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Abstract

Individuals’ perceptions of disease influence their adherence to preventive measures, shaping the
dynamics of disease spread. Despite extensive research on the interaction between disease spread,
human behaviors, and interventions, few models have incorporated real-world behavioral data on
disease perception, limiting their applicability. This study novelly integrates disease perception,
represented by perceived severity, as a critical determinant of behavioral change into a data-driven
compartmental model to assess its impact on disease spread. Using survey data, we explore scenarios
involving a competition between a COVID-19 wave and a vaccination campaign, where individuals’
behaviors vary based on their perceived severity of the disease. Results demonstrate that behavioral
heterogeneities influenced by perceived severity affect epidemic dynamics, with high heterogeneity
yielding contrasting effects. Longer adherence to protective measures by groups with high perceived
severity provides greater protection to vulnerable individuals, while premature relaxation of behav-
iors by low perceived severity groups facilitates virus spread. Epidemiological curves reveal that
differences in behavior among groups can eliminate a second infection peak, resulting in a higher
first peak and overall more severe outcomes. The specific modeling approach for how perceived
severity modulates behavior parameters does not strongly impact the model’s outcomes. Sensitivity
analyses confirm the robustness of our findings, emphasizing the consistent impact of behavioral
heterogeneities across various scenarios. Our study underscores the importance of integrating risk
perception into infectious disease transmission models and highlights the necessity of extensive data
collection to enhance model accuracy and relevance.

Keywords: Compartmental model, disease perception, perceived severity, human behavior, epi-
demiological dynamics, mathematical modeling

1 Introduction

The propagation patterns of infectious diseases are shaped by human interactions, movements, and
individual conduct. Reciprocally, the dynamic unfolding of contagious illnesses can impact human
behavior [1, 2, 3]. Therefore, the interplay between disease spreading, human behaviors, and inter-
ventions, both pharmaceutical and non-pharmaceutical, has been largely studied in literature during
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the last twenty years (for reviews see [3, 4, 5]). Several works have integrated these different elements
in various mathematical modeling frameworks, to gain quantitative insights and provide predictions
and projections. Nonetheless, most of these models were limited to theoretical investigations and
were not informed by representative, real-world, timely data on the behavioral aspects, largely due
to the lack of availability of such data. This situation has however evolved since the emergence of
SARS-CoV-2 and the resulting COVID-19 pandemic, which stimulated important data collection
efforts to better inform models and gain insights into the spread of SARS-CoV-2 at various scales
[6, 7, 8, 9, 10]. In particular, numerous studies have focused during this pandemic on evaluating
the effectiveness of Non-Pharmaceutical Interventions (NPIs) and government-imposed restrictions
to mitigate the contagion [11, 12, 13, 14, 15], as well as on assessing the benefits of vaccination
campaigns [16, 17, 18].

In the current post-pandemic period, however, top-down emergency measures have been dis-
continued, and the responsibility for adopting protective measures is left to individuals. Possible
protective measures encompass both aspects of each individual’s social life, such as reducing social
gatherings, and hygiene- or health-related practices, including mask-wearing and vaccination deci-
sions [19]. Disease perception, i.e., the way individuals perceive how the disease might impact them,
plays an important role in the adoption of such protective behaviors as evidenced by numerous
studies and taken into account in psychological models (e.g. Health Belief Model) [20, 21, 22]. For
instance, individuals who perceive a higher risk are more likely to adopt recommended hygiene and
avoidance behaviors [23], and this relationship strengthens throughout an epidemic [24]. However,
and despite the vast literature that proves its influence on behavioral aspects [23, 24, 25, 26, 27],
risk perception has rarely been included in data-driven modeling frameworks in particular for lack
of data. Consequently, the collection of data on disease perception and social contacts during the
pandemic presents an invaluable opportunity to investigate the impact of risk-perception-driven
behaviors and behavioral changes on the propagation of a disease in a population.

In this paper, we leverage data collected during the pandemic to build a data-driven mathemat-
ical modeling framework and investigate the complex relationship between self-adopted protective
behaviors, disease spreading, and risk perception. In particular, the scenario we envision presents
a competition between an ongoing wave of COVID-19 and a vaccination campaign. We however
consider a context similar to the current post-pandemic period where top-down emergency measures
are absent, and individuals are responsible for their protection. In this context, we develop a deter-
ministic compartmental model that incorporates a feedback loop between behaviors, vaccines, and
the contagion process and that includes risk perception as a key determinant of the adoption or
relaxation of individual protective behaviors.

To inform the model, we use data from the CoMix survey [7] along two different lines. On the
one hand, we model different levels of compliance with protective behaviors by two different contact
matrices giving the average number of contacts between individuals of different age groups. On the
other hand, we stratify the population according not only to age classes but also to how individuals
perceive whether the disease poses a threat to them. Specifically, we classify individuals according to
their ”perceived severity”, i.e., on their belief of the seriousness of the disease if they were to catch
it. Perceived severity has indeed been found to be one of the most important factors impacting
self-initiated behavioral changes in the context of the recent COVID-19 pandemic [23, 24, 28, 29,
30, 31, 32], including a strong association with a reduction in the number of contacts [33]. We then
hypothesize that the adoption and the relaxation of protective behaviors depend not only on objective
indicators, given respectively by the burden of the epidemic on the hospitals and by the fraction of
vaccinated individuals in the population, but can also be influenced by perceived severity. We can
thus investigate within such a framework whether taking into account the population differences in
perceived severity leads to differences in the epidemic dynamics and the propagation outcome in
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terms of various metrics such as the overall death rate and ICU peak height and date. Moreover,
we consider several possible methods of informing the model’s parameters by the perceived severity
of individuals and explore whether they impact the model’s outcome. We explore several scenarios
encompassing distinct behavioral and epidemiological conditions to validate the robustness of our
findings.

