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Abstract 31 
 32 
Introduction.  Plasma phosphorylated threonine-181 of Tau and amyloid beta are biomarkers for 33 

differential diagnosis and preclinical detection of Alzheimer disease (AD). Given differences in AD risk 34 

across diverse populations, generalizability of existing biomarker data is not assured.  35 

Methods. In 2,086 individuals of diverse genetic ancestries (African American, Caribbean Hispanic, and 36 

Peruvians) we measured plasma pTau-181 and Aβ42/Aβ40. Differences in biomarkers between cohorts 37 

and clinical diagnosis groups and the potential discriminative performance of the two biomarkers were 38 

assessed. 39 

Results. pTau-181 and Aβ42/Aβ40 were consistent across cohorts. Higher levels of pTau181 were 40 

associated with AD while Aβ42/Aβ40 had minimal differences. Correspondingly, pTau-181 had greater 41 

predictive value than Aβ42/Aβ40, however, the area under the curve differed between cohorts.  42 

Discussion. pTau-181 as a plasma biomarker for clinical AD is generalizable across genetic ancestries, 43 

but predictive value may differ.  Combining genomic and biomarker data from diverse individuals will 44 

increase understanding of genetic risk and refine clinical diagnoses.  45 
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Background 46 

Alzheimer disease (AD) is a progressive and devastating neurodegenerative condition with a 47 

prevalence of 5% in individuals 65-74 years of age, increasing to 33% by 85 years of age. This 48 

corresponds to 6.7 million people in the US with a current diagnosis of AD, which is estimated to 49 

increase to 14 million by 2060.[1] AD has a global impact, with diverse populations around the world 50 

affected, but ancestrally diverse groups such as African American (AA) and Hispanic (HI) populations 51 

are underrepresented in AD genomic and translational studies[2‐11] which in part contributes to health 52 

disparities in the US. Compared to Non-Hispanic White (NHW) populations AA populations have higher 53 

frequencies of risk factors for complex diseases such as AD, more limited access to health services, 54 

poorer health outcomes, and lower life expectancies[12‐17] For example, Caribbean HI are twice as likely 55 

as non-Hispanic Whites (NHW) to have late-onset AD[18,19] and the incidence of new AD cases in 56 

Caribbean HI families is three times the incidence in NHW families.[20] Similarly, compared with NHW 57 

individuals, individuals of African ancestry, even from the same local community, are twice as likely to 58 

develop AD due to both genetic and environmental influences.[19] 59 

In part, these disparities can be attributed to access to and affordability of AD diagnostic tools 60 

such as magnetic resonance imaging (MRI), positron emission tomography (PET) imaging, and 61 

cerebrospinal fluid (CSF) assays that can be incorporated as criteria for pre-clinical AD diagnosis.[21] 62 

Therefore, the use of AD plasma biomarkers have begun wide use to assist in clinical diagnosis and refine 63 

the preclinical stages of AD and MCI.[22‐24] These blood‐based biomarkers can be used to estimate the 64 

underlying biological changes associated with AD diagnosis and prognosis including amyloid deposition 65 

(plasma Aβ42/Aβ40 ratio)[25] and tau hyperphosphorylation and tangles (phosphorylated Tau).[26,27]  66 

Critically, however, individuals of African and HI ancestry are underrepresented in most research 67 

studies[7‐9] including genomic and translational studies,[11,28,29] and particularly for those utilizing AD 68 

plasma biomarkers.[30,31] Thus, diverse ancestral groups may not benefit to the same degree as NHW 69 

from the clinical applications of genomic and biomarker studies [32‐37]. While recent studies have 70 
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increased representation of African Americans[30,38] and Hispanics,[39,40] the sample sizes of diverse 71 

individuals remain a small proportion of the total study cohorts making conclusive statements on the 72 

generalizability of these findings difficult.  73 

To address the issues of lack of representation of diverse ancestries in AD biomarker studies, 74 

potential differences in AD biomarkers across populations, and the generalizability of AD biomarkers to 75 

discriminate between clinically diagnosed AD and cognitively unimpaired (CU) individuals, herein we 76 

measured plasma AD related biomarkers pTau-181 and Aβ42/Aβ40 ratio in a large cohort of individuals 77 

representing diverse ancestral backgrounds. In these clinically diagnosed cohorts, we compare biomarker 78 

concentration between those diagnosed with AD, mild cognitive impairment (MCI), CU across and within 79 

the groups. Furthermore, we explore the ability of these biomarkers to discriminate between AD and CU 80 

in these diverse sets of individuals. As such, we can better understand the generalizability and utility of 81 

these lower-cost and readily available biomarkers for broad use in AD diagnostics in individuals of 82 

diverse genetic ancestry. 83 

 84 

Methods 85 

Ascertainment of Study Participants 86 

Individuals for this study have been ascertained through multiple studies of AD genetics across 87 

several sites focused on individuals from underrepresented populations including self-identified Black 88 

