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Abstract 28 

Given the rapid cross-country spread of SARS-CoV-2 and the resulting difficulty in tracking 29 

lineage spread, we investigated the potential of combining mobile service data and fine-30 

granular metadata (such as postal codes and genomic data) to advance integrated genomic 31 

surveillance of the pandemic in the federal state of Thuringia, Germany. We sequenced over 32 

6,500 SARS-CoV-2 Alpha genomes (B.1.1.7) across seven months within Thuringia while 33 

collecting patients' isolation dates and postal codes. Our dataset is complemented by over 34 

66,000 publicly available German Alpha genomes and mobile service data for Thuringia. We 35 

identified the existence and spread of nine persistent mutation variants within the Alpha 36 

lineage, seven of which formed separate phylogenetic clusters with different spreading 37 

patterns in Thuringia. The remaining two are sub-clusters. Mobile service data can indicate 38 

these clusters' spread and highlight a potential sampling bias, especially of low-prevalence 39 

variants. Thereby, mobile service data can be used either retrospectively to assess 40 

surveillance coverage and efficiency from already collected data or to actively guide part of a 41 

surveillance sampling process to districts where these variants are expected to emerge. The 42 

latter concept was successfully implemented as a proof-of-concept for a mobility-guided 43 

sampling strategy in response to the surveillance of Omicron sublineage BQ.1.1. The 44 

combination of mobile service data and SARS-CoV-2 surveillance by genome sequencing is 45 

a valuable tool for more targeted and responsive surveillance.  46 
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Introduction 47 

On March 11, 2020, the World Health Organization (WHO) classified the SARS-CoV-2 virus 48 

(Severe Acute Respiratory Syndrome - Corona Virus - 2) as a global pandemic due to its 49 

rapid spread and high infection rate.1 The airborne virus has since caused significant 50 

morbidity and mortality worldwide (https://covid19.who.int/). In an attempt to control its 51 

spread, many countries initiated comprehensive surveillance efforts with molecular 52 

techniques such as Polymerase Chain Reaction (PCR) and Whole Genome Sequencing 53 

(WGS).2,3 Consequently, nearly 15.8 million SARS-CoV-2 sequences have been deposited 54 

into the "Global Initiative on Sharing All Influenza Data" database (as of July 21, 2023, 55 

GISAID). Many research groups have undertaken studies examining the viral spread by 56 

integrating sequencing and epidemiological data to monitor the pandemic and investigate 57 

local outbreaks.4,5 Most of these local projects are part of national surveillance programs 58 

such as the UK's Genomics Consortium (COG-UK) or "national genomic surveillance" in the 59 

USA.2,6 In Germany, the "Coronavirus-Surveillanceverordnung" (CorSurV) enacted by the 60 

State Ministry of Health on January 19, 2021, mandated that laboratories with sequencing 61 

capabilities process SARS-CoV-2-positive samples, offering financial compensation until 62 

April 2023.3 63 

Bioinformatics workflows developed in Germany, such as poreCov (for Oxford Nanopore 64 

data) and CoVpipe2 (for Illumina data), reconstruct SARS-CoV-2 consensus genomes from 65 

the sequencing data and prepare the results for upload and submission to the Robert Koch 66 

Institute (RKI).7,8 As the German government’s public health and biomedical research 67 

institute responsible for disease control and prevention, the RKI collected the genomes via 68 

the German Electronic Sequence Data Hub (DESH) and integrated them with additional 69 

epidemiological information to provide an up-to-date overview of the ongoing viral spread. 70 

For keeping track of the rapid SARS-CoV-2 evolution, PANGO (Phylogenetic Assignment of 71 

Named Global Outbreak) provides a standard naming convention based on unique mutation 72 

profiles and further criteria, resulting in the classification of over 3,660 lineages (as of August 73 

2023).9,10 Additionally, the WHO classified important viral lineages as “Variants of Concern” 74 

(VOC), “Variants of Interest” (VOI), or “Variants under Monitoring” (VUM), using Greek 75 

designations in the past (e.g., “Alpha” (Pango lineage main designation B.1.1.7) or 76 

“Omicron” (Pango lineage main designation B.1.1.529)). Further, the WHO also de-77 

escalated former VOCs to reflect the current SARS-CoV-2 variant landscape better. The first 78 

defined VOC (now de-escalated), the Alpha lineage, rapidly replaced almost all previously 79 

circulating lineages globally by the end of 2020 until the VOC Delta (main lineage B.1.617.2) 80 

replaced it in mid-2021.11–13 81 
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To predict or monitor the rapid viral spread throughout regions, various data types, like travel 82 

data, passenger volumes, or passive wastewater monitoring were examined previously.14–16 83 