Results reveal that introducing differences in behavioral change parameters based on perceived
severity produces differences in the timing of the epidemic curves, with an earlier peak of infections
if compared to the scenario where the entirety of the population behaves in the same way. This has
a crucial consequence on a model’s predicted outcome as, in a progressively vaccinated population,
an early peak of infections leads to a higher number of deaths. We also find that the precise way of
modeling how the perceived severity modulates the parameters ruling the adoption and relaxation
of behaviors does not strongly impact the model’s outcome.

These results have direct public health implications: on the one hand, they highlight a certain
robustness with respect to some unavoidable arbitrariness in modeling choices. On the other hand,
they emphasize the need to gather extensive data on the perception of risks and its correlation with
behavioral change in various populations and possibly different epidemiological contexts, to build
data-informed models taking into account risk perception.

2 Materials and Methods

2.1 Data

We leverage data collected during the pandemic period, namely through the CoMix survey [7, 33]
initiative, to (i) generate age-stratified contact matrices corresponding to different levels of compli-
ance with respect to self-adopted protective measures and (ii) additionally stratify the population
according to the perception of individuals of the risk posed by the disease. The CoMix study devel-
oped a longitudinal survey approach for the collection of data aiming at a better comprehension of
the behaviors of individuals throughout the COVID-19 pandemic. The surveys, administered every
two weeks, captured the evolving awareness, attitudes, and behaviors of participants in response
to COVID-19, together with comprehensive information on age, gender, occupation, physical con-
tacts, COVID-19 testing, and self-isolation. It was launched initially in March 2020 in Belgium, the
Netherlands, and the United Kingdom, and further expanded its reach to an additional 17 European
countries.

We focused our study on the case of Italy where, during the winter between 2020 and 2021, the
government implemented a tiered regional system of restrictive measures, with progressively stricter
tiers – yellow, orange, and red zones [34]. We use the contact patterns measured in the red zones
as a proxy for contacts among individuals adopting highly restrictive protective measures, while
contact matrices measured among individuals living in areas where the yellow zone restrictions were
implemented represent a situation where individuals adopted less restrictive measures and have a
higher number of contacts with respect to what happens in the red zones. We first stratify the
population into seven age groups (0-4, 5-17, 18-29, 30-39, 40-49, 50-59, and 60+), using data about
the population distribution in Italy across the various age groups from the 2019 United Nations
World Population Prospects [35]. We then use the data from the CoMix survey for Italy to generate
two contact matrices: the one resulting from data collected in the red zone is used in the model to
reflect the contacts of individuals who adopt protective behaviors (named in the rest of the paper
as “compliant” individuals), while we use the one built from the yellow zone data to describe the
contacts of what we call “non-compliant” individuals (see [36] for more detailed information on the
specific top-down restrictions imposed by health authorities during the data collection).
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In addition to questions related to their contacts (e.g. total number, frequency, location, etc. -
see [36] for detailed information on the contact surveys), participants over 18 years old answered
questions related to their risk perception. Concerning perceived severity, participants were asked to
indicate their agreement with the statement “Coronavirus would be a serious illness for me” using a
5-point Likert scale ranging from strongly disagree to strongly agree. This information allowed us to
further stratify the population in each age group into 5 specific perceived severity subgroups based
on participants’ responses (denoted by 1 for low perceived severity, i.e. for the “strongly disagree”
answer to 5 for the “strongly agree” denoting a high perceived severity) [7, 33]. For individuals
under 18, given the absence of direct data on perceived severity, we assumed that their perceptions
were predominantly shaped by their parents. Thus, we categorized age groups 0-4 and 5-17 into
subgroups based on the perceived severity responses provided by individuals of parental age (20 to
50 years old). This decision is supported by [37], in which an analysis conducted on adolescents
between 13 and 20 years old in Italy during the lockdown evidenced a distribution of perceived
severity among them similar to the one we obtained aggregating the data of individuals aged 20 to
50.

Having stratified individuals within each of the 7 age groups into 5 perceived severity groups, we
obtain an overall population divided into 35 subgroups, for which we build 35× 35 contact matrices
by multiplying each element of the age-stratified contact matrices by the fraction of the population
in each perceived severity group. Specifically, the numbers of contacts between an individual in age
group i and perceived severity group j with an individual in age group i′ and perceived severity

group j′, indicated with Miji′j′ , can be obtained with the formula Miji′j′ = Cii′ ∗
Ni′j′

Ni′
, where C is

the age-stratified contact matrix and Ng indicates the number of individuals in group g.
Interestingly, the CoMix survey participants also expressed their perceived susceptibility and risk

with the following two statements: “I am likely to catch coronavirus” and “I am worried that I might
spread coronavirus to someone who is vulnerable”. However, we did not include these variables in
the analysis because their association with the number of contacts, in the context of the COVID-19
emergency, was found to be less relevant in [33].

