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Abstract

Background: Stroke is the second leading cause of death globally, with acute ischemic strokes 

constituting the majority. Venous thromboembolism (VTE) poses a significant risk during the 

acute phase post-stroke, and early recognition is critical for preventive intervention of VTE.

Methods: Utilizing data from the Shenzhen Neurological Disease System Platform to develop 

multiple machine learning models that included variables such as demographics, clinical data, and 

laboratory results. Advanced technologies such as K nearest neighbor and synthetic minority 

oversampling technique are used for data preprocessing, and algorithms such as gradient boosting 

machine and support vector machine are used for model development.Feature analysis of optimal 

models using SHapley Additive exPlanations interpretable algorithm.

Results: In our study of 1,632 participants, in which women were more prevalent, the median age 

of patients with VTE was significantly older than that of non-VTE individuals. Data analysis 

showed that key predictors such as age, alcohol consumption, and specific medical conditions 

were significantly associated with VTE outcomes. The AUC of all prediction models is above 0.7, 

and the GBM model shows the highest prediction accuracy with an AUC of 0.923. These results 

validate the effectiveness of this model in identifying high-risk patients and demonstrate its 

potential for clinical application in post-stroke VTE risk management.

Conclusion: This study presents an innovative, machine learning-based approach to predict VTE 

risk in acute ischemic stroke patients, offering a tool for personalized patient care. Future research 

could explore integration into clinical decision systems for broader application.

Keywords: Acute ischemic stroke, VTE, machine learning, GBM, risk prediction, SHAP values.
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Introduction

Stroke remains a paramount health challenge worldwide, ranking as the second leading cause of 

mortality and contributing to approximately 6.1 million deaths each year. It also stands as a 

principal cause of long-term disability(1). Among its subtypes, acute ischemic strokes (AIS) 

predominate, significantly influencing the convalescence and functional recovery of patients. A 

critical concern in the aftermath of an ischemic stroke is the development of venous 

thromboembolism (VTE), a severe complication typically arising within the first two weeks 

post-event, with its highest risk noted in the initial seven days(2, 3). The occurrence of VTE is 

closely linked with an escalated risk of mortality within three months following a stroke, 

highlighting its importance as a preventable aspect of post-stroke care management(4, 5).

The arena of VTE risk prediction in acute ischemic stroke patients is riddled with complexities. 

This is largely due to the dependence on traditional risk assessment models such as the Caprini 

scoring system and the Padua Prediction Score, which inadequately address the multifaceted risk 

factor interplay inherent to this patient group. These models often overlook critical elements such 

as demographic nuances, clinical manifestations, and the detailed medical histories specific to 

individuals who have suffered a stroke(6-8). Given the heterogeneous nature of stroke survivors, 

accurately predicting VTE risk necessitates consideration of a myriad of determinants, including 

age, gender, pharmacotherapy, and chronic conditions like hypertension and diabetes, which are 

pivotal in assessing VTE risk(9-11). Acknowledging these challenges, our research introduces an 

innovative machine learning-based predictive model tailored for acute ischemic stroke patients. 

This model transcends traditional assessment tools by integrating an expansive range of risk 

factors—from demographic specifics to comprehensive clinical and laboratory data—leveraging 
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advanced algorithms to enhance interpretability. Our approach not only aims to achieve superior 

accuracy in VTE risk prediction but also seeks to shed light on the relative importance of various 

risk factors, thereby offering a more nuanced and personalized risk assessment for stroke 

survivors(12). 

Furthermore, the literature reveals a conspicuous scarcity of studies employing advanced machine 

learning techniques in conjunction with SHapley Additive exPlanations (SHAP) interpretability 

algorithms to forecast VTE subsequent to AIS. There exists a notable gap in the research 

landscape concerning the development of machine learning models that not only predict VTE with 

high precision but also adhere to the stringent criteria set forth by the Predictive Model Bias Risk 

Assessment Tool (PROBAST)(13). This study aims to bridge this gap through rigorous data 

collection and preprocessing efforts, alongside the application of sophisticated machine learning 

methodologies. By establishing a robust, interpretable framework, our research endeavors to 

empower clinicians with the tools necessary for identifying patients at elevated risk of VTE 

following a stroke, thereby enabling the formulation of precise interventions to diminish the 

incidence of this life-threatening complication.

Materials and methods

Study Population

The dataset for this investigation was derived from the Shenzhen Neurological Disease System 

Platform, an extensive repository that has been methodically aggregating detailed data on 

ischemic stroke patients since 2021. This dataset encompasses a wide range of information, 

including sociodemographic characteristics, precise details regarding pre-hospital onset, 
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in-hospital diagnostic findings, treatment records, and laboratory test outcomes from 20 affiliated 

hospitals. The study's inclusion criteria targeted individuals hospitalized due to stroke between 

December 2021 and December 2023, who were diagnosed using magnetic resonance imaging 

(MRI) or computed tomography angiography (CTA), aged 18 years or older, and admitted within 

seven days of symptom onset as per the International Classification of Diseases, Tenth Revision 

(ICD-10) criteria. Exclusions were made for patients with transient ischemic attacks, subarachnoid 

hemorrhage, brain tumors, cerebral venous thrombosis, those diagnosed with distal deep vein 

thrombosis (DVT) prior to admission, or with a history of pulmonary embolism. For the 

development and validation of our model, data collected from December 2021 to June 2023 and 

from July 2023 to December 2023 were utilized, respectively. The platform's data management 

and quality control measures were stringently overseen by specialized data managers and quality 

assurance staff to ensure the anonymization, quality, preservation, and exportation of data met 

high standards. The data for this research were accessed on January 24, 2024, ensuring all patient 

data, directly sourced from diagnostic and treatment documentation, were meticulously recorded 

by experienced neurology specialists for reliability and precision in the dataset used in our 

research.

