
1

1 Advancing Bloodstream Infection Prediction Using 

2 Explanable Artificial Intelligence Framework

3 Rajeev Bopche, MSc 1*, Lise Tuset Gustad, PhD 2, 8 , Jan Egil Afset, MD, PhD 3,  Birgitta Ehrnström, MD, PhD 4, 6, 7 ,  Jan Kristian Damås, 

4 MD, PhD 4,6 and, Øystein Nytrø, PhD 1,5

5 1 Department of Computer Science, Norwegian University of Science and Technology, Trondheim, Norway.

6 2 Faculty of Nursing and Health Sciences, Nord University, Levanger, Norway

7 3 Department of Medical Microbiology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway

8 4 Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway

9 5 Department of Computer Science, The Arctic University of Norway, Tromsø. Norway

10 6 Department of Infectious Diseases, Clinic of Medicine, St Olavs Hospital, Trondheim, Norway

11 7 Clinic of Anaesthesia and Intensive Care, St Olavs Hospital, Trondheim University Hospital, Trondheim

12 8 Department of Medicine and Rehabilitation, Levanger Hospital, Nord-Trøndelag Hospital Trust

13 Abstract: Bloodstream infections (BSIs) represent a critical public health concern, primarily due to their rapid 

14 progression and severe implications such as sepsis and septic shock. This study introduces an innovative 

15 Explanable Artificial Intelligence (XAI) framework, leveraging historical electronic health records (EHRs) to 

16 enhance BSI prediction. Unlike traditional models that rely heavily on real-time clinical data, our XAI-based 

17 approach utilizes a comprehensive dataset incorporating demographic data, laboratory results, and full medical 

18 histories from St. Olavs Hospital, Trondheim, Norway, covering 35,591 patients between 2015 and 2020. We 

19 developed models to differentiate between high-risk and low-risk BSI cases effectively, optimizing healthcare 

20 resource allocation and potentially reducing healthcare costs. Our results demonstrate superior predictive 

21 accuracy, particularly the tree-based models, which significantly outperformed contemporary models in both 

22 specificity and sensitivity metrics. 

23 Keywords: Machine Learning, eXplainable Artificial Intelligence, Bloodstream infections, Predictive analytics, 

24 Electronic Health Records

25 Author Summary

26 In this research, we have developed a new tool that uses artificial intelligence to better predict bloodstream 

27 infections, which can lead to serious conditions like sepsis if not quickly identified and treated. It is the first of its 

28 kind framework that analyzes past health records and helps identify patients who are at high risk of infection more 
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29 accurately than existing tools. Unlike existing tools our framework can be implemented at any stage of the patient 

30 trajectory and is the only framework to achieve good accuracy without the use of intimate patient features such as 

31 vital signs. This ability could enable doctors to prioritize care more pre-emptively, effectively, potentially saving 

32 lives and reducing unnecessary medical tests. Our approach is designed to be easily understood and used by both 

33 medical professionals and those with little technical expertise, making it a valuable addition to hospital systems.

34 1. INTRODUCTION

35 Bloodstream infections (BSIs) are a significant public health challenge, often leading to severe clinical conditions 

36 such as sepsis and septic shock, particularly when unrecognized or untreated. The rapid progression of these 

37 infections, coupled with their association with high morbidity, mortality, and healthcare costs, renders BSIs a 

38 critical challenge in clinical care[1, 2]. The accuracy of available clinical decision tools for BSI and sepsis is in 

39 need of improvement. Currently, most of them are mostly based on changes in vital signs and abnormal blood test 

40 results[3, 4]. Improved prediction can lead to more efficient allocation of resources and reduced health costs. A 

41 refined initial stratification would aid in allocating resources to patients with a high risk of a BSI and reduce 

42 needless testing of patients with low risk. BC may yield not only relevant bacteria causing disease but also growth 

43 of contaminating microbes. Ambigous culture results may be difficult to interpret and lead to clinical uncertainty, 

44 often resulting in longer hospital stay and unnecessary administration of antibiotics [5, 6]. Therefore, reduced 

45 collection of BC in patients with a low risk of BSI can lead to a higher positive predictive value of blood cultures 

46 as well as reduced use of antibiotics. Prompt and early identification of high-risk versus low-risk patients is thus 

47 imperative for adequate and effective initial handling of patients with suspected BSI, optimized allocation of 

48 healthcare resources and reduction of associated costs.

49

50 The advent of Artificial Intelligence (AI) allows innovative methodologies for BSI diagnostics, showcasing 

51 the potential to enhance or even surpass human expertise in diagnostic endeavors [7]. Despite its demonstrated 

52 efficacy, the integration of AI into clinical workflows remains limited [8, 9]. Facilitating this integration may 

53 involve leveraging AI models to augment guidelines-based Clinical Decision Support Systems (CDSS) rather than 

54 striving for the development of fully autonomous AI-based CDSS [10, 11]. Furthermore, adopting a stance 

55 grounded in Predictive, Preventive, and Personalized Medicine (PPPM) principles could refine the utilization of 

56 AI, emphasizing the analysis of historical rather than real-time data variables [12, 13]. The primary aim of this 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305614doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305614
http://creativecommons.org/licenses/by/4.0/


3

57 study was to develop and validate an eXplainable Artificial Intelligence (XAI) framework that utilizes historical 

58 electronic health records (EHRs) to enhance the prediction of BSIs, thus facilitating early and precise intervention. 

59 By integrating a rich dataset with advanced machine learning techniques, we sought to overcome the limitations 

60 of current real-time diagnostic methods. Our findings confirm that the XAI framework not only meets but exceeds 

61 traditional diagnostic performance, demonstrating enhanced predictive accuracy and operational efficiency in BSI 

62 management. This achievement marks a significant step forward in the application of AI in medical diagnostics, 

63 potentially transforming patient outcomes in healthcare settings.

64 2. LITERATURE REVIEW

65 BSI are a critical precursor to sepsis, a severe and potentially life-threatening condition. Early detection and 

66 management of BSI can significantly mitigate the risk of progressing to sepsis. In this context, leveraging AI 

67 models to predict and manage BSI presents a promising avenue. Our literature review sought to capture the breadth 

68 and heterogeneity of recent advances in machine learning ML-based models for BSI prediction. We compiled and 

69 analyzed thirty studies published in the last five years, focusing on various healthcare settings and patient 

70 demographics [14-44]. These studies predominantly focused on inpatient settings, constituting 56% (n=17) of the 

71 research, followed by emergency department (ED) settings at 23% (n=7), and ICU settings at 20% (n=6). Within 

72 the inpatient group, the studies varied, with nine examining general populations [14-22], two targeting inpatients 

73 with central venous catheters (CVC) [23, 24], and others focusing on specific patient categories such as, 

74 hemodialysis (HD) patients [26], cancer patients [27], maternity patients [28], patients with low procalcitonin 

75 levels (PCT ≤2.0 ng/ml) [29], and HIV patients [30]. Bacteremia was the primary condition under study in 24 

76 articles, including varied focuses such as fungemia [14] and Candidemia [27, 43], while three studies aimed at 

77 predicting central line-associated bloodstream infections (CLABSIs) [33, 34, 41] and one on hospital-acquired 

78 BSI (HA-BSI) [22]. All articles reported high prediction performance (AUROC > 0.7) except for one article [20] 

79 which reported poor performance metrics. Most studies were single centered, three articles sourced their data from 

80 two hospitals [14, 16, 38], and two articles used data from multiple centres [35, 43]. The key characteristics such 

81 as, target condition, number of patients or samples, data source, prevalence, ML models, and top predictors for 

82 each study grouped by settings are shown in Table 1 on Page No. 28. 