2.2 Model definition

We consider a deterministic compartmental model describing the propagation of SARS-CoV-2 in
a population stratified by age and perceived severity of the disease (7 age classes and 5 perceived
severity classes), similar to the one used in [17]. The model incorporates on the one hand a vacci-
nation process and on the other hand a behavioral component. The latter describes the possibility
of modifying one’s contact patterns depending on the unfolding of the epidemic and it is modulated
by a data-informed perceived severity attribute. Figure 1 presents a diagrammatic sketch of the
model, which we now describe in detail. A more in-depth explanation of the scenario explored and
the sources of the parameters are reported in Section 2.3. We moreover report in the Supplementary
Material the full set of evolution equations describing the model.

2.2.1 Compartmental model

Each individual can transition from one compartment to the other depending on their status with
respect to the disease, their vaccination status, and their current behavior.

Susceptible individuals (S compartment) in contact with infectious individuals can be infected
and transition into the latent (L compartment). They then enter the pre-symptomatic (P ) stage
of the infection with a constant rate ϵ. They leave the pre-symptomatic stage at a constant rate
ω, reaching either the asymptomatic compartment A with age-dependent probability f , or the
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Figure 1: Model diagram. The model is an extension of a standard SLIR (Susceptible-Latent-
Infected-Recovered) with the addition of individuals who are pre-symptomatic (P ) and asymp-
tomatic (A) and also individuals in Intensive Care Units (ICU), and individuals who die (D).
Furthermore, we introduced an additional series of compartments for vaccinated individuals (V ,
LV , PV , IV ) and two compartments (SNC and V NC) for individuals that relax their protective
behaviors. Those individuals have a higher risk of infection, modeled using a contact matrix MNC

with a greater number of contacts than the one used for compliant compartments (S and V ), MC .
Both matrices MC and MNC capture contact patterns of the winter period 2020-2021 in Italy, for
regions with, respectively, high and small stringent restrictions.

symptomatic infectious compartment I (with probability 1− f). Asymptomatic individuals recover
at rate µ, entering the recovered compartment R. Symptomatic infectious individuals can either
recover, be hospitalized in the Intensive Care Unit (ICU compartment), or die (D compartment),
with rate µ in all cases. The respective probabilities are determined, as described in detail in the
Supplementary Material, by the three following age-stratified parameters: the Infection ICU Ratio
(IICUR) the Infection Fatality Rate (IFR), and the Probability of deaths among ICU (PICUD).
Finally, individuals leave the ICU compartment at rate 1/∆, where ∆ represents the mean number
of days of hospitalization. They then either die with probability PICUD or recover with probability
1− PICUD.

The force of infection resulting from contacts between susceptible and symptomatic infectious
individuals (compartment I) is determined by an age- and perceived severity-stratified “compliant”
contact matrix (corresponding to Italy’s red zones)MC , whose elementsMC

iji′j′ represent the average
number of contacts that an individual in age group i and perceived severity group j has with
individuals in age group i′ and perceived severity group j′ per day, and multiplied by a transmission
rate β. The transmission rate from pre-symptomatic and asymptomatic individuals is reduced by a
factor χ < 1.

5

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305600doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305600
http://creativecommons.org/licenses/by-nc/4.0/


We moreover model a vaccination process as follows: each day, a fraction of the susceptible pop-
ulation receives a vaccine and transitions to the V compartment. The rollout rate rV represents the
number of daily available doses expressed as a percentage of the total population. As in previous
works [38, 39], we assume the vaccine can reduce susceptibility with efficacy V ES , the probability
of developing symptoms with efficacy V ESymp, and severe symptoms leading to death with efficacy
V ED. In practice in the model, this means that the infection rate for individuals in the V com-
partment is reduced by a factor (1− V ES), the probability 1− f of becoming infected I instead of
asymptomatic A is reduced by a factor (1− V ESymp), and the probability of transitioning from IV

to the ICU compartment and the IFR are both reduced by a factor (1−V ED). The overall efficacy
of the vaccine is expressed by the following formula V E = 1− (1− V ES)(1− V ESymp)(1− V ED).

2.2.2 Coupling disease dynamics, behavior and vaccination

We assume that individuals, during the epidemic, can change behavior. Specifically, there is a pos-
sibility that individuals, both susceptible (S) and vaccinated (V ), may abandon safe behaviors and
expose themselves to higher risks of infection. To incorporate this behavioral change, we introduce
two additional compartments, SNC and V NC , where NC stands for non-compliant individuals. We
thus assume that these non-compliant individuals have contacts described by Italy’s yellow zone con-
tact matrix MNC (thus with more contacts than for the S and V compartments and consequently
a higher probability of being infected). For the convenience of notation, we will hereafter denote by
C the union of the compliant compartments S and V , and by NC the non-compliant compartments
SNC and V NC .