Predictor Variables and Outcomes

The primary objective of this investigation was to construct a predictive model that accurately 

forecasts the occurrence of VTE following after AIS using a comprehensive dataset representative 

of a broad spectrum of AIS patient profiles. Patients from the Shenzhen Neurological Disease 

System Platform, enrolled consecutively from December 2021 to December 2023, formed the 

basis of this analysis. The selection of potential predictive variables was confined to 
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characteristics documented within the initial three days of hospital admission. These variables, 

meticulously captured via dedicated case report forms, encompassed a diverse array of factors: 

gender, ethnicity, age, height, weight, smoking, drinking, diabetes mellitus (DM), hyperlipidemia, 

atrial fibrillation, history of cerebral infarction, anemia, other comorbid conditions, 

electrocardiogram (ECG), prehospital medication, pre-morbid mRS, mRS after Admission, 

NIHSS at onset, NIHSS during hospitalization,glasgow coma scale (GCS), Trial of ORG 10172 in 

acute stroke treatment(TOAST) classification, weakness, dysarthria, dizziness, paresthesia, 

headache, convulsion, consciousness status, symptomatic treatment, endovascular treatment 

(EVT), thrombolytic therapy, lymphocyte count, high-sensitivity c-reactive protein (hsCRP), 

international normalized ratio (INR), fibrinogen, D-dimer, alanine aminotransferase, low-density 

lipoprotein cholesterol (LDLC), aspirin, clopidogrel, heparin, enoxaparin, low molecular weight 

heparin, unfractionated heparin, warfarin, rivaroxaban, sulfonylureas, glycosidase inhibitors, 

anti-infective treatment, traditional Medicine, lipid medication, anti-platelet therapy, anticoagulant 

therapy, anti-lipidemic drugs, anti-diabetic yreatment, chinese medicines, and intracranial artery 

stenosis. 

All VTE diagnoses were conclusively determined via color Doppler ultrasound and pulmonary CT 

angiography (PCTA), serving as the diagnostic benchmarks. The diagnosis of VTE was grounded 

on a thorough assessment of clinical manifestations coupled with imaging outcomes, primarily 

focusing on the management of hospitalized patients. A stratified screening methodology was 

employed for stroke patients manifesting potential symptoms of VTE during their hospital stay, 

including but not limited to leg pain or swelling, localized warmth, dyspnea, or chest discomfort. 

This tailored screening approach facilitated the identification and subsequent evaluation of 
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individuals exhibiting clinical presentations suggestive of high-risk VTE, employing color 

Doppler ultrasound or PCTA for comprehensive examination when warranted.

Data processing and feature selection

In this study, we harnessed advanced machine learning techniques, notably the K-nearest neighbor 

(KNN) algorithm and the synthetic minority oversampling technique (SMOTE), to refine our 

dataset, thereby augmenting the predictive accuracy for VTE risk. This meticulous strategy 

significantly enhanced the model's reliability and its capability to generalize across diverse clinical 

scenarios pertaining to VTE risk assessment. The KNN algorithm was deployed to impute missing 

values, capitalizing on the proximity of each data point to its nearest "neighbors" within the 

feature space. This method proved invaluable in preserving the integrity and richness of our 

dataset, allowing for the retention of complex and multidimensional clinical data without resorting 

to invasive data collection methodologies. The integrity of the dataset was thus maintained, 

ensuring minimal loss of information and retaining the nuanced interplay of clinical variables. 

Regarding the missing number, 30% of the variables were eliminated in this study and were not 

included in the data analysis(S1 Table). SMOTE addressed the challenge of imbalanced 

classification inherent in our dataset. By generating synthetic samples for minority classes, it 

amplified the representation of these underrepresented groups within the dataset. This 

enhancement was pivotal in improving the model's sensitivity and accuracy in predicting VTE 

occurrences, a relatively rare but clinically significant event. The incorporation of SMOTE thus 

balanced the dataset, ensuring a more equitable representation of all classes and enhancing the 

model's predictive precision. Employing these sophisticated data processing and feature selection 

techniques, our study laid a robust foundation for the development of a highly accurate and 
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generalizable VTE risk prediction model. This approach not only preserved the complexity and 

diversity of our clinical data but also addressed critical challenges related to data imbalances, 

setting a new benchmark in the predictive modeling of VTE risks.

Model development and performance evaluation

In the quest to devise an accurate predictive model for VTE risk following AIS, our study 

employed a two-pronged approach for feature selection: stepwise forward logistic regression and 

Least Absolute Shrinkage and Selection Operator (LASSO) analysis. The former method was 

instrumental in pinpointing variables significantly correlated with VTE risk, whereas LASSO 

analysis played a critical role in mitigating model overfitting and enhancing variable selection 

through the imposition of regularization penalties. The construction of the model was underpinned 

by the application of ten-fold cross-validation, a technique that bolsters both the performance and 

generalizability of the model. By segmenting the dataset into ten discrete parts, and iteratively 

training on nine while testing on the remaining one, this procedure guaranteed that each segment 

was utilized as a test set once, thereby enabling a more nuanced and accurate assessment of the 

model's efficacy. To encompass a broad spectrum of analytical perspectives and augment 

predictive accuracy, the study harnessed an array of machine learning algorithms, including 

Logistic Regression (LR), Naive Bayes (NB), Decision Trees (DT), Random Forest (RF), 

Gradient Boosting Machines (GBM), Extreme Gradient Boosting (XGB), and Support Vector 

Machines (SVM). The distinct attributes and suitability of each algorithm were leveraged to 

furnish a comprehensive analysis of the data from multifarious angles. Data preprocessing and 

model building are performed in the python3.9 environment.