Furthermore, different studies explored mobility data with genomic data to retrace the origin 84 

and spatial expanse of Alpha or utilized geolocation data to model the spread in metropolitan 85 

areas to recreate case trajectories and the impact of mobility restrictions.17,18 Mobility data 86 

was also used in Germany during the pandemic, revealing that lockdowns leave distant parts 87 

of the country less connected due to the sharp decline in long-distance travel.19 These 88 

studies focused on analyzing residential movement and contact tracing to evaluate and 89 

inform health policies but were not applied to active molecular surveillance. 90 

Here, we investigated whether mobile service data and fine-granular metadata (such as 91 

postal codes and genomic data) can help predict the spread of the Alpha lineage or guide 92 

the sampling for more targeted genomic surveillance with a focus on the German federal 93 

state of Thuringia. 94 

Results 95 

The Alpha lineage spread rapidly through Thuringia, showing a pattern 96 

similar to its nationwide spread 97 

Thuringia is a rural federal state in central Germany with a population of 2.1 million and no 98 

major airports (overview of Thuringia’s population density in Supplementary Figure S1). We 99 

investigated if the spread of the Alpha lineage of SARS-CoV-2 behaved differently compared 100 

to the whole of Germany. To understand its spread, we used 289,487 public SARS-CoV-2 101 

genomes from Germany (excluding Thuringia; including 137,024 Alpha genomes) and 7,394 102 

genomes from our own sequencing data for Thuringia (including 6,307 Alpha genomes) to 103 

track Alpha’s occurrence from December 2020 to August 2021 (see Figure 1, 104 

Supplementary Figure S2, and Supplementary Tables S1 and S2; for details, see Methods 105 

section "Alpha spread datasets"). For Thuringia, district-level data (full postal code) per 106 

genome were available, whereas, for Germany, only postal code data of the sending 107 

laboratories (referred to as “primary diagnostic laboratory” by the RKI where the SARS-CoV-108 

2 positive sample was detected) and sequencing laboratories were publicly available. 109 
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 110 
Figure 1: Total number of all sequenced SARS-CoV-2 samples (purple) and the proportion of 111 
the Alpha lineage for all sequenced samples (yellow-red) for each state of Germany and each 112 
district of Thuringia. 289,487 publicly available German SARS-CoV-2 genomes and their metadata 113 
were used for the general German maps, excluding data from Thuringia. For Thuringia, we always 114 
used 7,394 genomes and their metadata from our database for the German and Thuringian maps. 115 
Please note that for all states except Thuringia, we used the postal code of the sending laboratory as 116 
a proxy for the geographic location of a sample. A gray border on the maps of Germany highlights 117 
Thuringia. 118 
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In late December 2020, six federal states in Germany (from here on called states) reported 119 

the first cases of the Alpha variant. Although sequencing was initially low, it gradually 120 

increased in the following month. However, the Corona-Surveillance regulation was passed 121 

at the end of January 2021, leading to a rapid increase in sampling and sequencing by 122 

February since sequencing costs could be reimbursed. Even though Thuringia sequenced a 123 

similar amount of SARS-CoV-2 samples compared to other German states (as shown in 124 

Figure 1), the proportion of the Alpha variant to other lineages was relatively low. However, 125 

the proportion of Alpha increased heavily in February.  126 

By March, Alpha had spread to nearly all states and districts (districts are similar to counties 127 

or provinces) in Germany (Median: 76·47 % Alpha samples among a federal states total 128 

sequenced samples compared to 36·03 % in February, excluding Thuringia) and Thuringia 129 

(Median: 85·29 %, up from 50·00 % in February). So, there was no noticeable difference in 130 

the Alpha proportions between Germany and Thuringia after February. During the summer 131 

of June and July 2021, sequencing declined in Germany (including Thuringia; 132 

Supplementary Figure S2) due to the decrease in overall daily cases, as reported by 133 

Meintrup et al. and Oh and Hölzer et al..20,21 134 

In summary, the spread of the Alpha lineage in Thuringia lagged roughly two weeks behind 135 

the general spread of other German federal states but showed similar proportions. This 136 

suggests that Thuringia experienced a delay in the initial arrival of Alpha. However, we did 137 

not observe any difference in the overall spread afterward. Thuringia was among the first 138 

states to adopt new containment measures, including contact limitations, closure of retail 139 

shops, and prohibition of tourist journeys (14th December 2020). Jena, a city in Thuringia, 140 

was also the first German city to implement mandatory public masking in March 2020.22 141 