83
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84 Among studies with study design of inpatient settings, Bhavani et al. (2020) used EHRs from two academic 

85 tertiary medical centers between 2007 and 2018. Data types included Demographic data, International 

86 Classification of Diseases billing codes, clinician orders, blood culture results, vital signs, nursing assessments, 

87 and laboratory values [14]. The LR and GBM models were developed. GBM models demonstrated superior 

88 performance in predicting bacteremia and fungemia with area under the receiver operating characteristic curve 

89 (AUC) scores of 0.78 for bacteremia and 0.88 for fungemia. Lee et al. (2019) investigated the early detection of 

90 bacteraemia using an artificial neural network (ANN) model, specifically a multi-layer perceptron (MLP). The 

91 study utilized data from 13,402 patients at Gangnam Severance Hospital in South Korea, identifying 1,260 

92 episodes of bacteraemia from blood cultures [15]. Data included 20 clinical variables such as vital signs and 

93 various laboratory data. The study highlighted the effectiveness of MLP models, showing remarkable sensitivity 

94 in identifying bacteraemia episodes based on a well-curated set of clinical variables. Lee et al. (2022) expanded 

95 on earlier research, utilizing an extensive dataset, also from Gangnam Severance Hospital, consisting of a larger 

96 patient sample size and covering more recent patient admissions from 2013 to 2018 [16]. This study employed 

97 enhanced ANN models alongside other ML techniques like Random Forest (RF) and Support Vector Machines 

98 (SVM) to predict bacteraemia from clinical and laboratory data. The study by Mahmoud et al. (2021) developed 

99 a predictive model for bacteremia using data from 7,157 adult patients admitted to King Abdulaziz Medical City 

100 in Riyadh. This retrospective cohort study utilized EHRs from July 2017 to July 2019 to analyze 36,405 blood 

101 culture tests [20]. The dataset included demographic details, clinical variables such as vital signs (e.g., 

102 temperature, heart rate, blood pressure), and laboratory test results (e.g., white blood cell count, platelet count, 

103 creatinine level, lactic acid level, C-reactive protein (CRP), and procalcitonin levels). Several machine learning 

104 models were employed to determine the best predictor of positive blood cultures, including Neural Networks 

105 (NN), Random Forest (RF), Logistic Regression (LR), Decision Trees (DT), Naive Bayes (NB), and Support 

106 Vector Machines (SVM) with a Radial Basis Function (RBF) kernel. The study by Garnice et al. (2021) utilized 

107 a dataset from the Hospital Universitario de Fuenlabrada in Madrid, comprising 4,357 patients with 117 features 

108 per patient [21]. The features included patient demographics, medical history, clinical analysis, comorbidities, and 

109 the results of blood cultures, differentiated into cases of bacteraemia and no bacteraemia. Three supervised 

110 machine learning classifiers were implemented: Support Vector Machine (SVM), Random Forest (RF), and K-

111 Nearest Neighbours (KNN). Each classifier was employed in two scenarios: using only the features available at 

112 the time of blood extraction, and a second scenario that included additional features revealed during the blood 
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113 culture process. These studies highlight the potential of ML to enhance diagnostic accuracy and patient outcomes 

114 in detecting critical infections.

115

116 Among studies in the ED settings, Choi et al. (2022) developed ML models to predict bacteremia in emergency 

117 department (ED) settings at Seoul National University Hospital [31]. The study used data from 24,768 adult 

118 patients collected between 2016 and 2018. The models utilized demographic information, chief complaints, vital 

119 signs, and laboratory data collected during ED triage and disposition. Two primary models were developed: the 

120 Triage XGB model and the Disposition XGB model. In a subsequent study Choi et al. (2023) aimed to refine the 

121 predictive accuracy of ED triage-based bacteremia identification using an advanced ensemble of ML techniques. 

122 The study analyzed data from over 30,000 ED visits, employing a wide array of clinical inputs including detailed 

123 symptom descriptions, vital signs, and initial lab results [32]. The developed model incorporated a Gradient 

124 Boosting Machine (GBM) framework that effectively integrated the diverse dataset to predict bacteremia risk. 

125 The study by Schinkel et al. (2022) harnessed data from EHRs of 44,123 unique emergency department visits 

126 across four hospitals: Amsterdam UMC, Zaans Medical Center, and Beth Israel Deaconess Medical Center, 

127 covering the period from 2011 to 2021 [35]. The model employed was a hybrid of LR and (eXtreme Gradient 

128 Boosting) XGBoost, with the latter outperforming in predictive accuracy. The data utilized included patient 

129 demographics, vital sign measurements, and common laboratory results such as temperature, creatinine, and C-

130 reactive protein, which were identified as the most influential predictors. This predictive model was integrated 

131 into the VUMC’s EHRs system for real-time prospective evaluation, affirming its practical utility by potentially 

132 reducing unnecessary blood culture analyses by at least 30%. The study by Boerman et al. (2022) utilized a single-

133 center, retrospective observational design, the study encompassed data from 51,399 ED visits at the Amsterdam 

134 UMC from September 2018 to June 2020 [33]. Data included demographics, vital signs, laboratory and radiology 

135 results, and medications administered during ED visits. The study employed two predictive models: a LR model 

136 and a gradient boosted tree (GBT) model, both of which demonstrated good predictive performance with an area 

137 under the receiver operating characteristic curve (AUROC) of approximately 0.77 and 0.78 respectively. Notably, 

138 the gradient boosted tree model was optimized to predict 69% of blood cultures as negative, with a negative 

139 predictive value exceeding 94%, indicating its utility in potentially reducing unnecessary blood cultures and 

140 associated healthcare costs. The models harnessed a comprehensive array of features, including commonly 

141 available clinical data such as C-reactive protein levels and white cell counts, to predict the likelihood of 

142 bacteraemia. These studies illustrate how integrating ML models into ED workflows can improve the speed and 
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143 accuracy of BSI detection, potentially reducing unnecessary interventions and optimizing resource allocation. 

144 However, all the model focused on recent data pertaining to the patients and none of the study utilized the 

145 predictors from the complete medical history of their patients, apart from demographic and information on co-

146 morbidities. In our previous work through innovative feature engineering from historical medical records and 

147 employing an array of machine learning classifiers, we showcased the efficacy of eXtreme Gradient Boosting 

148 (XGBoost) model, in predicting 30-day mortality using EHR trajectory features [56].

149 2. MATERIALS AND METHODS

150 2.1.     Source of data

151       EHRs provide a longitudinal perspective of patients’ interactions with hospital service. In Norway, with 

152 predominantly public specialist healthcare, patients often have long and continuous histories within one hospital’s 

153 records. This study harnessed EHRs from St. Olavs University Hospital, Trondheim, Norway, encompassing 

154 35,591 patients with suspected bloodstream infections (BSIs) identified via physician-initiated blood cultures 

155 between 2015 and 2020. The EHRs encompassed, curated data from the inception of electronic records in 1999 

156 until 2020, exclusively included hospital care episodes (excluding primary care and other specialist care episodes), 

157 Intensive Care Unit (ICU) admission details, microbiology test results, laboratory test results and patient 

158 demographics comprising of gender, date of birth, and date of death. Diagnoses and Procedures within these 

159 records were classified using the International Classification of Diseases, 10th Revision (ICD-10), facilitating 

160 standardized disease identification critical for the analytical models. This study adhered to the ‘transparent 

161 reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD) [46]. For ethical 

162 considerations the EHRs were de-identified and accessed through a private cloud computing platform.

163

164 2.2.     XBSI Framework

165 The XBSI framework aggregated various data types from the raw EHRs including demographics, laboratory 

166 tests including microbiology tests, discharge summaries, and ICU admissions, as depicted in Figure 1. This dataset 

167 underwent preprocessing, event log creation for sequential ML models, and feature engineering for static ML 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305614doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305614
http://creativecommons.org/licenses/by/4.0/


7

168 models before being transformed and scaled to facilitate the respective model development pipelines. Following 

169 subsections details of the various steps in the XBSI framework.