Statistical analysis
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Our dataset was subjected to a rigorous descriptive statistical analysis, employing Chi-square tests 

for categorical variables, T-tests for normally distributed continuous variables, and rank-sum tests 

for variables deviating from normal distribution. This phase aimed to isolate independent 

predictors of distal DVT in patients experiencing acute stroke, with variables demonstrating 

P-values <0.05 advancing to the subsequent feature selection stage. This latter stage utilized both 

stepwise forward logistic regression and LASSO for variable selection, with the model's 

construction synthesizing insights from both methodologies. Visualization techniques, such as 

scatter plots for illustrating SMOTE sampling outcomes and ROC curve area under the curve 

(AUC) analysis, provided a graphical representation of cross-validation results and real-world 

application efficacy for each algorithm. Additionally, SHAP algorithm analysis was employed to 

enhance the interpretability of model features, particularly for the optimal model. Data analysis is 

performed in python3.9.

Ethics approval and consent to participate

This research received the endorsement of the Ethics Review Committee of Shenzhen Longhua 

District People's Hospital. In adherence to ethical standards, neurology nurse specialists collected 

patient data for the Shenzhen Neurological Disease System Platform (SNDSP). The inclusion of 

patients into the system was contingent upon their ability or willingness to provide written 

informed consent, either personally or through their representatives, thereby ensuring adherence to 

ethical research practices.

Results

Characteristics of study population

The cohort comprised 1,632 subjects, among which the incidence of VTE was 4.17% (n = 68), 
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with a notable predominance of female patients. The median age of individuals diagnosed with 

VTE was 69.00 years, significantly older than their non-VTE counterparts, who had a median age 

of 58.00 years (p < 0.001). Detailed demographic and clinical characteristics of the study 

population are delineated in Table 1.

Table 1.Demographic and Baseline Characteristics by VTE Status.

Variable Category

VTE (n=68; %): 

Median [IQR 

25%-75%]

Non-VTE 

(n=1564; %): 

Median [IQR 

25%-75%]

P-Value

Gender Female 30 (6.58) 426 (93.42) 0.004

Male 38 (3.23) 1138 (96.77)

Ethnicity Han 63 (3.98) 1519 (96.02) 0.082

Others 5 (10.00) 45 (90.00)

Age 69.00 (60.00-79.00) 58.00 (49.00-67.00) <0.001

Height (cm)
163.60 

(156.78-170.00)

168.00 

(159.00-170.00)
0.041

Weight (kg) 67.00 (60.00-72.00) 65.00 (54.83-73.54) 0.468

Smoking No 56 (5.09) 1044 (94.91) 0.011

Yes 12 (2.26) 520 (97.74)

Drinking No 63 (5.45) 1093 (94.55) <0.001

Yes 5 (1.05) 471 (98.95)

DM No 62 (4.82) 1224 (95.18) 0.016

Yes 6 (1.73) 340 (98.27)

Hyperlipidemia No 66 (4.94) 1271 (95.06) 0.002

Yes 2 (0.68) 293 (99.32)

Atrial fibrillation No 61 (3.89) 1506 (96.11) 0.016

Yes 7 (10.77) 58 (89.23) 0.016
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History of cerebral 

infarction
No 55 (4.12) 1280 (95.88) 0.968

Yes 13 (4.38) 284 (95.62)

Anemia No 57 (3.52) 1564 (96.48) <0.001

Yes 10 (90.90) 1 (9.09)

Other comorbid 

conditions
No 64 (5.38) 1125 (94.62) <0.001

Yes 4 (0.90) 439 (99.10)

ECG results Normal 48 (3.14) 1482 (96.86) <0.001

Abnormal 20 (19.61) 82 (80.39)

Prehospital 

medication
No 55 (7.70) 659 (92.30) <0.001

Yes 13 (1.42) 905 (98.58)

Premorbid mRS 0-1 17 (1.14) 1476 (98.86) <0.001

2-3 19 (20.43) 74 (79.57)

4-5 32 (69.57) 14 (30.43)

mRS after 

admission
0-1 1 (0.21) 481 (99.79) <0.001

2-3 22 (3.42) 621 (96.58)

4-5 45 (8.88) 462 (91.12)

NIHSS onset 0-4 6 (0.60) 998 (99.40) <0.001

5-14 51 (9.55) 483 (90.45)

15-20 7 (11.86) 52 (88.14)

21-42 4 (11.43) 31 (88.57)

NIHSS after 

admission
0-4 6 (0.60) 1000 (99.40) <0.001

5-14 47 (9.18) 465 (90.82)

15-20 11 (13.92) 68 (86.08)

21-42 4 (11.43) 31 (88.57)

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.11.24305689doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.11.24305689
http://creativecommons.org/licenses/by/4.0/


GCS 13-15 14 (25.45) 41 (74.55) <0.001

9-12 2 (2.47) 79 (97.53)

3-8 52 (3.48) 1444 (96.52)

SBP
83.50 

(75.25-100.75)
88.00 (78.00-100.00) 0.164

DBP
142.50 

(121.00-157.75)

149.00 

(133.00-168.00)