Contacts were further restricted on January 9th, and people were urged to restrict their 142 

movement radius to 15 km, which might explain the delay besides the absence of major 143 

airports nearby. 144 

All Thuringian genomes were evenly distributed between other German samples in the 145 

phylogenetic time tree (see Supplementary Figure S3). However, due to its rapid spread 146 

from February onwards, it is difficult to accurately track how the Alpha lineage specifically 147 

expanded (point of entries, exact origins, etc.). Consequently, we investigated whether 148 

"sublineages" might be identifiable and trackable to address this. 149 

Monitoring of Alpha subclusters in Thuringia reveals temporally and 150 

regionally restricted distribution patterns 151 

To identify possible clusters among the Alpha lineage spreading in Thuringia, we called each 152 

Alpha genome's mutations via Nextclade by analyzing them using poreCov.7,23 We identified 153 
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nine clusters out of 70,429 Alpha genomes, based on their mutation profile, time period, and 154 

phylogenetic distance (from here on called Alpha subclusters; for details, see Methods 155 

“Subcluster identification”). All subclusters, their time period, and sample size in Thuringia 156 

are summarized in Table 1. An overview of each subcluster (phylogenetic time tree, location, 157 

and period) is also provided on microreact.org as interactive views (see Methods “Subcluster 158 

identification”). Note that our subcluster definition is similar to the definition of a sublineage. 159 

However, PANGO sublineages were rarely defined during the Alpha wave (PANGO 160 

designation: Q.1 to Q.8; compared to the Delta and Omicron waves). 161 

Table 1: Overview of nine Alpha subclusters in Thuringia, their sample count, their time period, 162 
and their specific mutations that are shared across all members of the subcluster (excluding 163 
characteristic Alpha mutations that are shared across all subclusters). The mutation used to 164 
define the subcluster is highlighted in bold. 165 

Designation Mutations Number of samples Time period Remarks 

1 S:H49Y, 
ORF1a:I841V 

44 Feb-May 2021 S:H49Y eases cell entry in S-pseudotyped 
lentiviral system.24 

2 S:N354K 
63 Feb-May 2021 S:N354K slightly impaired mAb h11B11.25 

3 S:G496S, 
ORF1a:E1013K 

12 Mar-May 2021 

S:G496S: compromises BA.1 replication 
fitness and changed mAb sensitivities, 

reduces ACE2 binding affinity, and increases 
immune evasion.26–28 

4 S:N703D, 
ORF1a:D1228G, 
ORF1a:A2123V 

51 Mar-May 2021 - 

5 S:T716V, 
N:G204P, 
ORF1a:D1600N 

22 Apr-May 2021 - 

6 S:S939F 
206 Feb-May 2021 S:S939F: modulates T-cell propensity.29 

6.1# S:V90F, 
S:S939F 

55 Feb-May 2021 - 

7 ORF1b:A520V 
811 Feb-Jun 2021* - 

7.1$ S:N185D, 
ORF1b:A520V, 
ORF1b:L1504F 

40 Feb-May 2021 - 

* only one sample for June    # branch from subcluster 6   $ branch from subcluster 7 166 

Eight of these subclusters are based around a specific spike protein mutation, while the 167 

other contains a mutation within the ORF1b region. The subcluster 7.1 “S:N185D” branched 168 

out from the subcluster 7 “ORF1b:A520V” and subcluster 6.1 “S:V90F” is a branch of 169 

subcluster 6 “S:S939F” (see Table 1). These two branched subclusters still carry the specific 170 

mutation of their originating subcluster. The subclusters 3, 4, and 5 were observable 171 
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between two and three months, and the other subclusters over at least four months. To 172 

investigate these subclusters' regional spread, each sample was mapped to its Thuringian 173 

district based on the resident’s postal code from which it was isolated. We then sorted the 174 

samples according to their subclusters and visualized them throughout the subcluster’s 175 

observed period. The spread of two representative subclusters is exemplary visualized in 176 

Figure 2a, and all the subclusters are available via Supplementary Figure S4 and their data 177 

in Supplementary Table S3. Additionally, all subclusters and their metadata are also 178 

available via Microreact (see Methods “Subcluster identification”). 179 

 180 

Each of the seven main mutation variant clusters originated from a different Thuringian 181 

district. At the same time, two subclusters, 6.1 and 7.1, branched out from the same districts 182 

as their original clusters (6 and 7) 12 or 13 days after their first emergence. The subclusters 183 

mainly spread regionally confined and not across all of Thuringia (see Figure 2a and 184 

Supplementary Figure S4) but were also identified in other states of Germany (see 185 