170

171

172

173 Figure 1. Schematic Overview of the XBSI framework. The diagram illustrates the XBSI framework applied in the study, starting with the 

174 extraction of electronic health records (EHRs), which include demographics, laboratory tests, discharge summaries, microbiology tests, and 

175 ICU stays. The workflow bifurcates into two parallel processes: Sequence Creation and Feature Engineering, both incorporating Anomaly 

176 Scores derived from the data. Subsequent steps include Data Transformation and Scaling, with the data split into training (at 65% and 80%, 

177 respectively), validation (at 15%), and testing (at 20%) subsets. The bottom layer of the workflow depicts the range of ML models, the 

178 performance metrics used to assess them, and the model explanations generated to study the feature importances. 

179

180 2.2.1. Data Preprocessing and Transformation:

181 Utilizing Python libraries such as Pandas and NumPy, the CSV files comprising raw EHRs, were loaded into 

182 dataframes for further processing. The discharge summaries required several data cleaning steps to ensure quality 

183 and relevance of the data: Relevant patient information such as identifiers, admission and discharge times, and 

184 diagnostic codes were retained. Instances of missing identifiers were addressed by replacing empty strings with 
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185 NaN values and subsequently removing these records. Data were organized by patient identifier and 

186 admission/discharge times to maintain coherent episode tracking. Non-standard characters within diagnostic 

187 codes, such as semicolons and commas, were standardized to spaces, and any duplicates were removed. The 

188 timestamps were converted into datetime format, facilitating the calculation of the length of stay in hours for each 

189 episode. The duration of each ICU stay was calculated in hours, along with the total count of each type of hospital 

190 admissions per patient. The request dates in both laboratory test results and microbiology test results were 

191 standardized to datetime objects and used to create eventlogs of tests per patient. Specialized functions were 

192 created to clean the laboratory an microbiology test table entries. This function performed tasks to remove any 

193 non-numeric characters, which could represent encoding errors or artifacts from data entry. It standardized 

194 decimal point characters by replacing commas with periods, which is necessary for consistent numerical 

195 representation across different regions that may use varying formats for decimal points. The microbiology test 

196 table was filtered to identify suspected BSI episodes, with an emphasis on blood culture tests. The results column 

197 was processed to standardize and clean the values, categorizing them as ‘positive’, ‘negative’, or ‘contaminant’ 

198 based on the results column. For each patient ID, four event logs were created, from discharge summaries, ICU 

199 admissions, laboratory tests and microbiology tests, following subsection describes the event logs.  

200 2.2.2. Event log description:

201 Discharge Summaries Event Log: Captures patient discharge information, including admission and discharge 

202 times, diagnostic and procedural codes, urgency and care level code.

203 ICU Admissions Event Log: Records details of each ICU stay, including the duration in hours and the total count 

204 of ICU admissions per patient and total length of ICU stays per patient. 

205 Laboratory Tests Event Log: Includes results of various laboratory tests standardized and organized 

206 chronologically for each patient.

207 Microbiology Tests Event Log: Consists of microbiology test results, grouped by collection sample type, and 

208 categorizes them based on outcomes such as ‘positive’, ‘negative’, or ‘contaminant’. Groups of microbiology 

209 tests categorized by collection sample type are given in Supplementary List 1. 

210 2.2.3. Sequence creation:

211 The sequence creation process was implemented using the create_sequences function, designed to compile a 

212 comprehensive view of a patient's medical history over their entire recorded history. The create_sequences 
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213 function systematically constructs a timeline of medical events for each patient, for each BC test. The medical 

214 events were merged from the four event logs. The filtered event logs are merged into a single dataframe, ensuring 

215 no information is lost. This step involves an outer join on patient ID and date, maintaining all records from each 

216 event log. 

217 2.2.4. Feature engineering:

218 This approach involved creating a dataset with attributes derived from ICD codes, procedure codes, laboratory, 

219 and microbiology test results. Laboratory test results were organized using pivot tables, ensuring a structured 

220 format for analysis. Tests such as 'bilirubin' (total, conjugated, and unconjugated), 'C-Reactive Protein' (CRP), 

221 and 'lactate' (various measurements) were included, alongside white blood cell count (leukocytes), platelet count 

222 (thrombocytes), and blood gas measurements (pH, PO2). Similarly, microbiology test results were consolidated 

223 to reflect various sample types such as blood, urine, and other fluids, employing a dictionary mapping to 

224 streamline similar types. The resulting pivot table included columns for diverse samples, ranging from 'blood 

225 culture test' to 'urine', 'feces', and 'nasal swabs'. A function was created to determine the aggregated result of blood 

226 culture tests for each patient group, considering the possibility of concurrent positive and contaminant results. 

227 This aggregation provided a comprehensive view of the infection status per patient. Moreover, the history of prior 

228 positive, negative, and contaminant results was calculated and added to the dataset, offering a valuable perspective 

229 on the patient’s previous encounters with BSIs. Comorbidities were extracted and processed to identify unique 

230 diseases from patient records. New columns were created for each disease, and the counts were updated based on 

231 patient history. Finally, aggregate columns were added for both ICD and procedure codes to calculate cumulative 

232 sums. This method enabled the capturing of the cumulative history of medical conditions and procedures for each 

233 patient. All the NaN values representing absence of a condition or measurement were filled with zero and “0” is 

234 not interpreted as a value.

235 2.2.5     Model Development

236 This section outlines the development and evaluation of ML models. The process bifurcates into the sequence 

237 creation and feature engineering pipelines for the temporal and static ML pipelines respectively. An Isolation 

238 Forest model was implemented to detect anomalies within the data. This model was trained exclusively on normal 

239 data (negative BC episodes) and then used to compute anomaly scores for the training, validation, and test sets. 

240 These scores were normalized and appended to the original dataset to serve as additional features, enhancing the 
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241 model’s ability to distinguish between normal and anomalous patterns. Given the sequential and tabular nature of 

242 the input data for the respective ML pipelines, the necessary transformation steps were employed to prepare it for 

243 the corresponding learning algorithms. The data was reshaped and scaled using the StandardScaler from 

244 sklearn.preprocessing. This normalization step is crucial for models that are sensitive to the scale of input features. 

245 After scaling, the data was reshaped back to its original form, ensuring compatibility with the machine learning 

246 models used. Temporal ML models included Long Short-Term Memory (LSTM), Gated Recurrent Unit (GRU), 

247 Convolutional Neural Network-Long Short-Term Memory (CNN-LSTM), Convolutional Neural Network-Gated 

248 Recurrent Unit (CNN-GRU), and Transformer models. These models were trained on sequences of medical events 

249 to capture temporal dependencies within the data. On the other hand, the static ML models, which treat data points 

250 as independent and identically distributed, comprised of Light Gradient Boosting Machine (LightGBM), eXtreme 

251 Gradient Boosting (XGBoost), Categorical Boosting (CatBoost), Artificial Neural Network (ANN), Random 

252 Forest (RF), and Logistic Regression (LR). Detailed information of each ML model is given in Supplementary 

253 Methods, Section 1.1., 1.2. 

254 2.4.6     Model Validation

255 For cross validation, we chose a 5-fold cross-validation scheme. This technique involves dividing the entire dataset 

256 into ‘k’ equally sized subsets or folds. The model is then trained on ‘k-1’ folds and tested on the remaining fold. 

257 This process is repeated ‘k’ times, each time with a different fold as the validation set. In addition to cross-

258 validation, we also validated our model on an independent test set, which was separated from the dataset at the 

259 outset and not used during the training phase. The test set comprised of the most recent 20% of the BC episodes 

260 while the earliest 80% of BC episodes were assigned as training cohort. Further, the training data was divided into 

261 a smaller training set and a validation set, with 15% of the training data allocated for validation. This additional 

262 split allowed for the tuning of hyperparameters and the assessment of the model’s performance during training. 