TOAST 

classification

Large 

vessel 

occlusion

5 (1.22) 404 (98.78) 0.001

Small 

vessel 

occlusive 

stroke

12 (2.17) 540 (97.83) 0.006

Cardioemb

olic stroke
4 (0.85) 469 (99.15) <0.001

Other 

causes of 

stroke

16 (11.11) 128 (88.89) <0.001

Unexplaine

d stroke
31 (57.41) 23 (42.59) <0.001

Weakness No 41 (7.01) 544 (92.99) <0.001

Yes 27 (2.58) 1020 (97.42)

Dysarthria No 57 (5.50) 980 (94.50) 0.001

Yes 11 (1.85) 584 (98.15)

Other symptoms No 67 (5.65) 1118 (94.35) <0.001

Yes 1 (0.22) 446 (99.78)

Dizziness No 64 (4.76) 1281 (95.24) <0.001

Yes 4 (1.39) 283 (98.61)
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Paresthesia No 68 (4.52) 1438 (95.48) 0.027

Yes 0 (0.00) 126 (100.00)

Headache No 64 (3.98) 1546 (96.02) 0.006

Yes 4 (18.18) 18 (81.82)

Dizzy No 65 (4.85) 1274 (95.15) 0.005

Yes 3 (1.02) 290 (98.98)

Convulsion No 65 (4.01) 1556 (95.99) 0.002

Yes 3 (27.27) 8 (72.73)

Consciousness 

status
No 49 (3.16) 1501 (96.84) <0.001

Yes 19 (23.17) 63 (76.83)

Other symptoms No 67 (5.65) 1118 (94.35) <0.001

Yes 1 (0.22) 446 (99.78)

Symptomatic 

treatment
No 23 (6.52) 330 (93.48) 0.019

Yes 45 (3.52) 1234 (96.48)

EVT No 51 (3.42) 1440 (96.58) <0.001

Yes 17 (12.06) 124 (87.94)

Thrombolytic 

therapy
No 55 (3.98) 1327 (96.02) 0.474

Yes 13 (5.20) 237 (94.80)

Lymphocyte count 1.30 (0.88-2.02) 1.79 (1.34-2.33) 0.033

hsCRP 18.93 (5.44-38.18) 2.70 (1.32-6.60) <0.001

INR 1.06 (0.98-1.16) 1.00 (0.96-1.05) 0.005

Fibrinogen 3.06 (2.63-3.59) 3.41(2.91-4.02) <0.001

D-dimer 5.42 (1.34-18.66) 0.33 (0.19-0.67) <0.001

Alanine 

aminotransferase
20.00 (14.10-29.00) 23.00 (16.00-35.75) 0.045

LDLC 2.69 (2.07-3.29) 3.02(2.46-3.55) 0.001
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Aspirin No 39 (16.05) 204 (83.95) <0.001

Yes 29 (2.09) 1360 (97.91)

Clopidogrel No 34 (14.17) 206 (85.83) <0.001

Yes 34 (2.44) 1358 (97.56)

Heparin No 30 (1.89) 1559 (98.11) <0.001

Yes 38 (88.37) 5 (11.63)

Enoxaparin No 44 (2.74) 1563 (97.26) <0.001

Yes 24 (96.00) 1 (4.00)

Low molecular 

weight heparin
No 57 (3.52) 1561 (96.48) <0.001

Yes 11 (78.57) 3 (21.43)

Unfractioted heparin No 67 (4.11) 1563 (95.89) 0.14

Yes 1 (50.00) 1 (50.00)

Warfarin No 65 (4.04) 1543 (95.96) 0.123

Yes 3 (12.50) 21 (87.50)

Rivaroxaban No 43 (2.86) 1462 (97.14) <0.001

Yes 25 (19.69) 102 (80.31)

Sulfonylureas No 67 (4.74) 1347 (95.26) 0.006

Yes 1 (0.46) 217 (99.54)

Glycosidase  

inhibitor
No 68 (4.78) 1355 (95.22) 0.002

Yes 0 (0.00) 209 (100.00)

Anti-infective 

treatment
No 38 (2.55) 1451 (97.45) <0.001

Yes 30 (20.98) 113 (79.02)

Lipid medicine No 14 (23.73) 45 (76.27) <0.001

Yes 54 (3.43) 1519 (96.57)

Antiplatelet therapy 

during 

Yes 42 (2.73) 1496 (97.27) <0.001
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For analytical purposes, the participants were stratified into a training set (n = 1,142) and a test set 

(n = 490). The composition was predominantly female (71.98% in the training set, 72.24% in the 

test set) and of Han ethnicity (97.20% in the training set, 96.33% in the test set), with other 

demographic and clinical attributes showing no significant differences between the two groups, 

hospitalization

No 26 (27.66) 68 (72.34)

Anticoagulant 

therapy during 

hospitalization

Yes 18 (1.25) 1425 (98.75) <0.001

No 50 (26.46) 139 (73.54)

Antilipidemic drugs 

during 

hospitalization

No 14 (25.93) 40 (74.07) <0.001

Yes 54 (3.42) 1524 (96.58)

Antidiabetic 

treatment during 

hospitalization

No 60 (5.07) 1123 (94.93) 0.005

Yes 8 (1.78) 441 (98.22)

Chinese medicines 

during 

hospitalization

No 39 (2.46) 1546 (97.54) <0.001

Yes 29 (61.70) 18 (38.30)

Intracranial artery 

stenosis
No 62 (4.86) 1215 (95.14) 0.013

Yes 6 (1.69) 349 (98.31)
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thus ensuring a balanced representation of stroke-related outcomes (Table 2). 

Table 2. Distribution of Demographic and Clinical Variables in Training and Test Sets.