Our model’s crucial hypothesis concerns the interplay between behavioral change, vaccination,
and the unfolding of the disease spread, which determines the transitions between compliant and
non-compliant compartments. We first assume that the transition rate from C to NC, λX−>XNC

(X = S or = V ) describing the relaxation of protective behavior, increases with the fraction of
vaccinated people vt in the population. This expresses the idea that individuals may consider that
the threat posed by the disease is lower if more people are vaccinated. Second, we assume on the
other hand that the transition rate from NC to C, λXNC−>X (X = S or = V ), depends on the
occupancy of beds in intensive care ICUt, taken as a quantitative indicator of the overall seriousness
of the spread. Finally, to incorporate all the aforementioned variables, we model both transition rates
using logistic functions, described each by two parameters: a slope (α for the C to NC transition
and γ for the NC to C one) and a midpoint (a0 for the C to NC transition and b0 for the NC to
C one). The expressions of these rates are as follows (for X = S and X = V ):

λX−>XNC =
1

1 + exp−α(vt−a0)

λXNC−>X =
1

1 + exp−γ( ICUt
ICUmax

−b0)

(1)

Figure 2 shows the functional dependence of λX−>XNC with the fraction of vaccinated individuals
and illustrates how the functional shape depends on the slope α and the midpoint a0. Similar plots
and considerations stand for the rate λXNC−>X as γ and b0 vary. The way these parameters alter
the transition’s shape makes them suitable for variation across different population groups, enabling
the introduction of behavioral differences, as we will discuss next.
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ā0 = 0.6
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a0 = 0.50
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Figure 2: Rate of transition from compliant to non-compliant compartments as a function of the
fraction of vaccinated population for several values of A) the slope α with a fixed midpoint of
a0 = 0.5, and B) the midpoint a0 with a fixed slope of α = 10.

2.2.3 Modulating behavioral change by risk perception

The final element of our model is the introduction of disease perception as a determinant of behavioral
change. In particular, as shown in literature [40, 33, 41], individuals with high perceived severity
have a smaller number of contacts, which in our framework corresponds to compliant behavior. For
this reason, we assume that the midpoints a0 and b0 of the logistic functions of Equation 1, giving
the transition rates between compliant and non-compliant compartments, depend on the perceived
severity. We instead fix for simplicity the values of the slopes α and γ.

As individuals with higher perceived severity should be more reluctant either to relax their
behavior or more prone to adopt protective measures (with thus fewer contacts), we assume that
the midpoint a0 is an increasing function of perceived severity (= 1, · · · , 5), while b0 is instead a
decreasing function. How a0 and b0 precisely depend on the perceived severity represents however
an a priori arbitrary modeling choice. Here we explore possible dynamics for these variables, to
explore the different impacts different regimes might have on the overall unfolding of the epidemic.
We thus considered five possible different functional forms for the relationship between contacts and
perceived severity, sketched in Fig. 3. These five functions all include a linear part with respect to
the perceived severity, and we denote them in the remainder of the study by the following names,
which describe the location of this linear part: Linear, Center Linear, Start End Linear, Start Linear,
and End Linear. Naming a0j the value of a0 for the perceived severity group j (j = 1 to 5), we have:
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• Linear: linear growth of the midpoint for all five perceived severity groups a0j = mj + q

• Central Linear: linear growth for the three central perceived severity groups and the same
value of the parameters for the two lowest perceived severity groups and for the two highest
a0j = mj + q for i=2, 3, 4, with a01 = a02 and a04 = a05 .

• Start End Linear: linear growth for the two lowest perceived severity groups and for the two
highest and the same value of the parameters for the three central perceived severity groups
a0j = mj + q for i = 1, 2 and for i = 4,5, with a02 = a03 = a04 .

• Start Linear: linear growth for the three lowest perceived severity groups and the same value
of the parameters for the others a0j = mj + q for i = 1,2,3, with a03 = a04 = a05 .

• End Linear: linear growth for the three highest perceived severity groups and the same value
of the parameters for the others a0j = mj + q for i = 3,4,5, with a01 = a02 = a03 .

We show in the Supplementary material how to express the slope m and the intercept q of each

function as a function of the weighted mean a0 =
∑5

i=1 nia0i∑5
i=1 ni

and the weighted variance σ2
a0

=∑5
i=1 ni(a0i

−a0)
2∑5

i=1 ni
of the midpoints, where ni is the population in perceived severity group i. Similar

calculations apply for the parameter b0 with the only difference that the midpoint decreases with
perceived severity and, thus, the slope m of the linear part of each function is negative. In this
way, by fixing the mean value of the midpoint (a0 or b0) and by changing the variance (σ2

a0
or

σ2
b0
), we can model how differences in perceived severity lead to differences in behavioral changes,

as determined by the transition rates between compliant and non-compliant compartments. Figure
3 gives a concrete example of this framework. With a fixed mean value of the midpoint a0, if the
variance σ2

a0
is equal to 0, every perceived severity group has the same midpoint, independently from

the function used (dashed line). However, if we increase the variance (i.e. σ2
a0

= 0.05 in the figure),
different perceived severity groups have different midpoints, leading to different transition rates at a
fixed fraction of vaccinated people. Moreover, these transition rates depend on the specific function
considered in the model. Note that some values of the midpoints can be negative or larger than 1,
resulting in the population in that group being almost entirely non-compliant or compliant for the
whole simulation, as their transition rate to the non-compliant compartment is then either always
very high or always very small.
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Figure 3: Left column: Sketch of the 5 functions used to model the dependency of the midpoint from
perceived severity. From top to bottom, Linear, Central Linear, Start End Linear, Start Linear, End
Linear. The horizontal dashed lines give the average a0 = 0.6. Right column: logistic curves as a
function of the fraction of vaccinated individuals, for the various midpoints obtained with a fixed
average a0 = 0.6 and either variance 0 (dashed line, in which case all midpoints are equal to the
average) or variance σ2

a0
= 0.05.
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Figure 3 focuses on the transition from the compliant to the non-compliant compartments, but
similar sketches can be drawn for the dependence of b0 with perceived severity, albeit with decreasing
shapes. We will focus in the main text on the impact of dependence of a0 on the perceived severity,
varying the mean value of the midpoint a0 and the variance σ2

a0
, at fixed values of the slopes α = 10

and γ = 5, and considering the case of b0 = 0.75 with σ2
b0

= 0 (i.e., no dependence on perceived
severity for the transition rate to the compliant compartments). In the Supplementary Material, we
perform a sensitivity analysis by varying α, γ, and b0, and consider as well the case of b0 depending
on the perceived severity.