“microreact.org”-project). For example, the “S:S939F” subcluster spread across 15 states, 186 

with the first samples being isolated outside of Thuringia. The eight Spike-mutation 187 

subclusters had expanded between four to twelve of the 23 Thuringian districts within the 188 

observable time period of each subcluster. They expanded by one to six districts per month, 189 

with a greater expansion accompanied mainly by a larger increase in the subcluster sample 190 

number. In contrast, the ORF1b-variant even comprised 21 districts and expanded between 191 

two to seven districts per month (see Figure 2a). Most of each subcluster's samples were 192 

identified in their region of first occurrence, and no additional samples were found after the 193 

given periods. 194 

Several limitations need to be considered. The identified subclusters may have multiple 195 

origins or may not originate from Thuringia. Due to the lack of precise zip codes (publicly 196 

available German genomes are limited to postal codes of sending and sequencing 197 

laboratories), monitoring the subclusters in other states on a district level was impossible. 198 

Nevertheless, we could follow how the subclusters developed in Thuringia, even if multiple 199 

origins may have affected the overall speed or length of each subcluster's occurrence. 200 

Our surveillance sampling heavily relies on various institutions and partners, and only a 201 

portion of the provided samples can be sequenced (see “Sampling” in Methods). For 202 

example, the spread of subcluster “S:S939F” revealed two districts in April where no 203 

respective samples were found (Figure 2a) despite being surrounded by districts with 204 

“S:S939F”-samples present. This could be due to the lack of samples sent to sequencing 205 

from those regions or the low prevalence. We, therefore, investigated if mobile service data 206 

of residents, in addition to molecular surveillance, might be utilized to counteract this issue. 207 
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Mobile service data indicates Alpha subcluster spread and sampling bias 208 

With the aim to predict the subcluster spread and, thereby, reduce surveillance-based 209 

sampling bias, we utilized anonymized mobile service data from T-Systems International 210 

GmbH. Around 200 million trips were used to determine the number of daily trips between 211 

the Thuringian districts. We then combined this information with our fine-granular genomic 212 

data to specify each district's monthly proportion of inbound mobility from subcluster-213 

affiliated districts (see Methods “Mobile service data”). The results are visualized in Figure 214 

2b (complete overview in Supplementary Figure S5; data provided in Supplementary Table 215 

S4). 216 
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 217 

Figure 2: Overview of the subclusters “S:S939F” and “ORF1b:A520V” in Thuringian districts. 218 
a) Accumulated number of sequenced samples for each subcluster per district and per month. b) 219 
Combined visualization of each district's “inbound mobility” from other districts (color intensity) and the 220 
occurrence of a subcluster sample (red = sample found, blue = no sample found). The inbound 221 
mobility of each district (blue color intensity) is shown as a proportion of incoming mobility from other 222 
districts with or without an identified sample. The darker the blue color of a district, the higher the 223 
proportion of inbound mobility from other districts with an identified subcluster sample (red districts). 224 
The light blue color describes that most of the inbound mobility of a district comes from other districts 225 
without an identified subcluster sample (blue districts). Numbers refer to district types 1, 2, and 3, as 226 
further defined in the main text. The last month of subcluster “ORF1b:A520V” is not visualized, as 227 
affected districts were unchanged. 228 
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The mobile service data-based prediction of a subcluster’s spread aligned well with the 229 

subsequent regional coverage of fast-spreading, highly prevalent subclusters, such as 230 

subcluster 7, which covered 811 samples (see Figure 2). In contrast, the predicted spread 231 

for the low-prevalence subclusters did not correspond well with the actual occurrence. Yet, 232 

adding mobile service data resulted in three different “types” of districts (see Figure 2b, 233 

annotated districts). Type 1 included districts with high inbound mobility from areas with an 234 

identified variant, where the variant was eventually found afterward, while Type 2 included 235 

districts with high inbound mobility from areas with an identified variant, where the variant 236 

was never identified. Type 3 included districts not directly connected to a district with an 237 

identified variant, but a variant was eventually identified while they border Type 2 district(s). 238 

Our previous analysis of the subclusters' spreading pattern across the districts, based solely 239 

on identified variants, indicated missed identifications in some districts due to the seemingly 240 

illogical spread to districts without a connection to others (Figure 2a, subcluster “S:S939F”). 241 

The inclusion of mobile service data revealed some of these districts to be Type 2 districts. 242 

This suggests that the specific variant should be identifiable within these districts due to the 243 

observed high incoming mobility from districts with identified variants. Type 2 districts were 244 

mainly observed for subclusters with low prevalence and, consequently, low numbers of 245 

covered samples that are usually more difficult to monitor. For example, we assumed 246 

missing identifications in some districts of subclusters 1, 2, and 3, which, through the mobile 247 

service data, are now partially identified as Type 2 districts. However, due to their low 248 

prevalence, it is also possible that these subclusters have not spread to the indicated 249 

districts.  250 

Despite analyzing the mobile service data of districts from other federal states than 251 