263 Each model was evaluated using a variety of metrics to evaluate model performance, including accuracy, 

264 precision, recall, F1-score, specificity, the Area Under Precision-Recall (PR) Curve (AUPRC) and the Area Under 

265 the Receiver Operating Characteristic (AUROC). Detailed information on each performance metric is given in 

266 Supplementary Methods, Section 1.3.
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267 2.4.7     Model Explanations

268 For interpreting the outputs of our ML models, we employ both global and local explanation methods to provide 

269 comprehensive insights into feature importances which guide clinical decision-making. To evaluate the overall 

270 impact of features across all predictions, we generate SHAP (SHapley Additive exPlanations) summary plots [55]. 

271 These plots aggregate SHAP values to illustrate the average influence of each feature on the model output, ranked 

272 by significance. This method, rooted in game theory, decomposes a prediction into the contribution of each 

273 feature, providing a transparent view into the predictive process. SHAP's suitability for tree-based models was 

274 enhanced by its efficient computation of exact SHAP values using the TreeExplainer algorithm [57], which 

275 significantly reduced computational complexity by exploiting the structural properties of decision trees [58]. By 

276 integrating SHAP summary plots, we can discern which features are most instrumental globally in predicting 

277 bloodstream infections, facilitating an understanding of model behavior over the entire dataset

278

279 On an individual prediction level, we utilize waterfall plots and force plots to detail the contribution of each feature 

280 to specific predictive outcomes. Waterfall plots provide a step-by-step breakdown of how each feature's value 

281 contributes to the final prediction, starting from the base value (the average model output across all data points) 

282 and adding the effect of each feature sequentially. This visualization helps in understanding the decision-making 

283 process for individual predictions, which is crucial for clinical validation and personalized patient insights. Force 

284 plots, another type of local interpretability tool, display how each feature's value pushes the model's prediction 

285 higher or lower, which is particularly useful for individual patient assessments. These plots highlight the positive 

286 or negative contribution of each feature towards the final prediction, allowing healthcare providers to grasp the 

287 underlying reasons for a model's decision on a case-by-case basis.

288 2.2.     Participants and Outcome

289 All adults (aged ≥ 18 years) who had at least one BC episode during their hospital stay or visit, which was 

290 identified and ordered by a physician on the grounds of suspicion of a BSI. The primary outcome was whether a 

291 blood culture episode was positive or negative for bacteremia. A BC episode was defined as a distinct 

292 nonoverlapping 24-hour period in which one or more BC tests were ordered [44]. If one or more results within a 

293 BC episode were positive, then the BC episode was considered positive. BC results with contaminants were 
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294 considered negative results [45]. The list of microbes considered as contaminants is given in Supplementary Table 

295 6. 

296 2.3.     Predictors

297 We used data available till the date of a BC episode for training the ML prediction models. The predictors included 

298 age, sex, results of the recent laboratory test values, previous positive microbiology tests, count of co-morbidities, 

299 ICD and procedural codes, and total ICU stays. The most common laboratory tests were Bilirubin, C-Reactive 

300 Protein (CRP), Creatinine, Leukocytes, and Thrombocytes. The counts of prior positive results of microbiology 

301 tests grouped by their collected sample type were calculated and used as predictors of previous history of 

302 infections (Supplementary List 1).  From the medical history the predictors included, counts of the occurrences of 

303 different ICD-10 diagnostic and the Nordic Medico-Statistical Committee (NOMESCO) Classification of Surgical 

304 Procedures (NCSP), codes and Classification of Medical Procedures (NCMP) codes, were classified according to 

305 the initial character (alphabetic), corresponding to the various chapters in of the ICD-10. Each patient record was 

306 expanded with new columns for the counts in the recent and complete history of the corresponding to each 

307 character, incrementing the count for each instance where a character led the code. For calculation of diagnostic 

308 and procedural codes counts in the recent episode, the current episode and any admissions or visits within one 

309 month of the BC test date were merged into the current medical episode. The LOS feature stored the total length 

310 of stay in the hospital for the current episode till the time of BC. The total LOS feature stored the value of the 

311 cumulative hospital length of stay (LOS) per patients. The description of each predictor and its mean across the 

312 dataset is given in the Supplementary Table 4. Further stratification was conducted by categorizing ICD codes 

313 into disease groups pertinent to clinical significance, such as 'explicit sepsis', 'infection', and 'organ dysfunction', 

314 among others. The table depicting the ICD codes selected for different disease groups is given in Supplementary 

315 Table 5. 

316 3.4.     Prediction task modeling

317 We undertook prediction modeling using two distinct datasets: a static model dataset, X, and a sequential model 

318 dataset, Y. The static dataset, X, encompasses labelled aggregated, patient-specific information available till the 

319 day of BC episode and labels for. Using X, we trained static models Msta to predict the likelihood of a positive 

320 BC episode. the sequential dataset, Y, contains labelled sequences of medical events per patient compiled from 
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321 the eventlogs for each BC test. The sequential models Mseq is developed using Y to predict the likelihood of 

322 positive BC episode.

323

324 2.5.      Statistical Analysis

325 The mean values for the significant features across the two classes were computed, providing an understanding 

326 of how each feature varies with the BC episode results. Statistical analysis was performed using independent t-

327 tests to compare the means of each feature between two independent groups labeled by blood culture test results 

328 [47]. A Pearson correlation matrix was constructed for the significant features to examine the strength and 

329 directionality of the relationships between them [48]. The resulting coefficients was visualized using a heatmap. 

330 3. RESULTS

331 3.1.     Patient Characteristics

332 There were a total of 72,495 BC episodes in the dataset. Following the exclusion of pediatrics and outpatient BC 

333 episodes 65,975 adult inpatient BC episodes were included in the analysis. Of the BC episodes, 5,288 (8%) were 

334 classified as positives. Please see the flow chart provided in Figure 2. The differences in the mean values for all 

335 feature across the two classes along with the T-statistic and p-value is given in Table (Supplementary Results, 

336 Supplementary Table 2). The top 25 most significant features and the comparison between their mean values 

337 across the two classes, along with the T-statistic and p-value are given as Table 1. There were significant 

338 differences between the positive and negative blood culture groups regarding the occurrence of ICD codes starting 

339 with A, B, and N in the medical records. The ICD Chapter I (A00-B99) describes certain infectious diseases and 

340 parasitic diseases and ICD Chapter XIV (N00-N99) concerns kidney and urinary disorders. From laboratory 

341 markers, bilirubin, creatinine, and CRP showed the most significant differences between the groups. The positive 

342 BC group also had higher mean age, higher total length of stay (LOS) till the time of BC, shorter time to the last, 

343 most recent episode, and a higher number of previous positive BC test results. The correlation matrix heatmap 

344 depicts a visual representation of the strength and directionality of correlations between various clinical features 

345 within the EPRs, highlighting the complex interdependencies relevant to BSI prediction, and is presented in 

346 Supplementary Figure 5. The top three most correlated coefficients among significant features is given in 
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347 Supplementary Table 3. The list of all the features, their description, and the mean value across the dataset is given 

348 in Supplementary Table 4. 