Variable Category

Training Set 

(n=1142): %, 

Median [IQR 

25%-75%]

Test Set 

(n=490): %, 

Median [IQR 

25%-75%]

P-Value

Gender Male 822 (71.98) 354 (72.24) 0.960

Female 320 (28.02) 136 (27.76) 0.960

Ethnicity Han 1110 (97.20) 472 (96.33) 0.436

Others 32 (2.80) 18 (3.67) 0.436

Age 58.0 (49.0-68.0) 59.0 (51.0-67.0) 0.286

Height 
168.0 

(159.0-170.1)
168.0 (160.0-170.3) 0.148

Weight 66.93 (59.0-72.0) 67.32 (60.0-71.922) 0.293

Smoking No 764 (66.90) 336 (68.57) 0.547

Yes 378 (33.10) 154 (31.43) 0.547

Drinking No 806 (70.58) 350 (71.43) 0.774

Yes 336 (29.42) 140 (28.57) 0.774

DM No 904 (79.16) 382 (77.96) 0.633

Yes 238 (20.84) 108 (22.04) 0.633

Hyperlipidemia No 941 (82.40) 396 (80.82) 0.489

Yes 201 (17.60) 94 (19.18) 0.489
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Atrial fibrillation No 1101 (96.41) 466 (95.10) 0.271

Yes 41 (3.59) 24 (4.90) 0.271

History of cerebral 

infarction
No 941 (82.40) 394 (80.41) 0.376

Yes 201 (17.60) 96 (19.59) 0.376

Anemia No 1134 (99.30) 487 (99.39) 1.000

Yes 8 (0.70) 3 (0.61) 1.000

Hyperlipidemia No 941 (82.40) 396 (80.82) 0.489

Yes 201 (17.60) 94 (19.18) 0.489

Other comorbid 

conditions
No 819 (71.72) 370 (75.51) 0.129

Yes 323 (28.28) 120 (24.49) 0.129

ECG Normal 1070 (93.70) 460 (93.88) 0.978

Abnormal 72 (6.30) 30 (6.12) 0.978

Prehospital medication No 648 (56.74) 270 (55.10) 0.577

Yes 494 (43.26) 220 (44.90) 0.577

Pre-morbid mRS 0-1 1048 (91.77) 445 (90.82) 0.129

2-3 58 (5.08) 35 (7.14) 0.129

4-6 36 (3.15) 10 (2.04) 0.129

mRS after admission 0-1 440 (38.53) 203 (41.43) 0.540

2-3 361 (31.61) 146 (29.80) 0.540

4-6 341 (29.86) 141 (28.78) 0.540
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NIHSS onset 0-4 699 (61.21) 305 (62.24) 0.409

5-14 372 (32.57) 162 (33.06) 0.409

15-20 42 (3.68) 17 (3.47) 0.409

21-42 29 (2.54) 6 (1.22) 0.409

NIHSS during 

hospitalization
0-4 699 (61.21) 307 (62.65) 0.282

5-14 355 (31.09) 157 (32.04) 0.282

15-20 59 (5.17) 20 (4.08) 0.282

21-42 29 (2.54) 6 (1.22) 0.282

GCS 13-15 1042 (91.24) 454 (92.65) 0.398

9-12 57 (4.99) 24 (4.90) 0.398

3-8 43 (3.77) 12 (2.45) 0.398

SBP 88.0 (78.0-100.0) 87.0 (78.0-99.0) 0.129

DBP

TOAST classification Large vessel 

occlusion
288 (25.22) 121 (24.69) 0.871

Small vessel 

occlusive 

stroke

386 (33.80) 166 (33.88) 1.000

Cardioembolic 

stroke
330 (28.90) 143 (29.18) 0.954

Other causes 96 (8.41) 48 (9.80) 0.417
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of stroke

Unexplained 

stroke
42 (3.68) 12 (2.45) 0.262

Weakness No 727 (63.66) 320 (65.31) 0.562

Yes 415 (36.34) 170 (34.69) 0.562

Dysarthria No 748 (65.50) 289 (58.98) 0.014

Yes 394 (34.50) 201 (41.02) 0.014

Other symptoms No 820 (71.80) 365 (74.49) 0.292

Yes 322 (28.20) 125 (25.51) 0.292

Dizziness No 944 (82.66) 405 (82.65) 1.000

Yes 198 (17.34) 85 (17.35) 1.000

Paresthesia No 1053 (92.21) 453 (92.45) 0.947

Yes 89 (7.79) 37 (7.55) 0.947

Headache No 1126 (98.60) 484 (98.78) 0.961

Yes 16 (1.40) 6 (1.22) 0.961

Dizzy No 936 (81.96) 403 (82.24) 0.947

Yes 206 (18.04) 87 (17.76) 0.947

Convulsion No 1135 (99.39) 486 (99.18) 0.896

Yes 7 (0.61) 4 (0.82) 0.896

Other symptoms No 820 (71.80) 365 (74.49) 0.292

Yes 322 (28.20) 125 (25.51) 0.292

Symptomatic treatment No 900 (78.81) 379 (77.35) 0.554
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Yes 242 (21.19) 111 (22.65) 0.554