Thuringia, we could not apply them, as the lack of precise location data for samples outside 252 

of Thuringia prevented the correct calculation of the incoming mobility. Based on the nine 253 

observable clusters, we concluded that mobile service data is a good prediction marker for 254 

the spread of high-prevalence variants but, more importantly, a good indication of districts 255 

that should have an identified low-prevalence variant. Next, we investigated if mobile service 256 

data can improve active surveillance via guiding sample collection for genomic sequencing. 257 

Proof of principle: Mobile service data-guided sampling for genomic 258 

surveillance for Omicron BQ.1.1 259 

Based on our previous findings, we implemented the “mobility-guided” sampling approach 260 

under real pandemic circumstances over one month in addition to our active surveillance.  261 

As the subject of investigation, we searched for a newly emerging (based on global news 262 

reports) and ideally low prevalent SARS-CoV-2 lineage in Thuringia.  263 
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Among the various emerging Omicron sublineages during that time, sublineage BQ.1.1 264 

fulfilled the defined criteria. First isolated in a northwestern Thuringian community with 265 

around 20,000 inhabitants on October 5, 2022, we identified this particular sublineage on 266 

October 14, 2022, among a routine batch of 42 samples. BQ.1.1 was a low-prevalence 267 

sublineage that was identified worldwide (https://outbreak.info/situation-268 

reports?pango=BQ.1.1).  269 

Following its first Thuringian identification, we utilized the latest available dataset of the past 270 

two years of mobile service data (October 2020 and June 2021) to investigate the residential 271 

movements for the community of first detection. Considering the highest incoming mobility 272 

from both datasets, we identified 18 communities with high (> 10,000), 34 with medium 273 

(2,001-10,000), and 82 with low (30-2,000) number of incoming one-way trips from the 274 

originating community (purple triangles in Figure 3a). As a result, we specifically requested 275 

all the available samples from the eight communities with the highest incoming mobility. Still, 276 

we were restricted to the submission of third parties over whom we had no influence. This 277 

led to the inclusion of the following eight communities with the most residential movement 278 

from the originating community: four in central and three in NW of Thuringia, one in NW-279 

neighboring state Saxony-Anhalt. The samples requested from central Thuringia were also 280 

due to their geographic arrangement as a “belt” in central Thuringia, linking three major cities 281 

(see Supplementary Figure S1). Subsequently, we collected 19 additional samples (isolated 282 

between the 17th and 25th of October 2022; see “Guided Sampling” for October 2022, 283 

Figure 3a) besides the randomized sampling strategy. Thus, the sampling depth was 284 

increased in communities with high incoming mobility from the first origin.  285 

As part of the general Thuringian surveillance, we collected 132 samples for October 286 

(covering dates between the 5th and 31st) and 69 samples in November (covering dates 287 

between the 1st and 25th; see Figure 3b and 3c). Randomized sampling was not influenced 288 

or adjusted based on the mobility-guided sample collection. Thus, it also contains samples 289 

from communities with a mobility link towards the first occurrence of BQ.1.1, as they were 290 

part of the regular random collection (see gray triangles in Figure 3b). A complete overview 291 

of all samples is provided in Supplementary Table S5. The mobility datasets from October 292 

2020 and June 2021 for all sampled communities are provided in Supplementary Table S6. 293 
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 294 

Figure 3: Overview of the mobility-guided sampling of the Omicron sublineage BQ.1.1 in 295 
Thuringia (a) compared to the default randomized sampling (surveillance) in October (b) and 296 
November 2022 (c). The randomized surveillance results in November 2022 (c) have been added to 297 
highlight the spreading progress of BQ.1.1. Dots reflect the location of each sample (based on 298 
residents' zip codes). Orange dot: First identified BQ.1.1 sample; Red dot: Additionally identified 299 
BQ.1.1 sample; Blue dot: Another SARS-CoV-2 lineage. Purple triangles represent the number of 300 
one-way trips a community received from the community of the first BQ.1.1 occurrence (orange dot) 301 
based on mobility data from October 2020 and June 2021. The same mobility data from mobility-302 
guided sampling (a) were added in grayscales to the randomized surveillance (b and c) as a visual 303 
reference only. Sampling dots are slightly scattered to improve visibility. 304 