Americans of African ancestry and Hispanics (Puerto Ricans, Cuban Americans, and Peruvians). The 89 

study sites include: the University of Miami (Miami, FL, USA), Wake Forest University (Winston-Salem, 90 

NC, USA), Case Western Reserve University (Cleveland, OH, USA), Universidad Central del Caribe 91 

(Bayamon, PR, USA), and Instituto Nacional de Ciencias Neurologicas (Lima, Peru). All participants or 92 

their proxy provided written informed consent as part of the study protocols approved by the site-specific 93 

Institutional Review Boards. 94 

Ascertainment protocols were consistent across sites and clinical data assessments capture 95 

sociodemographic information, medical and family history, dementia staging, AD/dementia symptoms, 96 
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neuropsychological abilities, functional capabilities, and behavioral impairments. Best-estimate diagnoses 97 

were generated by a consensus committee consisting of a board-certified neurologist, a physician 98 

specializing in dementia, and clinical neuropsychologists, all with expertise in adjudication of 99 

AD/dementia. Using all available clinical information, participants were assigned best-estimate clinical 100 

diagnoses (AD, MCI, or CU) based on criteria adapted from NIA-Alzheimer’s Association 101 

criteria.[21,41,42]  102 

Genotyping and Assessment of Genetic Ancestry 103 

2,086 total participants were included in this study and classified based on their self-reported 104 

race-ethnicity and country of origin as African American (AA), Caribbean Hispanic (Puerto Rican or 105 

Cuban American), or Peruvian (PE). For each participant, whole genome genotyping array data on the 106 

Illumina Global Screening Array (Illumina, San Diego, CA, USA) was generated. Genotype markers 107 

were quality controlled to include only those with high call rate (over 97%) and minor allele frequency 108 

over 0.05 within each population. Genetic relatedness was evaluated using the GENESIS R package.[43] 109 

Frist, the KING-Robust kinship coefficient estimator was used to calculate the KING matrix that includes 110 

pairwise relatedness and measures of pairwise ancestry divergence.[44] The PC-AiR method used 111 

ancestry divergence from KING-Robust estimate to perform PCA, which then was used by PC-Relate to 112 

estimate pairwise kinship coefficients. Genetically related individuals with closer than 4th-degree relatives 113 

were identified and only one sample per related group was retained in the analysis. Subsequently, PC-Air 114 

was applied to calculate global ancestry using four reference populations were used including AI, EU, 115 

AF, and EA from Human Genome Diversity Project (HGDP) data for the reference populations.[45] 116 

Admixture proportions were estimated using a model-based clustering algorithm was performed as 117 

implemented in the ADMIXTURE software[46] with K=4 for the reference populations.  118 

Measurement of Plasma AD Biomarkers 119 

Whole blood tubes were collected from the 2,086 participants at the time of study entry by trained 120 

phlebotomists. Plasma was isolated from EDTA tubes via centrifugation, aliquoted into polypropylene 121 
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tubes, and stored at -80°C until further analysis. For a set of African American participants, coagulation 122 

was performed in the tube and thus serum was the only available blood fluid available. Plasma/serum 123 

concentrations of pTau-181, Aβ42, and Aβ40 were measured using SIMOA chemistry implemented on 124 

the Quanterix HD-X analyzer (Quanterix, Billerica, MA, USA)[47] according to manufacturer’s 125 

instructions for the pTau-181 Advantage V2 assay and Neurology 3-Plex A assay. Samples were 126 

randomized according to age (at time of blood collection), sex, and diagnosis and assayed in duplicate on 127 

each Simoa plate. Initial data analysis was performed using the Quanterix Analyzer v1.6 software to 128 

calculate standard curves and biomarker concentrations. After quality control including removing of 129 

related participants, failed biomarker assays, and removal of outliers greater than three standard 130 

deviations from the mean 1,368 participants with plasma and 721 participants with serum remained in the 131 

analyses (Table 1). 132 

  133 
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Table 1. Characteristics of the study participants and biomarker levels 134 