EVT No 1040 (91.07) 451 (92.04) 0.586

Yes 102 (8.93) 39 (7.96) 0.586

Thrombolytic therapy No 970 (84.94) 412 (84.08) 0.715

Yes 172 (15.06) 78 (15.92) 0.715

Lymphocyte count 1.77 (1.32-2.33) 1.78 (1.34-2.297) 0.971

hsCRP 2.86 (1.40-7.69) 2.545 (1.31-6.38) 0.033

INR 1.01 (0.95-1.06) 1.00 (0.96-1.06) 0.507

fibrinogen 3.09 (2.65-3.64) 3.0385 (2.63-3.52) 0.189

D-dimer 0.34 (0.19-0.77) 0.352 (0.21-0.71) 0.886

alanine 

aminotransferase
20.0 (14.73-30.0) 20.0 (15.0-29.0) 0.754

LDLC 3.0 (2.43-3.55) 3.01 (2.47-3.52) 0.860

Aspirin No 964 (84.41) 425 (86.73) 0.258

Yes 178 (15.59) 65 (13.27) 0.258

Clopidogrel No 968 (84.76) 424 (86.53) 0.397

Yes 174 (15.24) 66 (13.47) 0.397

Heparin No 1111 (97.29) 478 (97.55) 0.890

Yes 31 (2.71) 12 (2.45) 0.890

Enoxaparin No 1122 (98.25) 485 (98.98) 0.378

Yes 20 (1.75) 5 (1.02) 0.378

Low molecular weight No 1131 (99.04) 487 (99.39) 0.680
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heparin

Yes 11 (0.96) 3 (0.61) 0.680

Unfractioted heparin No 1140 (99.82) 490.0 (100.00) 0.877

Yes 2 (0.18) 0.0 (0.00) 0.877

Warfarin No 1122 (98.25) 486 (99.18) 0.225

Yes 20 (1.75) 4 (0.82) 0.225

Rivaroxaban No 1052 (92.12) 453 (92.45) 0.899

Yes 90 (7.88) 37 (7.55) 0.899

Sulfonylureas No 998 (87.39) 416 (84.90) 0.201

Yes 144 (12.61) 74 (15.10) 0.201

Glycosidase inhibitor No 998 (87.39) 425 (86.73) 0.777

Yes 144 (12.61) 65 (13.27) 0.777

Anti-infective 

treatment
No 1032 (90.37) 457 (93.27) 0.072

Yes 110 (9.63) 33 (6.73) 0.072

Lipid medicine No 1100 (96.32) 473 (96.53) 0.951

Yes 42 (3.68) 17 (3.47) 0.951

Antiplatelet therapy 

during hospitalization
No 1072 (93.87) 466 (95.10) 0.388

Yes 70 (6.13) 24 (4.90) 0.388

Anticoagulant therapy 

during hospitalization
No 1008 (88.27) 435 (88.78) 0.833
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Yes 134 (11.73) 55 (11.22) 0.833

Antilipidemic drugs 

during hospitalization
No 1104 (96.67) 474 (96.73) 1.000

Yes 38 (3.33) 16 (3.27) 1.000

Antidiabetic treatment 

during hospitalization
No 832 (72.85) 351 (71.63) 0.655

Yes 310 (27.15) 139 (28.37) 0.655

Chinese medicines 

during hospitalization
No 1103 (96.58) 482 (98.37) 0.070

Yes 39 (3.42) 8 (1.63) 0.070

Intracranial artery 

stenosis
No 1054 (92.29) 459 (93.67) 0.380

Yes 88 (7.71) 31 (6.33) 0.380

Correlation of variables with clinical outcome

Univariate analysis revealed significant associations between VTE occurrence and several 

variables, including Gender (p = 0.004), Age (p < 0.001), Height (p = 0.041), Smoking status (p = 

0.011), Alcohol consumption (p < 0.001), DM (p = 0.016), Hyperlipidemia (p = 0.002), Atrial 

fibrillation (p = 0.016), Anemia (p < 0.001), Dysarthria (p = 0.001), ECG findings (p < 0.001), 

prehospital medication (p < 0.001), pre-morbid mRS (p < 0.001), mRS after admission (p < 

0.001), NIHSS at onset (p < 0.001), NIHSS after admission (p < 0.001), GCS (p < 0.001), TOAST 

classification, weakness, consciousness status, EVT, D-dimer, and LDLC, among other variables. 
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These detailed comparison results are provided in Table 1.

The LASSO model, employing a cross-validation mechanism, fine-tuned the regularization 

strength (alpha) over a logarithmic scale from 10-6 to 101, facilitating precise feature selection. A 

specified random_state parameter ensured the reproducibility of the findings. The model's 

comprehensive analysis underscored the significance of variables such as Pre-morbid mRS, 

unexplained stroke, in-hospital medications, among others, affirming their relevance to the study's 

aims (Fig 1 E and F). Concurrently, stepwise forward logistic regression was utilized to identify 

pertinent variables for univariate analysis, complementing the LASSO model's feature selection to 

guarantee a comprehensive set of predictors for model development. The outcomes of this 

meticulous variable screening process are presented in S2 Table .

Development and validation of predictive models

Our study employed t-distributed Stochastic Neighbor Embedding (t-SNE) for dimensionality 

reduction, facilitating a detailed visualization of the distribution patterns between VTE and 

non-VTE cases within our training dataset (Fig 1). The initial dataset displayed a mixed 

distribution (Fig 1A), which became sparser following random undersampling (Fig 1B). 

Conversely, distributions post-oversampling and the application of SMOTE-NC illustrated a more 

dispersed pattern (Fig 1C and 1D), indicating the significant impact of sampling techniques on 

data representation.

Through ten-fold cross-validation, we meticulously evaluated the performance of seven distinct 

machine learning models. The results showcased the Gradient Boosting Machine (GBM) model 

leading with an AUC score of 0.974, followed by Random Forest (RF) at 0.925, Decision Trees 

(DT) at 0.883, Extreme Gradient Boosting (XGB) at 0.879, Naive Bayes (NB) at 0.858, Logistic 
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Regression (LR) at 0.854, and Support Vector Machines (SVM) at 0.853 (Fig 2A). Testing these 

models on an independent set validated their robustness, with five models exhibiting AUC values 

above 0.8, highlighting the GBM model's superior predictive accuracy with an AUC of 0.923 (Fig 

2B).