349

350 Figure 2. Flow chart The flowchart depicts the categorization of the BC episodes.

351

Comparison of the predictors (Top 25 most influential) between the two classes

Feature names Class 1 (mean)

(n=5288)

Class 0 (mean) 

(n=60687)

T-Statistics P-Value

ICD_A (Infectious diseases) 0.344175492 0.127045331 -41.35067292 0

ICD_B (Infectious diseases) 0.270990923 0.098044062 -34.86262822 6.9733E-264

ICD_N (Kidney disease) 0.498108926 0.255112298 -31.06397543 2.4511E-210

BILIRUBIN TOTAL (Total bilirubin) 14.64849131 7.316773443 -23.83455936 6.0583E-125

prior_positive_blood_culture_test 0.370083207 0.178852143 -20.33423563 1.22442E-91

ICD_J (Influenza, pneumonia etc) 0.307677761 0.488885593 16.95136079 2.5746E-64

ICD_R (abnormal symptoms and 

findings)

0.298411498 0.188771895 -16.06835215 5.48158E-58
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Age (at the time of BC) 68.87821483 65.07332707 -14.51708417 1.11892E-47

KREATININE (Creatinine) 99.42019885 82.73778714 -13.30695014 2.42534E-40

CRP 110.8463237 94.62243471 -12.20533489 3.21434E-34

ICD_A_aggregate 0.797655068 0.557236311 -11.29534135 1.47299E-29

LEUKOCYTTER (Leukocytes) 11.57262042 10.27756163 -10.07214858 7.68314E-24

procedure_G_aggregate 0.996596067 1.48710597 9.453454788 3.3812E-21

ICD_U (Unsure etiology and 

antimicrobial resistance)

0.018910741 0.006953713 -9.34670256 9.3135E-21

ICD_J_aggregate 1.876134644 2.99597937 9.271600994 1.88697E-20

procedure_K (Procedures on the ears) 0.073940998 0.038377247 -8.468324845 2.5398E-17

TROMBOCYTTER (Thrombocytes) 156.5213799 174.202004 8.409629616 4.20742E-17

ICD_K (Gastrointestinal diseases) 0.234871407 0.179527741 -8.148452108 3.75005E-16

procedure_J (Procedures on endocrine 

glands)

0.184379728 0.127407847 -6.851217934 7.38635E-12

prior_positive_edta 0.142965204 0.254074184 6.204949673 5.50384E-10

ICD_M (Muscelosceletal disease) 0.067133132 0.092490978 5.438316649 5.39768E-08

ICD_B_aggregate 0.752458396 0.554468008 -5.194454856 2.06E-07

ICD_R_aggregate 2.291603631 2.686555605 5.06204369 4.15899E-07

Explicitsepsis (Sepsis episdoe) 0.006807867 0.002751825 -5.034421936 4.80552E-07

LOS (Length of stay till BC tests) 8.751426185 8.013890262 -4.578791274 4.68523E-06

352

353 Table 1. Comparison of the predictors (Top 25 most influential) between the two classes.

354

355 3.2.     Model Performance

356 Comparative performance metrics of the ML Models is given as Table 2. The Prediction performance for the ML 

357 models was evaluated using the testing set. For the sequential models, the CNN-LSTM model achieved the highest 

358 AUC of 0.7182 (95% CI 0.7064-0.7300) and AUPRC of 0.2752.  The LSTM model had the highest Accuracy of 

359 0.8955 and Precision of 0.3084. The Transformer model demonstrated the highest Recall/sensitivity of 0.4688. 
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360 The GRU model gave the highest F1-score of 0.3349. In contrast, the static models outperformed the sequential 

361 models, with the CatBoost model exhibiting the highest AUC of 0.8167 (95% CI 0.8049-0.8285) and F1-score of 

362 0.4132. The RF model showcased the highest AUC of 0.8410 (95% CI 0.8292-0.8528). However, it is notable 

363 that both the RF and NN models, with their high accuracy and specificity scored least in terms of recall. On the 

364 other hand, the LR model achieved the highest recall, in contrast to the lower performance across other metrics. 

365 The balanced performance of both XGBoost and LightGBM models across all metrics underscores the robustness 

366 of tree-based models compared to their sequential counterparts. 

367

Model AUC (95% CI) Accuracy Precision Recall F1 

Score

AUPRC Specificity

Sequential 

Models

LSTM 0.6961 (0.6843-0.7079) 0.8955 0.3084 0.2767 0.2913 0.2503 0.9422

GRU 0.7155 (0.7037-0.7273) 0.8652 0.2862 0.4063 0.3349 0.2599 0.8985

CNN-LSTM 0.7182 (0.7064-0.7300) 0.8826 0.3048 0.3529 0.3265 0.2752 0.9224

CNN-GRU 0.7020 (0.6902-0.7138) 0.8697 0.2735 0.3475 0.3054 0.2546 0.9093

Transformer 0.7015 (0.6897-0.7133) 0.8119 0.2829 0.4688 0.3047 0.2307 0.8351

Static 

Models

XGBoost 0.7951 (0.7833-0.8069) 0.8591 0.3533 0.5680 0.4025 0.3942 0.8876

LightGBM 0.8105 (0.7987-0.8223) 0.8103 0.3441 0.6628 0.3737 0.3987 0.8259

CatBoost 0.8167 (0.8049-0.8285) 0.8529 0.3523 0.6274 0.4132 0.4203 0.8750

NN 0.7693 (0.7575-0.7811) 0.9261 0.5126 0.2886 0.3634 0.3618 0.9775

LR 0.7751 (0.7633-0.7869) 0.7534 0.2462 0.6812 0.3219 0.2861 0.7627

RF 0.8410 (0.8292-0.8528) 0.9218 0.8510 0.2201 0.1990 0.4545 0.9882

368

369 Table 2. Comparative Performance Metrics of the ML Models.
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370 3.3.    Global Feature Importances 

371 The SHAP summary plots in Figure 3. reveal the feature importances derived for the XGBoost model. The bar 

372 plot indicates that the count of ICD codes starting with letters A, B, and N, bilirubin (BILIRUBIN TOTAL), 

373 creatinine (KREATININ), leukocytes (LEUKOCYTTER), thrombocytes (TROMBOCYTTER), age, number of 

374 previous positive blood culture results, and the LOS of current or recent hospital episode were the top ten most 

375 important features for predicting positive blood culture. The beeswarm plot further elucidates the directional 

376 impact of each feature’s value on the model’s predictions. Higher values of bilirubin, creatinine, and leukocytes 

377 (as indicated by red dots on the right side of the x-axis) lead to a greater increase in the model’s prediction values, 

378 potentially signifying a higher risk whereas a lower value for thrombocytes signifies a higher risk of bloodstream 

379 infection. Other significant factors towards a positive prediction were higher cumulative hospital length of stay 

380 (total_los), lower time to the recent episodes, and higher CRP. 

381

382
383 Figure 3. SHAP Summary Plots for XGBoost Model Feature Importance. Bar plot on the left illustrating the global feature importance 

384 ranked by the sum of SHAP values across all samples. On the right is the Beeswarm plot detailing the individual SHAP values for each 

385 feature and their impact on the model's output.

386 3.4.    Local Feature Importances 

387 The figure 4. on Page No. 32. Details the waterfall and force plots for the first three prediction tasks. In the first 

388 prediction task, the feature ICD_A (representing infectious and parasitic diseases) has a significantly high positive 

389 SHAP value, indicating that an increase in counts of ICD-10 Chapter I codes strongly sways the model towards 
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390 predicting a bloodstream infection. The 'anomaly_score' feature contributes negatively, suggesting that anomalies 

391 detected by the model are not predictive of the outcome. Similarly, creatinine level and ICD_N (genitourinary 

392 diseases) show negative SHAP values, implying that higher levels of creatinine and the presence of genitourinary 

393 diseases are linked to a lower probability of bloodstream infection in this instance. For the second prediction, 

394 counts of prior positive BC results has the most substantial positive impact, which aligns with clinical reasoning 

395 that past positive tests could indicate a higher risk for current infection. Additionally, ICD_B (infectious and 

396 parasitic diseases) and ICD_R has a positive effect, and total bilirubin has a positive contribution, suggesting high 

397 risk of BSI. In the third prediction, similar to the second prediction, counts of prior positive BC results again 

398 shows a positive influence. Additionally, 'ICD_C_aggregate' (aggregate count of cancer-related codes) exerts a 

399 negative influence on the prediction outcome, whereas 'procedure_W_aggregate' (count of procedures on female 

400 reproductive organs in the history) is associated with an increase in the risk of BSI.