2.3 Model parameters and scenario

Epidemiological parameters We consider a scenario inspired by the one unfolding in Italy
starting in mid-2021, as this corresponded to the deployment of the vaccination campaign against
SARS-CoV-2. We therefore use epidemiological parameters matching the characteristics of the Delta
variant, which was the dominant one in Italy at that time. In particular, the parameters ϵ, ω and µ
are taken from the literature [42, 43, 44, 45, 46].

The fraction of asymptomatic individuals is age-dependent and taken from [47], where we grouped
the asymptomatic and pauci-symptomatic individuals, given that the latter show no clear signs al-
lowing us to identify their disease. Individuals in pre-symptomatic and asymptomatic compartments
have lower infectiousness (with respect to the symptomatic ones), quantified by the parameter χ,
which we take from [48], in line with the value used in other models such as [17] and [49].

We tune β to obtain a value of R0 between 1 and 2.5 in all cases. Indeed, even if the value of
R0 for COVID-19 has reached larger values during the pandemic, in particular during the first wave
of 2020 [50, 51, 47], we limited our investigation to such values to take into account the restrictions
adopted to mitigate the spread.

We provide in the Supplementary material the detailed computation of the formula yielding the
model’s basic reproduction number R0, which we report here for convenience:

R0 = β

(
χ

ω
+

1− f

µ
+

χf

µ

)
ρ(M̃C + M̃NC) , (2)

where ρ is the spectral radius and M̃C
ii′jj′ =

ϕj

1+ϕj

Nij

Ni′j′
MC

ii′jj′ and M̃NC
ii′jj′ = 1

1+ϕj

Nij

Ni′j′
MNC

ii′jj′ are

the two contact matrices weighted by the relative population in different age and perceived severity
groups. These matrices also take into account that the initial fraction of compliant individuals at
the simulation’s outset, denoted by the term ϕj , is not necessarily 1.

While ϵ, ω, µ, and χ are fixed, the fraction of asymptomatic individuals f depends on age and we
obtain a different value of R0 for each age group. Moreover, the term ϕj depends on the behavioral
parameters (α, γ, a0, b0, σ

2
a0
, and σ2

b0
), which thus also impact the value of R0. We refer to the

Supplementary Material for more details.
We estimate for the average hospitalization period in ICU ∆ a value of 15 days, based on data

from the Centers for Disease Control and Prevention [52]. Indeed, for COVID-19 deaths, there was
an average interval of approximately two to three weeks between the onset of symptoms and the
occurrence of death.

The Infection Fatality Rate (IFR) is age-dependent and we used the values reported in [53]. The
Infection ICU Ratio (IICUR) is obtained from [54] by multiplying the probability of hospitalization
if infected and the probability of ICU if hospitalized, which are reported for each age group. On
the other hand, for the Probability of Deaths among ICU (PICUD), which is also age-stratified,
we used data from [55]. Finally, the maximum number of beds in ICU changed notably during the
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early phase of the pandemic in Italy, going from an initial value of around 5, 000 to over 8, 000 in
the Spring of 2021. We chose to use 7, 200, an estimate of the number of beds in intensive care in
Italy at the end of 2020 [56].

The parameter values and the corresponding literature sources are reported in Table 1.

Parameters Symbols Value Source

Epidemiological

Transmission rate β 0.08 [50, 51, 47]

Inverse of the latent period ϵ 0.25 [42, 43, 44]

Inverse of the
presymptomatic period

ω 0.56 [42] [43, 44]

Inverse of recovery period µ 0.2 [45, 46]

Mean days of occupancy
of ICU bed

∆ 15 [52]

Reduced infectiousness of P and A χ 0.55 [48]

Fraction of asymptomatic
individuals

f age-stratified [47]

Reproductive number R0 Computed from β and µ /

Infection fatality ratio IFR age-stratified [53]

Infection ICU ratio IICUR age-stratified [54]

Probability of death among ICU PICUD age-stratified [55]

Available number of ICU beds ICUmax 7,200 [56]

Initial number of individuals distributed
in the infected compartments

i0 550,000 [57, 58]

Initial number of individuals
in ICU compartments

icu0 2,500 [57, 58]

Initial fraction of people in
R and D compartments

r0, d0 0.1, 0 [57, 59, 60]

Vaccination

Rate of vaccination rV 0.025 [57]

Vaccination strategy / Reverse order of age [61, 62, 38]

Vaccine efficacy against infection V ES 0.7 [63, 64, 65]

Vaccine efficacy against symptoms V ESymp 0.5 [63, 64, 65]

Vaccine efficacy against
severe outcomes

V ED 0.4 [63, 64, 65]

Behavioral

Slope of logistic rate C → NC α 10 [66]