Model Interpretation and SHAP Analysis

Ensuring the interpretability of predictive models, particularly in clinical settings, is crucial for 

their acceptance and application by healthcare professionals. To address this, our study employs 

SHAP methodology, enabling a transparent evaluation of how each variable influences the 

model's predictions. This approach affords a dual-layered interpretation: global insights, which 

elucidate the model's overall decision-making process, and local insights, which provide 

individualized explanations. The global interpretative framework is visualized through SHAP 

summary plots (Fig 3A and B), where the mean SHAP values of each feature are calculated and 

ranked. This hierarchy underscores the relative importance of predictors such as D-dimer levels, 

Prehospital medication, and Age, among others, in determining VTE risk. SHAP dependency plots 

further dissect the relationship between specific features and the prediction outcome, offering a 

granular understanding of feature impact.

Personalized risk assessments, as demonstrated in Fig 4A and B, highlight the model's ability to 

integrate individual patient data to predict VTE risk accurately. For instance, one patient was 

identified with a 99.7% VTE risk, with significant factors being premorbid mRS and age. 

Conversely, another patient presented a low risk of 1.1%, with premorbid mRS contributing 

negatively to VTE risk, indicating how diverse variables can influence individual risk profiles 

differently. Such analyses enable tailored patient care and informed risk management. 
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Furthermore, Fig 4C reveals a nonlinear association between D-dimer levels and VTE risk, 

pinpointing a threshold beyond which VTE risk escalates significantly. This insight is critical for 

identifying patients who might benefit from closer monitoring or preventive interventions. The 

SHAP dependency graph (Fig 4D) elaborates on the effect of individual variables across the 

patient cohort, providing a comprehensive overview of the model's predictive dynamics.

Prognostic implications

The exemplary performance of the GBM model culminated in its integration into a user-friendly 

web application, designed to predict VTE risk in AIS patients based on the model's key variables. 

This digital tool, accessible at https://youlijiang236.shinyapps.io/myapp/, empowers clinicians to 

leverage our predictive model in real-time, facilitating personalized patient care and informed risk 

management strategies (Fig 5).

Discussion

Our investigation has culminated in the development of an array of machine learning models adept 

at predicting VTE risk among patients suffering from AIS. A distinguishing feature of our models 

lies in their capacity to amalgamate an extensive array of predictive variables, spanning from 

elementary demographic information to intricate clinical observations and laboratory findings. 

This comprehensive approach substantially surpasses the precision and predictive power of 

conventional risk assessment methodologies(14, 15). Crucially, our models incorporate a broad 

spectrum of demographic, clinical, and laboratory parameters, thereby offering a holistic risk 

evaluation framework. Unique to our research is the inclusion of variables previously overlooked 

in model studies, such as EVT, alongside other variables that reflect the routine diagnostic and 

therapeutic practices in stroke management. This ensures the practicality and applicability of our 
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model in real-world clinical settings. The employment of the gradient boosting machine (GBM) 

algorithm marks a significant enhancement over existing predictive approaches(16), not merely in 

terms of predictive accuracy but also in handling voluminous and readily available variables. A 

pivotal aspect of our model is its interpretability, facilitated by SHAP value analysis, which 

demystifies the impact of each predictor on VTE risk. This interpretability equips clinicians with a 

profound understanding of the prediction process, thereby empowering them to make 

well-informed and precise clinical decisions. Our model improves the accuracy of VTE risk 

prediction and enriches the transparency and understandability of prediction results. This dual 

advantage heralds a novel era in the management of VTE risk post-stroke, spotlighting the 

potential of machine learning in transforming clinical decision-making and patient care strategies.

A review of extant literature reveals a predominant reliance on various forms of logistic regression 

models for constructing VTE risk prediction frameworks. Notable examples include the DVT risk 

model developed by Pan et al. using data from patients with acute stroke, which reported a final 

AUC of 0.785(17), and the post-AIS model by Bonkhoff et al., utilizing L1 regular logit, 

achieving an AUC of 0.730(18). These studies underscore the conventional approach towards 

VTE risk prediction, often limited by the methodologies employed.In stark contrast, our study 

introduces a machine learning model that exhibits superior predictive performance, as evidenced 

by a notably higher AUC, particularly with the implementation of the GBM algorithm, which 

attained an AUC of 0.923. This significant improvement in predictive accuracy is further 

augmented by our innovative approach to feature selection, combining LASSO with stepwise 

logistic regression. This methodological synergy not only enhances variable selection accuracy 

and model stability but also considerably reduces the risk of overfitting, thereby bolstering the 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 13, 2024. ; https://doi.org/10.1101/2024.04.11.24305689doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.11.24305689
http://creativecommons.org/licenses/by/4.0/


model's generalizability—a critical advancement corroborated by multiple preceding studies(19). 

Furthermore, our meticulous adherence to PROBAST (Predictive Model Biomarker Assessment 

Tool) standards throughout the processes of data collection, preprocessing, and modeling 

underscores our commitment to bridging the existing gaps in the literature. Our objective was to 

construct a model of heightened accuracy capable of identifying patients at elevated risk of VTE 

more effectively. This ambition was rooted in the recognition of the limitations inherent in 

previous studies and driven by the potential of advanced machine learning techniques to 

revolutionize the predictive modeling landscape in VTE risk assessment following acute ischemic 

stroke.