Plasma Samples       

Alzheimer's Disease All samples 
African 

American 
Caribbean 
Hispanic Peruvian 

(N=421) (N=71) (N=312) (N=38) 

Sex         

        Female 283 (67.2%) 47 (66.2%) 209 (67.0%) 27 (71.1%) 
        Male 138 (32.8%) 24 (33.8%) 103 (33.0%) 11 (28.9%) 

Age (years)         

        Mean (SD) 79.4 (7.85) 80.0 (8.48) 79.3 (7.76) 79.8 (7.59) 

pTau181 level (pg/mL)         

        Mean (SD) 2.76 (1.81) 3.00 (1.49) 2.68 (1.87) 3.08 (1.81) 

Aβ42/40         

        Mean (SD) 0.0410 (0.0137) 0.0478 (0.0159) 0.0402 (0.0130) 0.0352 (0.00990) 

Mildly Cognitive 
Impaired 

All samples 
African 

American 
Caribbean 
Hispanic Peruvian 

(N=270) (N=88) (N=182) (N=0) 

Sex       - 

        Female 193 (71.5%) 67 (76.1%) 126 (69.2%) - 
        Male 77 (28.5%) 21 (23.9%) 56 (30.8%) - 

Age (years)       - 

        Mean (SD) 74.9 (7.36) 72.7 (7.36) 75.9 (7.15) - 

pTau181 level (pg/mL)       - 

        Mean (SD) 1.91 (1.26) 1.90 (1.46) 1.92 (1.15) - 

Aβ42/40       - 

        Mean (SD) 0.0455 (0.0149) 0.0536 (0.0168) 0.0418 (0.0123) - 

Cognitively 
Unimpaired 

All samples 
African 

American 
Caribbean 
Hispanic Peruvian 

(N=677) (N=234) (N=355) (N=88) 

Sex         

        Female 533 (78.7%) 197 (84.2%) 270 (76.1%) 66 (75.0%) 
        Male 144 (21.3%) 37 (15.8%) 85 (23.9%) 22 (25.0%) 

Age (years)         

        Mean (SD) 73.2 (7.23) 70.9 (6.73) 74.7 (7.36) 72.9 (6.41) 

pTau181 level (pg/mL)         

        Mean (SD) 1.98 (2.60) 2.02 (4.15) 1.84 (1.05) 2.40 (1.22) 

Aβ42/40         

        Mean (SD) 0.0477 (0.0247) 0.0575 (0.0196) 0.0432 (0.0275) 0.0408 (0.0138) 
 135 

 136 

 137 
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African American Serum Samples    
  CU MCI AD Overall 
  (N=370) (N=103) (N=248) (N=721) 

Sex         

        Female 275 (74.3%) 81 (78.6%) 194 (78.2%) 550 (76.3%) 
        Male 95 (25.7%) 22 (21.4%) 54 (21.8%) 171 (23.7%) 

Age (years)         

        Mean (SD) 69.5 (6.74) 73.6 (7.03) 80.8 (8.12) 74.0 (8.89) 

pTau181 level (pg/mL)         

        Mean (SD) 1.50 (1.46) 1.18 (1.22) 2.69 (2.26) 1.86 (1.85) 

Aβ42/40         

        Mean (SD) 0.0542 (0.113) 0.0481 (0.0182) 0.0491 (0.0458) 0.0519 (0.0899) 
 138 

Biomarker Statistical Analysis 139 

Biomarker concentrations were log10-transformed to satisfy normality assumptions in the 140 

downstream analysis. The differences in biomarker levels across ancestral groups and between AD, MCI 141 

and CU individuals was analyzed using a linear regression model adjusted for age, sex, and population 142 

substructure (principal components 1-3) followed by the post hoc least significant difference test for 143 

pairwise group comparison and adjusted for multiple comparisons by Bonferroni.  144 