401 4.    DISCUSSIONS

402 In this study we presented the XBSI framework for early prediction of BSI in the hospitals. For the sequential 

403 models, the AUC ranged from 0.6961 to 0.7182, indicating a modest discriminatory capacity, with CNN-LSTM 

404 marginally leading in performance. Notably, the Transformer model demonstrated the highest sensitivity 0.4688. 

405 In contrast, static models depicted better AUC values ranging from 0.7751 to 0.8410. Our findings underscore the 

406 superior performance of static ML models, particularly those employing tree-based algorithms such as CatBoost, 

407 which achieved a notable AUC of 0.8167 [52]. The statistical analysis and global and local SHAP value 

408 interpretations reveal that the count of diagnostic and procedural ICD codes and routine laboratory significantly 

409 contribute to the model’s predictions. These findings align with existing literature, underscoring the clinical 

410 relevance of laboratory tests and medical history for early BSI prediction [14, 15, 16, 20, 21, 51]. The 

411 demonstrated efficacy of our XBSI framework highlights the predictive capability of combining medical history 

412 with routine laboratory tests for early BSI detection. The modular design of our framework reinforces robustness 

413 to all types of medical data and emphasize the utility of integrating diagnostic and procedural ICD codes into 

414 predictive models. This approach allows for a nuanced understanding of patient profiles, which is pivotal for 

415 implementing predictive healthcare solutions effectively. 

416
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417 Comparing the recent studies on predicting BSI in hospital settings, Bhavani et al. (2020) utilized LR and GBM 

418 models to predict bacteremia and fungemia from EHRs, achieving AUCs of 0.73 and 0.88 respectively. The key 

419 predictors identified in the study were time from admission to BC, temperature, age, heart rate, prior 

420 bacteremia/fungemia, white blood cells (WBC), blood urea nitrogen (BUN), glucose, diastolic blood pressure 

421 (DBP),  and systolic blood pressure (SBP) [14]. Lee et al. (2019) compared multiple ML algorithms, including 

422 MLP, SVM, and RF, achieving their best AUC of 0.732 with the RF model [15]. Our study surpasses this 

423 benchmark, suggesting that the sequential analysis of patient data may capture the temporal dynamics of BSI 

424 development more effectively than models relying solely on static point-in-time data. The key predictors reported 

425 by the study included, alkaline phosphate (ALP), platelet, maximum body temperature, SBP, WBC, CRP, ICU 

426 stay, hospital day to blood culture, age, heart rate, prothrombin time, and albumin. In a subsequent study, Lee et 

427 al. (2022) further explored MLP, RF, and XGBoost among others, focusing on their application over a long-term 

428 dataset. Their models achieved AUCs of 0.762 for MLP and 0.758 for RF in the 12-hour data group, which are 

429 slightly lower than our CatBoost model's performance. the key predictors in this study were monocyte, platelet, 

430 hospital stay, neutrophil, total bilirubin, BUN, albumin, ALP, WBC, CRP, creatinine, pulse rate, and chloride 

431 [16]. The study by Mahmoud et al. used data from a tertiary care center comprising patient demographics, length 

432 of stay before blood culture collection, presence of central line, vital signs, laboratory results, and SIRS and 

433 qSOFA scores [20]. They employed various models including NN and LR, with their best models achieving 

434 modest performance metrics (highest specificity at 89% but with low sensitivity). This study extensively used 

435 vital signs and other real-time clinical parameters such as temperature and heart rate as predictors. Despite this, 

436 the highest sensitivity achieved was only 31% with Logistic Regression, and even though some of their models 

437 achieved high specificity, they struggled with very low sensitivity, limiting their practical utility in clinical 

438 settings. Our model's ability to outperform these studies without the need for immediate clinical data or vital signs 

439 not only showcases the robustness and efficiency of our approach but also suggests a potential for earlier and 

440 simpler implementation in clinical workflows. This is particularly advantageous in healthcare settings where 

441 immediate comprehensive data collection is challenging, offering a powerful tool for early BSI detection that is 

442 less dependent on the specific timing of clinical data acquisition. Similar to our study, the study by Garnica et al. 

443 (2021) used SVM, RF, and K-nearest neighbors (KNN), with a combination of RF and SVM yielding the most 

444 robust performance metrics [21]. The number of days in ICU before BC extraction, presence of catheters, age, 

445 chronic respiratory disease, fever, and CRP were reported as key predictors. Their better perfomance in 
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446 comparison can also be attributed to the fact that they used a BSI dataset with prevalence rate of 51.3% which is 

447 highest reported among all the studies reporting ML based BSI prediction models. 

448

449 Our study's findings also contribute to the evolving landscape of ML applications for BSI prediction in ED 

450 settings. Schinkel et al. employed LR and XGBoost models using vital signs, laboratory results, and demographics 

451 [35]. Their XGBoost model achieved an AUROC of 0.81 (95% CI 0.78-0.83), slightly higher compared to our 

452 XGBoost model AUROC of 0.7951 (95% CI 0.7833-0.8069) and an AUPRC of 0.34 (95% CI 0.29-0.38) slightly 

453 lower than our XGBoost model AUPRC of 0.3942. The key predictors brought out by this study were temperature, 

454 creatinine, CRP, lymphocytes, DBP, bilirubin, thrombocytes, neutrophils, APL, heart rate, SBP, leukocytes, 

455 glucose, age, potassium, BUN, sodium, monocytes. Their model effectively reduced unnecessary blood cultures 

456 by approximately 30% during real-time prospective evaluation, which aligns with our goals of enhancing 

457 diagnostic efficiency and reducing healthcare costs. Our study builds on this foundation by implementing a similar 

458 ML approach but extends its application by incorporating a wider array of clinical variables derived from historical 

459 EHRs and employing a novel algorithmic configuration that may provide improved predictive performance. 

460 Similar to our study, Boerman et al. focused on the ED setting of a large teaching hospital, developing predictive 

461 models specifically for BSI outcomes based on data available at the end of ED visits, such as demographics, vital 

462 signs, administered medications, and laboratory results. They reported an AUC of 0.77 for their gradient-boosted 

463 tree (GBT) model and 0.78 for their LR model, indicating good performance in predicting bacteremia in ED [33]. 

464 The key predictors in their models were bilirubin, urea, lymphocytes, pulse rate, CRP, neutrophil, age, 

465 Temperature, DBP, potassium, glucose, thrombocytes, creatinine, ALP, SBP, and organ damage. The study 

466 highlighted the ability of their models to significantly reduce unnecessary blood cultures by predicting negative 

467 outcomes with a high degree of accuracy, reflected by a negative predictive value of over 94%. In parallel, our 

468 model not only confirms these findings but also demonstrates improved predictive accuracy and efficiency in 

469 differentiating between positive and negative BSI outcomes, which could further optimize the use of resources in 

470 ED settings. In another study, Choi et al. (2022) demonstrated the effectiveness of XGBoost model, to predict 

471 bacteremia at different stages of patient care in the ED, achieving an AUROC up to 0.853 [31]. The key predictors 

472 in the study were chief complaint, age, temperature, heart rate, and DBP at triage stage, and neutrophils, platelets, 

473 CRP, chief complaint, and creatinine at disposition stage. Their phased approach using predictions at both triage 

474 and disposition stages aligns with our methodology of employing dynamic modeling to adapt predictions based 

475 on real-time data updates. However, our model differentiates itself by utilizing a more complex array of inputs 
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476 and a refined computational technique that enhances predictive generalizability. By extending the predictive 

477 capabilities beyond structured data, our study underscores the importance of comprehensive data utilization in 

478 developing models that can more effectively guide early clinical decisions in real-time settings. Our model's ability 

479 to accommodate a broader array of clinical variables may explain any improvements in prediction robustness 

480 compared to the framework used by Choi et. al. (2023) [32]. The key predictors in their study were age, vital 

481 signs, history of chills, ambulance use. The collective insights from these comparisons suggest that while our 

482 model shares common ground with existing approaches, it also explores additional layers of complexity such as 

483 patient recent hospital interactions, comorbidities, and previous history of infections, which may influence the 

484 generalizability and effectiveness of the model across diverse healthcare environments, capturing more subtle 

485 nuances of BSI risk factors and could be pivotal in reducing BSI misdiagnosis. 