Our study's integration of SHAP analysis has illuminated the critical roles of individual risk 

factors in the genesis of VTE. Among these, prominent factors such as heightened D-dimer levels, 

prior medication use, patient age, pre-morbid mRS, GCS, the presence of large vessel occlusion, 

and specific medical interventions emerged as significant predictors. These findings resonate with 

varying degrees of corroboration from prior research endeavors, underscoring their empirical 

validity(20).

Notably, our analysis underscored the pivotal biomarker role of D-dimer in forecasting VTE risk, 

establishing an early warning threshold at a D-dimer level of 0.72 ug/ml. The elevation of 

D-dimer, a fibrin degradation product indicative of thrombosis and fibrinolytic activity, has been 

validated in earlier studies as a crucial diagnostic marker for thrombotic events(21, 22). 

Concurrently, the GCS score, which gauges a patient's consciousness level, has been linked to 

VTE risk, with lower scores suggesting compromised brain function and consequently an elevated 

VTE risk(23). Furthermore, our analysis corroborates the heightened VTE susceptibility among 
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older patients and those with diminished pre-stroke functional capacity, as indicated by their 

premorbid mRS scores(24, 25). Such susceptibility is attributed to diminished mobility and 

circulation, factors that significantly contribute to thrombosis risk in this patient cohort. 

Prehospital medications, encompassing antidiabetic and antihypertensive drugs, antibiotics, and 

traditional Chinese medicine, imply pre-existing health conditions that, coupled with AIS-induced 

mobility constraints, predispose patients to thrombotic complications(26). The administration of 

antiplatelet and anticoagulant therapies during hospitalization not only serves as a preventive 

strategy against thrombotic events but also signals a higher baseline embolic risk. Moreover, the 

use of antilipidemic medications underscores an indirect VTE risk associated with cardiovascular 

diseases, highlighting the intricate interplay between cardiovascular health and VTE 

incidence(27). 

Furthermore, our findings indicate that stroke patients who consume alcohol are at an elevated risk 

of developing post-stroke VTE compared to those who do not drink. This heightened risk may be 

attributable to alcohol's indirect influence on the coagulation and fibrinolytic systems, disrupting 

the delicate balance necessary for normal blood clotting and dissolution(28). The nuanced effects 

of different treatments on VTE risk during the acute phase of AIS patients have been somewhat 

overlooked in previous research(29). Nonetheless, our analysis reveals that patients undergoing 

EVT may face a greater VTE risk compared to those receiving thrombolytic therapy or 

symptomatic care alone. This increased risk could stem from the prolonged immobilization and 

delayed return to daily activities post-EVT, as EVT, despite its efficacy in managing acute large 

vessel occlusion strokes, necessitates extended bed rest(30). This shows that post-operative 

prevention of stroke patients receiving EVT should pay more attention to the prevention of VTE 
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and strengthen the accessibility of VTE monitoring and examination after EVT.

By amalgamating advanced machine learning techniques with SHAP value analysis, we have 

developed a server-based web calculator. This innovative tool is poised to revolutionize VTE risk 

screening post-AIS by enabling the input of essential patient characteristics into the model. It 

equips healthcare professionals with the capability to precisely identify patients at elevated risk of 

VTE, thereby facilitating the formulation of targeted prevention and intervention strategies 

grounded in a meticulous evaluation of risk factors.For instance, the early identification of patients 

exhibiting high D-dimer levels and diminished GCS allows for the swift adoption of more 

aggressive preventive approaches, such as anticoagulant therapy, alongside enhanced physical 

assessments and nursing care, especially for patients receiving EVT. Furthermore, the 

interpretability afforded by the model's SHAP values grants physicians deeper insights into the 

influence of each predictor on VTE risk. This enhanced understanding enables a more nuanced 

consideration of various treatment modalities' benefits and drawbacks, guiding clinical 

decision-making towards optimized antithrombotic treatment strategies and personalized patient 

care plans.

Conclusion

Our study advances the prediction of VTE risk in patients with acute ischemic stroke through the 

application of the GBM algorithm. This approach offers a refined risk assessment tool that can 

significantly enhance early detection and management of VTE in this vulnerable population. The 

incorporation of SHAP values for interpretability strengthens the model's applicability in clinical 

decision-making, allowing for the development of tailored treatment plans. The potential 

integration of this model into clinical decision support systems represents a promising direction 
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for future research, aiming to improve clinical efficiency and patient outcomes in a practical 

healthcare setting.
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Figrue1. Feature engineering.(A) Original sample visualization using t-SNE shows an 

imbalanced outcome. (B) Random undersampling addresses imbalanced data by decreasing 

the majority class. (C) Random oversampling increases the minority class. (D) Synthetic 

Minority Over-sampling Technique with Nominal Continuous (SMOTE-NC) synthesizes 

data from the minority class. (E) Lasso Regression Coefficients: Indicates the influence of 

each feature as determined by the Lasso model. (F) Lasso coefficient path diagram. 

Figure 2. Performance Comparison of Machine Learning Models.(A) Ten-fold 
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cross-validation AUC scores for various models, (B) ROC Curves for different models on the 

test set. 

Figure 3. Feature Impact Analysis.(A) Mean SHAP values for predictors. (B) SHAP value 

distribution for GBM. 

Figure 4. SHAP Value Analysis for Model Prediction.(A) Average impact on model output. 

(B) Impact of top features on a single prediction. (C) Aggregate SHAP values. (D) SHAP 

decision plot.

Figure 5. VTE Risk Assessment Tool.
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