To assess the diagnostic performance and construct receiver operator characteristic (ROC) curves, 145 

we employed three logistic regression models: pTau-181 concentration alone, Aβ42/Aβ40 alone, and 146 

pTau-181 concentration and Aβ42/Aβ40 together. For this analysis we used only individuals having data 147 

available on both pTau-181 and Aβ42/Aβ40 biomarkers (N = 1,298 for plasma, N = 260 for serum). Area 148 

under the curves (AUC) of the three models were compared using the DeLong test and adjusted for 149 

multiple comparisons (Bonferroni). All analysis were performed using R v.4.1.1 with packages: 150 

lmerTest,[48] multcomp,[49] lsmeans,[50] and pROC,[51] and visualizations created with ggpubr.[52] 151 

Results 152 

Global Genetic Ancestry of Participants 153 

As detailed in Table 1, the participants in this study were ascertained as part of four distinct 154 

cohorts: African American (AA), and HI with origins from the Caribbean (CH - Puerto Rican or Cuban 155 
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American) or Peru (PE). Figure 1A illustrates principal component analysis results of the study samples 156 

and four continental populations from the HGDP reference panel. Genomic admixture varied widely 157 

across cohorts with respect to proportions of European, African, Amerindian, and East Asian ancestries 158 

(Figure 1B). Given similarity of ancestral admixture between Puerto Ricans and Cuban Americans and 159 

the relatively small sample size of Cuban Americans, these cohorts were combined in further analysis as 160 

Caribbean Hispanics. Global ancestry analysis confirmed primarily two-way admixture in AA (African 161 

and European), three-way admixture in CH (African, European, and Amerindian), and four-way 162 

admixture in PE (African, European, Amerindian, and East Asian) with a high proportion of Amerindian 163 

background.   164 

Plasma pTau-181 and Aβ42/Aβ40 ratios across ancestries 165 

We first set out to determine how AD plasma biomarker levels of pTau-181 and Aβ42/Aβ40 166 

compare across ancestries, within each diagnostic category of AD or CU. In general, plasma pTau-181 167 

concentrations were consistent across these populations. There was a modest but significant increase in 168 

Peruvian controls relative to the other two groups (p=0.02 vs. AA, p=0.002 vs. CH), Figure 2A), but 169 

among AD there were no significant differences between groups (Figure 2B).  The Aβ42/Aβ40 ratio was 170 

significantly higher in African Americans relative to the other two groups in the CU comparison 171 

p=2.38x10-7 vs Peurivan, p=4.36x10-7 vs CHI, Figure 2C) and also trending higher in AD with a 172 

significant difference between AA and CH (p = 0.05, Figure 2D).  173 

Plasma pTau-181 and Aβ42/Aβ40 comparisons 174 

Plasma pTau-181 concentrations were significantly increased in individuals with diagnosed 175 

clinical AD compared to CU and MCI (p = 1.67x10-13, Figure 3A) considering all individuals across all 176 

cohorts (Figure 3A). When analyzing each cohort separately, plasma pTau-181 concentrations were 177 

significantly higher in AD vs CU in AA (p = 1.88x10-8, Figure 3B) and CH (p = 3.13x10-7, Figure 3D) 178 

with a trend that did not reach statistical significance for Peruvians (p = 0.07, Figure 3C). When 179 

considering AD vs MCI, there was again a statistically higher pTau-181 concentration in overall (p = 180 

7.83x10-8, Figure 3A) as well AA (p = 7.95x10-5, Figure 3B) and CH (p = 5.25x10-5, Figure 3D). The 181 
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plasma Aβ42/Aβ40 ratio was significantly lower in AD of AA relative to CU (p = 0.02, Figure 4A-D). 182 

There was no statistically significant difference in the concentration of pTau-181 nor Aβ42/Aβ40 ratio 183 

between MCI and CU when considering all data together or when looking at specific cohorts individually.   184 

Serum pTau-181 and Aβ42/Aβ40 comparisons 185 

We analyzed the biomarkers in a subset of African ancestry individuals for whom only serum, 186 

rather than plasma, was available. We first evaluated potential differences between serum and plasma 187 

pTau-181 and Aβ42/Aβ40 ratio within each diagnostic category for African Americans. Plasma pTau-181 188 

concentration was higher than serum in both CU (p = 9.16x10-6, Figure 5A) and AD (p = 1.63x10-3, 189 

Figure 5B). The Aβ42/Aβ40 ratio was lower in serum in both CU (p = 2.44x10-13, Figure 5C) and AD (p 190 

= 0.05, Figure 5D). Given these differences, we performed analysis within these serum samples 191 

separately. Like the plasma analysis, serum pTau-181 concentrations were significantly increased in 192 

individuals with diagnosed clinical AD compared to either CU or MCI (Figure 6A). Also, the serum 193 