Among the 19 samples specifically collected based on mobile service data, we identified one 305 

additional sample of the specific Omicron sublineage BQ.1.1 in a community with high 306 

incoming mobility (n = 14, number of trips = 37,499) with a distance of approximately 16 km 307 

between both towns. Our randomly sampled routine surveillance strategy did not detect 308 

another sample during the same period. This was despite a seven times higher overall 309 

sample rate, which included 31 samples from communities with an identified incoming 310 

mobility from the community of the first occurrence (October 2022, Figure 3b). Only in the 311 

one-month follow-up were four other samples identified across Thuringia through routine 312 

surveillance (November 2022, Figure 3c). 313 

During our attempt to implement the mobility-guided sampling approach in real-time during 314 

the pandemic, we encountered three distinct limitations, some of which are commonly 315 

observed in surveillance practices. The guided sampling depended on the individual sample 316 

submitting institutions, affecting the availability of suitable samples, especially for the 317 

communities of interest. By choosing a newly emerging Omicron sublineage for our 318 

experiment, spread and, therefore, suitability were uncertain. In our case, BQ.1.1’s 319 

prevalence in Thuringia was even lower than expected, and it also remained rare in 320 

subsequent months, with only 42 samples found until June 2023, eight months after the first 321 

occurrence in Thuringia. Due to the short preparation time, only mobile service data from the 322 
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past two years and no current data were available. Nevertheless, the available datasets still 323 

reflect pandemic movement behavior since the pandemic has been ongoing for two years. 324 

In summary, increasing the sampling depth in the suspected regions successfully identified 325 

the specified lineage using only a fraction of the samples from the randomized sampling. 326 

Conversely, randomized surveillance, the “gold standard” acting as our negative control, did 327 

not identify additional samples with similar sampling depths in regions with no or low 328 

incoming mobility or even in high mobility regions with less sampling depth. Implementing 329 

such an approach effectively under pandemic conditions poses difficult challenges due to the 330 

fluctuating sampling sizes. Although the finding of the sample may have been coincidental, 331 

our proof of concept demonstrated how we can leverage the potential of mobile service data 332 

for targeted surveillance sampling. 333 

Conclusion 334 

During the SARS-CoV-2 pandemic, diverse data sources like travel, wastewater, and 335 

mobility data have been employed in surveillance and transmission tracking.14–19 In the 336 

present study, we analyzed over 296,800 German SARS-CoV-2 genomes to examine 337 

whether mobile service data can predict the spatial distribution of the Alpha lineage in the 338 

German state of Thuringia and how they potentially benefit pandemic surveillance. 339 

A plausible explanation for the delayed spread of the Alpha lineage in Thuringia is the lack of 340 

major transport hubs, as Alpha first occurred in federal states with such hubs. Previous 341 

studies have already highlighted the impact of major transportation hubs in the spread of 342 

Sars-CoV-214,30. However, its impact on the total distribution is limited, and the spread was 343 

ultimately comparable between Germany and Thuringia. While our findings on mobile 344 

service data may also apply to Germany, we could not verify this because the limited 345 

location data of publicly available German genomes prevented in-depth investigations 346 

outside of Thuringia. Thus, precise sampling location data are crucial to utilize mobile 347 

service data in genomic surveillance, but privacy regulations may restrict access to this data. 348 

Shortly after Alpha’s emergence, mutation variants formed like the known sublineages Q.1 to 349 

Q.8 and the Thuringian subclusters identified by us. This reflects the ongoing evolution 350 

during active circulation and indicates an even greater sublineage diversity, which has not 351 

been surveyed as closely as in the subsequent Delta and Omicron waves. By monitoring the 352 

nine Thuringian subclusters, rather than focusing solely on the parental lineage B.1.1.7, we 353 

were again able to effectively track transmissions and gain a comprehensive understanding 354 

of the regional spread. So, it underscores the importance of sequencing in pandemic 355 
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surveillance to explore such genomic changes and, thereby, keep track of the transmission 356 

chains and potential outbreaks. 357 

Mobile service data can support such surveillance in different ways. Previous studies 358 

examined the capabilities of mobility data in the context of, e.g., case trajectories, but 359 

retrospectively applied to already collected data, it can be used to examine surveillance 360 

sampling coverage and possible sampling bias. We exemplified this approach with the Alpha 361 

lineage, where mobile service data indicated a putative sampling bias and partially predicted 362 

the spread of our Thuringian subclusters. 363 

Another approach is actively guiding the sampling process through mobile service data, 364 

which we demonstrated with our proof of principle focusing on the Omicron-lineage BQ.1.1 365 

as a real-life example. This approach could allow for a flexible allocation of surveillance 366 

resources, enabling adaptation to specific circumstances and increasing sampling depth in 367 

regions where a variant is anticipated. By incorporating guided sampling, much fewer 368 

resources may be needed for unguided or random sampling, thereby reducing overall 369 