486

487 Our framework’s modular design facilitates the inclusion of additional data types as they become available, 

488 enhancing its adaptability across various clinical settings. This feature is particularly valuable in current healthcare 

489 environments where flexibility and comprehensive data utilization are crucial for advancing diagnostic accuracies. 

490 Moreover, the intuitive nature of the XBSI framework ensures that it can be seamlessly integrated into existing 

491 clinical workflows, making it a practical tool for clinicians seeking to leverage AI for improved patient outcomes. 

492 The principal clinical value of our approach lies in the ability to identify patients at low risk of a positive BC, at 

493 the time of suspicion of BSI without the need for waiting to capture vital signs at the moment or within a specified 

494 time window, which could increase patient risk and stay [53, 54]. Integrating our proposed framework in hospitals 

495 as a pre-emptive BSI prediction tool can reduce BC ordering and its resulting costs and harms [49]. As it is 

496 reported in the literature that the use of data that is not routinely captured in clinical practice is the main reason 

497 why none of the prediction models have been implemented in the clinical practice yet [50]. Moreover, in the 

498 context of ICU patient monitoring, the application of AI to real-time data may seem redundant. Patients in critical 

499 care are already under intensive surveillance, and the utilization of AI for immediate alert systems could 

500 potentially clutter the workflow rather than enhance it. Instead, a more strategic use of AI lies in its ability to 

501 predict a patient’s worsening condition well before critical thresholds are reached. By analyzing historical EHRs, 

502 AI can identify subtle patterns and indicators of decline that precede acute episodes, thereby enabling preemptive 

503 medical interventions. Moreover, as the complexity of predicting health events increases the earlier the prediction 

504 occurs, achieving perfect accuracy, as often highlighted through metrics like AUC in ICU settings [38-43], may 

505 not be as critical as maintaining reasonable predictability at the initial stages of patient contact. This approach 
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506 could shift the focus from crisis response to proactive patient care management, optimizing outcomes through 

507 early and targeted intervention. The only limitation of this study is its reliance on data from a single center, which 

508 may not represent the diverse patient demographics. Despite these constraints, our model's ability to integrate a 

509 broader spectrum of data and apply a real-time learning framework supports its potential utility in clinical settings, 

510 promising reductions in unnecessary interventions and improvements in patient management. Furthermore, our 

511 use of historical patient data and variety of ML techniques allowed for a more flexible and scalable prediction 

512 framework. This aspect of our model enhances its applicability and provides a significant contribution towards 

513 advancing BSI prediction using AI. 

514 5. CONCLUSIONS

515 This study presents a simple and intuitive XAI framework which comprehensively captures the complete medical 

516 history of a patient to accurately predict the risk of BSIs. The XBSI framework is the first of its kind to 

517 significantly enhances the predictive analysis by integrating information stored as diagnostic and procedural ICD-

518 10 codes. This novel approach diverges significantly from traditional real-time monitoring systems, emphasizing 

519 incorporating comprehensive historical patient data. The key predictors include the count of ICD-10 codes for 

520 infectious diseases, and kidney and urinary disorders, total bilirubin, creatinine, leukocytes, thrombocytes, age, 

521 prior positive blood culture tests, and the total length of hospital stay till the blood culture test. To further enhance 

522 the generalizability of our findings and adoption of our framework, there is a need to validate our framework on 

523 administrative datasets of hospitals outside Norway and include more diverse data sources, such as biomarkers, 

524 genotypes, and phenotypes in future works. 
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Table 1. The key characteristics of the studies using ML for BSI prediction

Setting First author, year Target 

condition

No. 

Patients 

Data source Prevalence ML models Key predictors

Bhavani et al. 

(2020) [14]

Bacteremia 

and 

Fungemia

76688 EHRs, University of Chicago Hospital 

(2008-2018) and Loyola University Medical 

Center, USA (2007-2017)

Bacteremia 

7.7%, 

Fungemia 

0.7%

LR, GBM Time from admission to BC, Temperature, Age, HR, Prior 

Bacteremia/Fungemia, WBC, BUN, Glucose, DBP, SBP, PPI, RR

Lee et al. (2019) 

[15]

Bacteremia 13402 EHRs, Gangnam Severance Hospital, Seoul, 

Republic of Korea, (2008-2012)

7.9% MLP, SVM, RF ALP, PLT, Temperature, SBP, WBC, ICU stay, CRP, CVC, Age, 

PT, Hospital days to BC, HR, Gender, Antibiotics, RR, Creatinine

Lee et al. (2022) 

[16]

Bacteremia 622771 

samples

EHRs, Sinchon and Gangnam Severance 

Hospitals, Republic of Korea, (2007-2018)

6.2% MLP, RF, XGB PLT, Monocyte, Neutrophil, Bilirubin, Albumin, and Hospital stay, 

BUN, ALP, RR, PR, DBP, TP, WBC, PT, Hb, CRP, Creatinine, 

ALT, AST, Sodium, Chloride, ESR

Cheng et al. 

(2020) [17]

Bacteremia 28043 EHRs, Zhengzhou University Hospital, 

China, (2017-2018)

10% LR, NB, SVM, 

ADT, CNN, 

BiLSTM, 

ABiLSTM+ DAE

Textual chief complaints, Admission records, and Laboratory 

biochemical indicators.

McFadden et al. 

(2023) [18]

Bacteremia 10965 

samples

CBC/DC, CPD, Sir Charles Gairdner 

Hospital, Western Australia (2018-2020)

7.58% RF, XGB CBC, DIFF, and CPD

Inpatients

Lien et al. (2022) 

[19]

Bacteremia 366586 

samples

EHRs, CBC/DC, Linkou Chang Gung 

Memorial Hospital (CGMH) in Taiwan, 

(2014-2019)

8.2% RF, LR CBC/DC, CRP, and PCT
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Mahmoud et al. 

(2021) [20]

Bacteremia 7157 EHRs, King Abdulaziz Medical City, 

Riyadh, Saudi Arabia (2017-2019)

11.4% NN, RF, LR, DT, 

NB, SVM

Age, Antibiotics use, Surgery within 14 days, CVC, length of 

hospitalization before BC, RR, SBP, Temperature, DBP, HR, WBC, 

Sodium, PLT, Albumin, Creatinine, Lactic acid level.

Garnica et al. 

(2021) [21]

Bacteremia 4357 EHRs, Microbiological data, Hospital 

Universitario de Fuenlabrada, Madrid, Spain, 

(2005-2015)

51.3% SVM, RF, KNN The number of days in ICU before BC extraction, presence of 

Catheters, Chronic Respiratory disease, Fever, Age, CRP, PLT.

Murri et al. (2024) 

[22]

HA-BSI 5660 

samples

Generator Center at the Fondazione 

Policlinico Universitario A. Gemelli IRCCS 

(FPG), Rome, Italy (2016-2019)

33.6% LR Time BSI > 12 days, Procalcitonin > 1 ng/mL, Presence of a CVC, 

PLT, Hypotension, BUN, Presence of urinary catheter, Fever, 

Tachycardia, Altered mental status, Age, Bilirubin, Creatinine

Inpatients 

with SIRS

Ratzinger et al. 

(2018) [23]

Bacteremia 466 EHRs Vienna General Hospital, Austria, 

(2011-2012)

28.8% RF, ANN, ENR PCT, LBP, Albumin, Bilirubin

Rahmani et al. 

(2022) [24]

CLABSIs 27619 EHRs, a proprietary national longitudinal 

EHR repository, Houston, Texas, USA 

(2015-2020)

1% XGB, DT, LR Temperature, HGB, comorbidities, Age, WBC, Race, Neutrophil.Inpatients 

with CVC

Beeler et al. 