Aβ42/Aβ40 ratio did not significantly differ (Figure 6B).  194 

Discriminatory analysis of plasma and serum pTau-181 and Aβ42/Aβ40 195 

We used logistic regression models to assess the accuracy of plasma and serum pTau-181 196 

concentration and Aβ42/Aβ40 ratio in predicting clinical disease status. We evaluated the performance of 197 

each biomarker individually and then in combination using the area under the receiver operating 198 

characteristic curve (AROC) for each model (Figure 7). In general, pTau-181 was better at predicting 199 

status than Aβ42/Aβ40 ratio, and the classification improved slightly when both biomarkers were used 200 

together. Notably, the accuracy varies over the individual cohorts with combined AROC ranging from 201 

0.85 in plasma measurements for African Americans to 0.65 in Peruvians. 202 

Discussion 203 

Herein, we have performed the largest to date study of plasma biomarkers in diverse ancestral AD 204 

cohorts. Importantly, we found that the plasma concentrations of pTau-181 are generally consistent across 205 

populations within clinical diagnostic categories, with a small elevation in Peruvian CU relative to 206 

African Americans and Caribbean Hispanics, while the Aβ42/Aβ40 ratio was higher in African American 207 
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AD and CU cohorts relative to Peruvians or Caribbean Hispanics. Moreover, we found that the 208 

plasma/serum concentration of pTau-181 was significantly greater in AD relative to CU and MCI across 209 

these diverse ancestral cohorts.  We did not detect differences between the statuses when comparing the 210 

Aβ42/Aβ40 ratio across or within the cohorts. These correspond to pTau-181 offering strong predictive 211 

value of AD status in these data, with Aβ42/Aβ40 adding little more to the model. Interestingly, however, 212 

the predictive values varied widely across the ancestral groups ranging from 0.85 (AA) to 0.65 (PE). 213 

The pTau-181 results generally reflect work done in previous large cohort studies done primarily 214 

in European non-Hispanic White (NHW) individuals showing it to be strongly associated with AD 215 

status[27]. Here we demonstrate generalizability of the pTau-181 biomarker in large cohorts of clinically 216 

diagnosed individuals without stratification by alternative biomarkers such as PET imaging as had 217 

previously been described for NHW.[53] Conversely, the Aβ42/Aβ40 ratio did not offer strong 218 

association with AD status despite several previous reports of this association. While we cannot dismiss 219 

the possibility that this is due to either ancestral diversity or the clinical diagnosis used in this study, it has 220 

been previously shown that the SIMOA chemistry assays for these analytes may lack the sensitivity 221 

required to detect such differences [54]. In biomarker studies of more diverse individuals, the utility of 222 

pTau-181 has been shown in predicting AD status in Caribbean Hispanics[39] as well as African 223 

Americans.[38,55] However, the larger sample sizes of diverse cohorts reported here, 3-5 times larger 224 

than previous, indicate that this is a robust and reproducible observation; that pTau-181 can be 225 

incorporated in more diverse populations as a potential aide in diagnostic prediction. However, it is clear 226 

that this biomarker lacks complete discrimination of status as there is significant overlap in individual 227 

values between AD, MCI, and CU. This suggests that pTau-181 should be combined with other clinical 228 

tests and existing risk factors in making diagnostic decisions or could be used as longitudinal measure of 229 

rate of change in progression toward dementia. 230 

While pTau-181 was significantly higher in AD than MCI or CU across the diverse cohorts 231 

investigated, there was a range of discriminatory AOC values represented. Notably in the Peruvian 232 
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cohort, the overall AROC value was lower (0.64) than in the other cohorts. The underlying reason for this 233 

cannot be determined, though given the higher overall pTau-181 levels in Peruvian CU is likely to affect 234 

this analysis. Intriguingly, this may be related to admixture of genetic ancestries altering the utility of 235 

biomarkers in these cohorts. Further investigation related to the complex interplay between genetics, 236 

social and environmental determinants of health, and AD biomarkers will be critical to continue to assess 237 

these questions. 238 

Overall, we provide further evidence that AD plasma biomarkers, particularly pTau-181, 239 

can be used to discriminate between AD and MCI or CU not only in NHW populations but in 240 

ancestrally diverse cohorts. We have added significantly to the ongoing research in this area 241 

while greatly increasing the inclusivity of individuals that have traditionally made up only a very 242 

small proportion of participants in biomarker studies. Further confirmation of these observations 243 

in diverse cohorts including either autopsy confirmed individuals or those with extensive 244 

diagnostic imaging could provide further validation of the use of these biomarkers in clinical 245 

based cohorts while assisting in establishing ancestry specific cut-points for diagnostic purposes. 246 