surveillance costs. 370 

Additionally, while this approach is particularly useful for identifying low-prevalence variants, 371 

it is not limited to such variants. Still, it can provide a guided, more cost-efficient, low-372 

sampling alternative to general randomized surveillance that can also be applied to other 373 

viruses or lineages. For this purpose, Pre-generated mobility networks automatically tailored 374 

to each state's unique infrastructure and population dynamics could provide better-targeted 375 

sampling guidance rather than simple geographical proximity. However, the feasibility 376 

depends on the availability and cost of such mobile service data. Alternatively, financial 377 

resources could also be invested directly in increasing sampling capacity and coverage, 378 

which ultimately depends on individual factors of the respective surveillance. Mobile service 379 

data can also be used with other surveillance approaches and elements. For example, 380 

wastewater surveillance can give further indications to supplement guided sampling. At the 381 

same time, passenger data offers additional insights into traffic hubs as sources of regional 382 

movement. 383 

Methods 384 

Sampling 385 

Starting mid-2020, we initially sequenced hospital-intern samples, transitioning by January 386 

2021 to approximately 43 PCR-positive samples per week: 20 from the hospital's 387 
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microbiology department and 23 randomly sourced by the Thuringian State Authority for 388 

Consumer Protection (“Thüringer Landesamt für Verbraucherschutz”; TLV). 389 

Until June 2023, our institute sequenced 3,770 SARS-CoV-2 samples, and SYNLAB Holding 390 

Deutschland GmbH, Bioscientia Healthcare GmbH, and DIANOVIS GmbH provided 391 

additional 7,800 Thuringian SARS-CoV-2 genomes and their metadata. 392 

Sample preparation and sequencing 393 

RNA isolation used the ZymoResearch “Quick-RNA Viral Kit” (Zymo Research Europe 394 

GmbH, Germany, Product-ID: R1035), according to the manufacturer's instructions with 395 

100 µl patient sample input and a centrifuge speed of 16,000 g. 396 

The viral RNA underwent a Reverse Transcriptase (RT)-PCR followed by a multiplex-PCR 397 

using the ARTIC V1200 primer set, according to Freed and Silander’s SARS-CoV-2 398 

sequencing protocol (version 4, updating to version 5 by March 2021).31 Subsequent DNA 399 

quantification utilized the Qubit dsDNA HS assay (Invitrogen, USA). 400 

From the amplified DNA, a sequencing library was prepared using the Nanopore SQK-401 

LSK109 and SQK-RBK004 kits (Oxford Nanopore Technologies, Oxford, UK), sequenced for 402 

a maximum of 72 h utilizing an Oxford Nanopore MinION Mk1b sequencer with R.9-flowcells 403 

and the MinKNOW software (versions MKE_1013_v1_revBC_11Apr2016 to 404 

MKE_1013_v1_revBR_11Apr2016 in the respective period), and analyzed with the software 405 

pipeline poreCov (versions 0.3.5 to 0.11.7; including basecalling, demultiplexing, adapter 406 

removal, quality filtering, and genome alignment) to reconstruct consensus genomes.7 407 

Sequencing data and the respective metadata (e.g., isolation date, sending laboratory 408 

details) were submitted to the RKI through DESH. We also collected the postal code of the 409 

isolation location or at least of the sending local health authority, storing all data additionally 410 

in a local database.32 Due to data protection, such data is limited on the RKI's public GitHub 411 

repository (https://github.com/robert-koch-institut/SARS-CoV-2-412 

Sequenzdaten_aus_Deutschland), providing instead postal codes of the sequencing and 413 

sending laboratories. 414 

Alpha spread datasets 415 

From our local database, we extracted 8,397 samples with isolation dates before Oct 1st, 416 

2021. After adding federal state and district information, 993 entries with non-Thuringian 417 

locations were excluded. Further, ten entries with unspecific isolation dates were excluded, 418 

yielding 7,394 samples (including 6,307 Alpha genomes (lineages B.1.1.7 and Q.1 to Q.8)). 419 

The publicly available RKI SARS-CoV-2 dataset was downloaded, containing 1,091,655 420 

genomes with the respective metadata (17th Oct 2022; Zenodo-version 2022-10-16).33 421 
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789,405 entries, isolated after Sep’21, and 59 entries without “sending laboratory” 422 

information were removed. For the resulting 302,191 entries, location information (location, 423 

federal state, district, longitude, latitude) were added based on the sending laboratory postal 424 

code. Five entries with a non-existing postal code and all 12,704 Thuringian samples were 425 

removed from the dataset, resulting in 289,487 samples (including 137,024 Alpha genomes). 426 