(2018) [25]

CLABSIs 70218 EHRs, Indiana University Health Academic 

Health Center, USA, (2013-2016)

0.6% RF, LR Age, Gender, history of CLABSI, CHG (Chlorhexidine Gluconate) 

Bathing Non-compliant Days, Line days.

HD patients Zhou et al. (2023) 

[26]

Bacteremia 391 EHRs, Department of Nephrology, Affiliated 

Hospital of North

Sichuan Medical College, Sichuan Province, 

China, (2018-2022)

18.9% LR, SVM, DT, RF, 

XGB

PCT, Temperature, Non-arteriovenous fistula dialysis access, NLR, 

Leukocyte, dialysis duration, LMR, Albumin, Neutrophil, PLT, Age, 

DBP, CRP, PLR, ALP, SBP, HR, history of BSI, 

Cancer 

patients

Yoo et al. (2021) 

[27]

Candidemia 34574 EHRs, academic single hospital in Seoul, 

Republic of Korea, (2010-2018)

0.6% LR, ANN, RF, 

GBM, AML

Variables reflecting the dynamic status of patients with cancer, 

including blood urea nitrogen level, 7-day variance of RR, Total 

bilirubin level, 7-day variance of SBP, Body weight.
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Maternity 

patients

Mooney et al. 

(2020) [28]

Bacteremia 129 CBC parameters, Rotunda Hospital, Ireland 

(2019)

3% CART, LDA, KNN, 

SVM, RF

NLR, CBC parameters.

Patients 

with PCT 

≤2.0 ng/ml

Su et al. (2021) 

[29]

Bacteremia 931 EHRs, Mindong Hospital Affiliated to 

Fujian

Medical University, China, (2014-2020)

47% ANN, KNN, LR, 

RF, SVM, and NB.

Interleukin-6, PCT, D-dimer, Lactic acid, Leukocytes, Neutrophil, 

and PLT.

HIV 

patients 

Wu et al. (2023) 

[30]

Bacteremia 498 EHRs, Wenzhou Central Hospital, China, 

(2014-2021)

34.3% SVM, ANN, GBM, 

GLM, MDA, PLR, 

NB, RF

Low Hb, CD4+T cell, PLT, LDH, BUN, splenomegaly, absence of 

ART treatment, Strip shadow, Nodular shadow, and Shock.

Choi et al. (2022) 

[31]

Bacteremia 24768 EHRs, An urban tertiary referral hospital, 

Republic of Korea, (2016-2018)

12% XGB, RF, LR Chief complaint, Age, Temperature, HR, and DBP at triage stage. 

Neutrophils, PLT, CRP, Chief complaints, and Creatinine at 

disposition stage.

Choi et al. (2023) 

[32]

Bacteremia 15362 EHRs, Seoul National University Hospital, 

Seoul National University Bundang 

Hospital, Republic of Korea, (2016-2018)

10.9% BNN Age, HR, Temperature, DBP, History of chills, Ambulance use

Boerman et al. 

(2022) [33]

Bacteremia 4885 EHRs, Amsterdam UMC, location VU 

University Medical Center, NL, (2018-2020)

12.2% GBT, LR Bilirubin, Urea, lymphocyte, Pulse rate, CRP, Neutrophil, age, 

Temperature, DBP, Potassium, Glucose, Thrombocytes, Creatinine, 

ALP, SBP, Organ damage

Chang et al. 

(2023) [34]

Bacteremia 20636 EHRs, CPD, CBC/DC, China Medical 

University Hospital, Taiwan, (2021-2022)

10.4% CatBoost, LGBM, 

XGB, RF, LR

Demographics, CPD, CBC/DC

ED 

Schinkel et al. 

(2022) [35]

Bacteremia 6421 EHRs, Amsterdam UMC, (VUMC, AMC, 

ZMC, and BIDMC), NL, (2016-2021)

5.4% - 

12.3%

XGB, LR Temperature, Creatinine, CRP, Lymphocytes, DBP, Bilirubin, 

Thrombocytes, Neutrophils, ALP, HR, SBP, Leukocytes, Glucose, 

Age, Potassium, BUN, Sodium, monocytes

ED patients 

with SIRS

Goh et al. (2022) 

[36]

Bacteremia 40395 EHRs, National Cheng Kung University 

Hospital, Taiwan, (2015-2019)

10% LR, SVM, RF Age, Gender, COPD, Uncomplicated DM, Hemato-oncology, WBC, 

Band cell, Platelet, Temperature, HR, mild liver disease, Mean 

arterial pressure, RR, GSC
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ED patients 

with fever

Tsai et al. (2023) 

[37]

Bacteremia 3669 EHRs, Chi Mei Medical Center, Taiwan, 

(2017-2020)

13.8% RF, LR, MLP, XGB, 

LGBM

Hypertension, Gender, Temperature, DM, Age, CRP, PLT, WBC, 

Malignancy, Eosinophil, HR, BMI, Hb, RR, SBP, DBP, Band, CKD, 

Liver Cirrhosis, COPD, GCS

Roimi et al. 

(2020) [38]

Bacteremia 3372 EHRs, BIDMC, Boston, Massachusetts, 

USA, (2008-2012), ICU of Rambam 

Healthcare Campus (RHCC), Israel, (2013-

2017)

ICU 

acquired: 

6.4% 

(BIDMC), 

15.9% 

(RHCC)

RF, XGB Time duration (days) between sampling time and last defecation, 

Time duration (hours) between sampling time and the maximum 

BUN (mg/dL) value measured during the 5 days prior to sampling, 

Length of stay (days) between sampling time and ICU admission, 

The minimal weight (kg) during the 5 days prior to sampling, The 

time duration between sampling time and the maximum MCHC 

(g/dL) during the 5 days prior to sampling

Van Steenkiste et 

al. (2019) [39]

Bacteremia 2177 EHRs, ICU, Ghent University Hospital, 

Belgium, (2013-2015)

10.5% BiLSTM, ANN, 

SVM, KNN, LR

Temperature, Thrombocytes, Leukocytes, CRP, sepsis-related organ 

failure assessment, HR, RR, PT, and mean systemic arterial pressure.

Boner et al. 

(2022) [40]

Bacteremia 6557 EHRs, ICU, University of Virginia, USA, 

(2011-2015)

13.3% FNN, GRU, CNN, 

LR

Temperature, BUN, BP, HR, Albumin, PLT, Chloride, Creatinine, 

Chloride, and Phosphorus.

ICU 

patients

Pai et al. (2021) 

[41]

Bacteremia 4275 EHRs, Taichung Veterans General Hospital 

ICU, Taiwan, (2015-2019)

13.8% LR, SVM, MLP, RF, 

XGB

ALP, CVC period, prothrombin time, PLT, Albumin, Apache II 

score, Age, foley

ICU 

patients 

with CVC

Parreco et al. 

(2018) [42]

CLABSIs 57786 

admissio

ns

MIMIC-III database, USA, (2001-2012) 1.5% LR, GBT, DL Severity of illness scores (like SAPS II, APS III, and OASIS) and 

comorbidities.

ICU 

patients 

with new-

onset SIRS

Yuan et al. (2021) 

[43]

Candidemia 7932 EHRs, Peking Union Medical College 

Hospital, The Affiliated Hospital of Qingdao 

University, The First Affiliated Hospital of 

Fujian Medical University, China, (2013-

2017)

1% XGB, SVM, RF, ET, 

LR

Colonization, Diabetes, AKI, total number of parenteral nutrition 

days, history of fungal infection, CRRT days, Abdominal surgery, 

BDG, days of mechanical ventilation, Length of hospital and ICU 

stay, days of CVC
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Figure 4. Waterfall and Force plots for the first three predictions from the test set.
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