Ultimately, adding in AD plasma biomarkers with genetic and environmental information in 247 

these diverse populations will continue to reveal the general and ancestry specific risk profile of 248 

AD aiding in development of precision treatment strategies. 249 

   250 
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Figure Legends 525 

Figure 1. Global genomic ancestry analysis. A) Principal component analyses. Estimation of relationship 526 

to ancestral reference groups from Human Genome Diversity Project (HGDP): Maroon = African, Green 527 

= Amerindian, Yellow = East Asian, Blue = European, or each sample cohort: Light Green = Cuban 528 

American, Violet = Peruvian, Red = Puerto Rican, Aqua = African American. B) Ancestral admixture 529 

estimations. Each column on the X-axis represents one participant. Colors in each vertical line represent 530 

the proportion of ancestral admixture. Red = African, Blue = European, Green = Amerindian, Yellow = 531 

East Asian. 532 

Figure 2. AD biomarker levels across ancestral groups African Americans, Peruvians, and Caribbean 533 

Hispanics. A) pTau-181 in cognitively unimpaired. B) pTau-181 in AD. C) Aβ42/Aβ40 in cognitively 534 

unimpaired. D) Aβ42/Aβ40 in AD. **** p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ns = not significant 535 

Figure 3. Plasma pTau-181 comparison analysis. Comparisons of the pTau-181 concentration in clinical 536 

diagnosis statuses of Alzheimer Disease (AD), mild cognitively impaired (MCI), or cognitively 537 

unimpaired (CU) in: A) The overall combined cohort, B) African Americans, C) Peruvians, and D) 538 

Caribbean Hispanics. Each point represents one individual’s pTau-181 measurement. Concentrations are 539 

shown as median ± interquartile range, **** p<0.0001, ***p<0.001, **p<0.01, *p<0.05, ns = not 540 

significant 541 

Figure 4. Plasma Aβ42/Aβ40 ratio comparison analysis. Comparisons of the Aβ42/Aβ40 ratio in clinical 542 

diagnosis statuses of Alzheimer Disease (AD), mild cognitively impaired (MCI), or cognitively 543 

unimpaired (CU) in: A) The overall combined cohort, B) African Americans, C) Peruvians, and D) 544 

Caribbean Hispanics. Each point represents one individual’s Aβ42/Aβ40 ratio. Ratios are shown as 545 

median ± interquartile range, *p<0.05, ns = not significant 546 

Figure 5. pTau-181 and Aβ42/Aβ40 ratio comparisons in African American plasma and serum analysis. 547 

Comparisons of  pTau-181 concentrations between serum and plasma in A) cognitively unimpaired (CU) 548 

and B) Alzheimer Disease (AD). Aβ42/Aβ40 ratio between serum and plasma in C) cognitively 549 
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unimpaired (CU) and D) Alzheimer Disease (AD). Each point represents one individual’s measurement. 550 

Concentrations are shown as median ± interquartile range. **** p<0.0001, **p<0.01, *p<0.05 551 

Figure 6. Serum pTau-181 and Aβ42/Aβ40 ratio comparison analysis. Comparisons of the A) pTau 181 552 

concentration and B) Aβ42/Aβ40 ratio in clinical diagnosis statuses of Alzheimer Disease (AD), mild 553 

cognitively impaired (MCI), or cognitively unimpaired (CU) in a subset of African American individuals 554 

for which plasma was not available. Each point represents one individual’s measurement. Concentrations 555 

are shown as median ± interquartile range. ****p < 0.0001, ns – not significant. 556 

Figure 7. Receiver operating characteristic (ROC) curves of plasma and serum biomarkers for the 557 

classification of Alzheimer disease status in: A) The overall combined cohort, B) Caribbean Hispanics, C) 558 

Peruvians, D) African Americans - plasma, E) African Americans - serum. Red lines represent pTau-181 559 

alone, green lines Aβ42/Aβ40 ratio alone, and blue lines the combination of pTau-181 and Aβ42/Aβ40 560 

ratio.   561 
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