We investigated only Alpha-lineage samples collected from September 2020 onwards, after 427 

the first official reports of the Alpha-lineage.11 428 

Analyzing both datasets, we calculated the monthly proportion of Alpha lineage samples in 429 

Thuringia and Germany per state/district, dividing Dec’20 and Jan’21 into first and second 430 

halves. 431 

Subcluster identification 432 

Using a total of 70,429 German and Thuringian Alpha genomes, a phylogenetic time tree 433 

was created (see Supplementary Method “Phylogenetic time tree construction” and 434 

Supplementary Figure S3). We determined the frequency of all non-Alpha-specific mutations 435 

among the 6,522 Thuringian Alpha genomes. We then manually screened for mutations 436 

present in at least 20 genomes with a small phylogenetic distance and a time occurrence of 437 

at least two months. This led to nine mutations, each of them creating a defined cluster 438 

covering between 12 and 811 closely related genomes. We only kept mutation information of 439 

these nine subclusters in the respective metadata, which, together with the tree file of the 440 

phylogenetic time tree, was uploaded to a “microreact.org”-project, provided as 441 

Supplementary File 1 and found under the following link: 442 

https://microreact.org/project/ftR2GfjF6iXtSwbmN4ARTx-thuringianalpha-linclusters#76ir-443 

complete-overview. 444 

Mobile service data 445 

T-Systems International GmbH collected and aggregated mobile service data via the Cell ID 446 

method, dividing a geographical area into so-called traffic cells. Each cell is assigned to 447 

exactly one transmitter mast, with a spatial resolution from 500 m x 500 m up to 8 km x 8 km 448 

(depending on the transmitter mast network density). Cell phones always register to the 449 

closest traffic cell, which is recorded and stored in an Origin-Destination Matrix (ODM). For 450 

population representation, the data was extrapolated with Deutsche Telekom's market 451 

share. Due to data privacy, the registration data is combined into movement streams 452 

between traffic cells, the status resolution is reduced to one hour (greater time intervals = 453 

less resolution), and individual traffic cells are grouped into districts. The degree of 454 

anonymization (k-value = 30, data privacy regulation) removed movement streams with less 455 
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than 30 participants, resulting in approximately 200 Mio trips in the ODM. SMA Development 456 

GmbH analyzed all movements between the single Thuringian districts, adding each Alpha 457 

sample’s isolation time and location data (per subcluster). The movements were further 458 

divided by months and originating district (subcluster-affiliated vs. -unaffiliated), determining 459 

each district's monthly inbound mobility proportion from cluster-affiliated districts. 460 

Research in Context 461 

Evidence before this study 462 

We searched Pubmed for studies about the use of mobile service data for surveillance 463 

written in English. For the broadest possible search, we included any publication covering 464 

mobile data and surveillance aspects, using the following search string: ("cellular data" OR 465 

"cell phone data" OR "mobility data" OR "movement data" OR "migration data" OR "phone 466 

data") AND ("Surveillance" OR "Monitoring" OR "Survey" OR "Pandemic" OR "Disease" OR 467 

"Epidemic" OR "Outbreak"). Our search yielded 1,285 publications published between 1966 468 

and 2023. We manually screened all these publications but found no study that applied 469 

mobile service data for active, targeted surveillance. Across all studies, the general focus 470 

was on tracking contacts or analyzing movements to assess, for instance, the efficiency of 471 

non-pharmaceutical interventions or generate prediction models. Some studies suggested 472 

targeted surveillance based on their results, but it was not yet applied. Additionally, we used 473 

"suite.ai" and "chatGPT" (with BING-search access) to let them search for "studies that 474 

utilize mobile service data to guide the sampling process for infectious disease surveillance". 475 

While "suite.ai" found two studies and "chatGPT" found another ten studies and reviews, 476 

none covered the direct application of the mobility data in active surveillance. 477 

Added value of this study 478 

This study highlights the value of combining mobile service data with fine-granular metadata 479 

for integrated genomic surveillance during the SARS-CoV-2 pandemic in a German federal 480 

state. We illustrated this strategy with the Omicron sublineage BQ.1.1 and how to guide the 481 

sampling processes toward areas where the new variant was expected to emerge. 482 

Additionally, we used mobile service data during the pandemic to assess our sampling 483 

coverage. Our study is the first to actively guide part of the genomic surveillance process 484 

during a pandemic. 485 
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Implications of all the available evidence 486 

Efficient molecular surveillance setups are crucial in managing outbreaks from the local to 487 

the global scale. Different data sources are investigated to increase this efficiency, 488 

addressing factors like the more efficient usage of scarce surveillance resources and the 489 

prediction of spread. Extending molecular surveillance with such data should improve the 490 

future management of pandemics and outbreaks. 491 
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