future studies.

Data Sharing

e Code is available here: https://git.fmrib.ox.ac.uk/mcz502/qc-paper

e Access to ADNI data is available to researchers upon request and approval of a data usage

agreement (https://adni.loni.usc.edu/). Details on how to request access to the data can be found

at http://adni.loni.usc.edu/data-samples/access-data/.

e Other datasets used in this study can be accessed through the submission of an application via the

DPUK data portal (https://portal.dementiasplatform.uk/Apply)
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