Slope of logistic rate NC → C γ 5 [66]

Midpoint of logistic rate C → NC a0
Variable
Perceived severity stratified

/

Midpoint of logistic rate NC → C b0
Variable
Perceived severity stratified

/

Table 1: Parameters of the model, with their corresponding values and sources of the literature.
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Initial conditions We consider a scenario in which the vaccination campaign starts as the virus
has already been able to spread among the population. In the COVID-19 pandemic indeed, the
beginning of the spread can be set approximately in February 2020 but the vaccines became available
at the end of December 2020. This is also in line with any scenario of a newly emerging virus for
which vaccines are not immediately available. We thus do not initialize the model with all individuals
in the S compartment, but instead, we distribute a fraction of the population in the various infected
and recovered compartments, based on observations from various sources [57, 58, 59, 60].

We first distribute 550, 000 individuals, i.e., the estimated number of active cases on the first
days of 2021 in Italy [58], in the infectious compartments, namely L, P , I, and A. The repartition in
these compartments is based on the average period of permanence in each compartment (ϵ−1, ω−1

and µ−1, respectively) and on the fraction of asymptomatic individuals f . The resulting number
of individuals in the I compartment is 143, 000, which is a middle ground between the weekly
number of confirmed cases in the last weeks of 2020 (approximately 100, 000) and the biweekly one
(approximately 200, 000) [57]. We also take into account that the ICU occupancy in Italy at the
beginning of 2021 was around 2, 500 individuals [57]. For the initial fraction of recovered individuals
we use 0.1, which corresponds to the seroprevalence obtained in independent studies in two different
regions of Italy at the end of 2020 [59, 60]. Finally, even if the first wave of 2020 had already caused
a considerable number of victims, we set the initial number of people in the death compartment to
0, given that their number is very small compared to the recovered individuals.

Vaccination For the vaccination campaign, we used a vaccination strategy in reverse order of age
which is the most effective according to the literature and was the most widely used around the
world [61, 62, 38]. We consider a vaccination daily rate of 0.25% of the total population, similar to
the rate of vaccination in Italy in Spring 2021 [57]. Finally, consistently with the estimated efficacy
of vaccines against COVID-19, we used a vaccine efficacy against infection of V ES = 70%, and we
selected V ESymp and V ED to achieve a global vaccine efficacy around 90% [61, 62, 38]. In the
Supplementary Material, we also considered scenarios with a lower vaccine efficacy.

Behavioral parameters The behavioral parameters are the ones least constrained by the avail-
able data and literature. As explained above, we considered logistic functions to describe the depen-
dency of the transition rates between compliant and non-compliant compartments on the fraction
of vaccinated individuals and on the occupancy of ICU beds. We considered five different functions
for the dependency of their midpoints a0 and b0 on the perceived severity. We fixed the slopes of
the logistic functions to α = 10 and γ = 5. Indeed, we hypothesize that the evolution of behav-
iors should not have brutal threshold effects: for instance, the relaxation of behaviors during the
vaccination campaign has been progressive and not triggered by a particular event [66]. The slopes
we consider correspond to logistic functions that are neither too steep nor with too little variation,
making them well suited to model the progressive relaxation of behaviors or their re-adoption. In the
Supplementary Material, we explored the robustness of our results using other values corresponding
to steeper or smoother logistic curves.

Numerical integration We report in the Supplementary Material the full set of equations de-
scribing the evolution of the populations in the various compartments. We integrate these equations
numerically with a temporal resolution of 1 day, using Python as a programming language and the
libraries scipy, numpy, numba, and matplotlib for the visualization part.
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3 Results

3.1 Perceived severity classes and age classes

Figure 4 shows the distribution of the population according to age in each perceived severity group
(the distribution of perceived severity in each age group is instead shown in the Supplementary
Material). The lowest perceived severity group is the least populated and displays a relatively
even distribution across age groups. Groups of individuals with perceived severity 2 and 5 have
similar sizes, and groups of perceived severity 3 and 4 are the most populated. As perceived severity
increases, the relative contribution of the youngest age groups tends to decrease, and the contribution
of the elderly increases. In particular, about 40% of the population of the groups of highest perceived
severity (4 and 5) are above 60 years old, and a majority is at least 50. Overall, the majority of
the elderly population is in these two groups of high perceived severity (see also Supplementary
Material).

Figure 4: Distribution of age in each perceived severity group. We also report the total number of
individuals in each group.

3.2 Basic reproduction number

The basic reproduction number R0 depends on the age groups and on the behavioral parameters (α,
γ, a0, b0, σ

2
a0
, and σ2

b0
), as explained in Section 2.3.

Figure 5 shows the value of R0 as a function of a0 and σ2
a0
, for three of the seven age groups and

for the 5 different functions (see the Supplementary Material for the same figure including all age
groups). All age groups present similar heatmaps, but younger ones present smaller reproduction
numbers at equal a0 and σ2

a0
than older groups. This is mainly because the fraction of asymptomatic

individuals f is much higher in the young population and asymptomatic individuals have a lower
infectiousness given by parameter χ.

We first observe that R0 decreases systematically as the average midpoint a0 value increases. In-
deed, increasing a0 implies that the transition rates from compliant to non-compliant compartments
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decrease. As a result, even in the initial population, the fraction of non-compliant individuals (who
have more contacts) decreases, leading to a reduction in R0.

Increasing the variance σ2
a0

between the midpoints of different perceived severity groups at given
a0 has a more contrasted outcome. It indeed introduces differences in the transition rates λX−>XNC

of different perceived severity groups, and thus the fractions of compliant individuals differ across
these groups. As a result, groups of individuals with smaller perceived severity exhibit an initial
higher fraction of non-compliance than groups with higher perceived severity. For small a0, the fact
that groups of high perceived severity have a decreasing fraction of non-compliant individuals as σ2

a0

increases leads to a decrease in R0. For large a0 instead, the impact on R0 comes from the groups of
small perceived severity, within which the fraction of non-compliant individuals increases and yields
an increase in R0.

The five functions yield qualitatively similar results, with some quantitative differences due to
their shapes and the different distribution of young and elderly individuals in perceived severity
groups. For instance, the R0 for the function Start End Linear almost does not evolve with in-
creased variance. This is because the three groups of intermediate perceived severity (2, 3, 4), who
together represent the vast majority of the population, have the same midpoint that has only a small
variation with σ2

a0
. For the Start Linear function instead, R0 drops substantially when the variance

increases for small a0, because the groups with the highest perceived severity, which also contain a
large fraction of elderly, have an increasing midpoint and thus an increasing fraction of compliant
individuals. Conversely, for the function End Linear R0 also decreases but remains high for small
a0 as a large fraction of the population keeps a low value of the midpoint.
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R0 heatmap

3age

Figure 5: Heatmaps showing the value of R0 for three age groups (5-17, 30-39, and 60+) as a function
of a0 and σ2

a0
. Each heatmap refers to one age group (rows) and one of the 5 functions considered

(columns). Above each column is a small diagram of the function, showing how the midpoint a0
varies from small to high perceived severity groups (left to right). The other parameters used for
the simulations are α = 10, γ = 5, b0 = 0.75, σ2

b0
= 0. We employed a 900-value grid, with 30 values

of a0 ranging from 0 to 1, and 30 values of σ2
a0

ranging from 0 to 0.3.
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3.3 Effects of the heterogeneity in perceived severity on the epidemic
outcome

Transizione C

Base

Figure 6: Heatmaps showing the number of deaths (first row), the height of the ICU peak (second
row) and its date (third row) as a function of a0 and σ2

a0
. Each column corresponds to one of the five

functions linking perceived severity and midpoint of the logistic curve giving the transition rate from
compliant to non-compliant compartments as a function of the fraction of vaccinated individuals.
Above each column is a small diagram of the function, showing how the midpoint a0 varies, going
from small to high perceived severity groups (left to right). The other parameters used for the
simulations are α = 10, γ = 5, b0 = 0.75, σ2

b0
= 0. We employed a 900-value grid, with 30 values of

a0 ranging from 0 to 1, and 30 values of σ2
a0

ranging from 0 to 0.3. The rugged profile of the curves
related to the peak date is due to its discrete nature, with values representing the (integer) number
of days after the simulation’s start in which the peak is observed.

We now turn to the role of perceived severity driving different types of behaviors on several
metrics describing the outcome of the epidemic spread. Specifically, we measure as outcomes the
final total number of deaths, the height of the peak of ICU occupancy (expressed as a fraction of
the maximum bed capacity), and the corresponding peak date as a0 and σ2

a0
vary (fixing all other

parameters and at σ2
b0

= 0). Figure 6 shows the resulting heatmaps for the five functions used to
model the dependency between the midpoint and the perceived severity groups.

At fixed average a0, taking into account the fact that groups with different perceived severity
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have different behavioral parameters by increasing σ2
a0

leads to two competing effects. On the one
hand, groups of individuals with high perceived severity (comprising a large fraction of the elderly
population) have a higher midpoint, and thus a logistic curve describing their rate of transition
to non-compliant behavior that is shifted as seen in Fig. 3: as time evolves and the vaccination
campaign is rolled out, this transition rate increases only when the population vaccination rate
becomes rather high. Therefore, this population relaxes its behavior later with respect to the case of
σ2
a0

= 0, remaining compliant with fewer contacts during a longer period. This would tend to lead
to a smaller impact of the epidemic as σ2

a0
increases. On the other hand, in a symmetric fashion,

groups with low perceived severity have a decreasing midpoint as σ2
a0

increases, and their transition
rate to non-compliance increases thus earlier when the vaccination is rolled out, with respect to the
case of σ2

a0
= 0 (see Fig. 3). The behavioral relaxation of these groups will then occur earlier, and

the resulting increase in contacts will help the spread of the disease. This tends to increase the
impact of the spread as σ2

a0
increases.

Small mean values of the midpoint (a0 < 0.2) correspond to a population that is on average
poorly compliant, as the transition rates to non-compliant behavior increase rapidly when the vac-
cination progresses. In this case, the first effect is predominant. Indeed, increasing the variance,
we observe a reduction in the number of deaths and the height of ICU peak, while the peak date
remains stable at around 70 days. The strongest decrease is observed with the Start Linear function,
leading to approximately a 25% reduction in deaths and nearly a 40% decrease in the ICU peak.
Notably, the ICU peak drops from over 1.6 times the maximum occupancy to below 1, indicating a
substantial positive impact of perceived severity. With this functional shape indeed, the three groups
of highest perceived severity, comprising a large part of the more vulnerable population (elderly)
remain compliant for an increased time (see Fig. 3) with respect to the σ2

a0
= 0 case, becoming thus

less infected. The groups of lowest perceived severity become instead only slightly less compliant as
their midpoint was already low. Overall, having individuals with higher perceived severity behave in
a more conservative way than the ones with low perceived severity brings thus a clear global benefit.

An exception is noted for the Start End Linear function, where the decrease in deaths at low a0
is noted only for small variance, while at larger variance values the situation tends to become worse
in terms of the metrics considered. Here indeed, as seen in Fig. 3, the increase in variance leads
the vast majority of the population (groups of perceived severity 2, 3, and 4, which also include a
substantial number of elderly) to have a slightly lower midpoint than for σ2

a0
= 0 and thus relax

their behavior earlier as the vaccine is rolled out, leading to more infections in these groups and thus
more deaths.

For high mean values of the midpoint (a0 > 0.4), the population is on average largely compliant
at the start of the simulation, and the transition rate to the non-compliant behavior increases only
when the population is largely vaccinated. The impact of the spread is thus a decreasing function
of this average at a given variance. In such cases, increasing σ2

a0
means that the groups with small

perceived severity start relaxing their behavior earlier in the vaccination campaign, triggering more
contacts and favoring the spread. Overall, the second effect described above prevails: even if groups
with high perceived severity keep a compliant behavior longer than for σ2

a0
= 0, this has little impact.

Figure 6 shows a qualitative similarity of the behavior of the metrics considered for the five
functions describing the dependency of the midpoint on the perceived severity. The model’s out-
comes are however not strictly identical, and we provide therefore a quantitative evaluation of these
differences. To this aim, we compute the Canberra distance between the heatmaps obtained with
different functions, for each metric. Specifically, for each pair of functions (fi, fj) and for each
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metric K, the distance is defined by the following formula:

CD(fi, fj) =
1

N

∑
(a0,σ2

a0
)

∣∣Kfi(a0, σ
2
a0
)−Kfj (a0, σ

2
a0
)
∣∣

Kfi(a0, σ
2
a0
) +Kfj (a0, σ

2
a0
)

, (3)

where the sum is over all values of the average a0 and the variance σ2
a0

investigated. This distance
is bounded between 0 and 1. Table 2 summarizes the results, showing the distances computed
for the three metrics. All values are smaller than 0.1, confirming quantitatively the robustness of
the model’s phenomenology with respect to the specific way in which the heterogeneities between
perceived severity groups influence the relaxation rate of behaviors.

(a) Canberra distance – Number of deaths

Linear Central Linear Start End Linear Start Linear End Linear
Linear 0.0101 0.0335 0.0379 0.0257
Central Linear 0.0101 0.0434 0.0401 0.0332
Start End Linear 0.0335 0.0434 0.0535 0.0399
Start Linear 0.0379 0.0401 0.0535 0.0621
End Linear 0.0257 0.0332 0.0399 0.0621

(b) Canberra distance – ICU peak height

Linear Central Linear Start End Linear Start Linear End Linear
Linear 0.0114 0.0412 0.0584 0.0367
Central Linear 0.0114 0.0525 0.0588 0.0446
Start End Linear 0.0412 0.0525 0.0754 0.0557
Start Linear 0.0584 0.0588 0.0754 0.0939
End Linear 0.0367 0.0446 0.0557 0.0939

(c) Canberra distance – Peak date

Linear Central Linear Start End Linear Start Linear End Linear
Linear 0.0207 0.0670 0.0330 0.0381
Central Linear 0.0207 0.0870 0.0441 0.0544
Start End Linear 0.0670 0.0870 0.0762 0.0609
Start Linear 0.0330 0.0441 0.0762 0.0688
End Linear 0.0381 0.0544 0.0609 0.0688

Table 2: Canberra distance between each pair of functions for the three metrics considered: number
of deaths (a), peak height (b), and peak date (c). We used the grid of values of Figure 6 for a0 and
σ2
a0
. The other parameters are α = 10, γ = 5, b0 = 0.75, σ2

b0
= 0.

Sensitivity analysis To verify the robustness of the phenomenology described above, we perform
some sensitivity analysis with respect to different parameter values (this is shown more in detail
in the Supplementary Material). We explore in particular different slopes (α and γ) of the logistic
functions, and a different value of the midpoint b0. In all cases, a similar picture is obtained as in
Fig. 6, with only some small quantitative differences. For instance, a smaller value of b0 implies that
the transition rate from non-compliant to compliant compartments increases more easily when the
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occupancy of ICU increases: the resulting better adoption of safe behaviors (with fewer contacts)
leads thus to a decrease in the metrics describing the impact of the epidemic (number of deaths and
ICU peak). Conversely, a higher b0 corresponds to a population remaining non-compliant for larger
ICU occupancy values, resulting in a larger number of deaths and a higher ICU occupancy peak.

Reducing the slope α leads to logistic curves that explore a smaller range of possible values of the
transition rate λX→XNC both when the vaccination progresses and when the midpoint a0 changes
(see Fig. 2). As a result, increasing the variance σ2

a0
has a small effect on the considered metrics. On

the contrary, a larger α leads to a more abrupt logistic curve and therefore to a more brutal change of
λX→XNC when the fraction of vaccinated individuals reaches the midpoint (see Fig. 2). Differences
in the midpoint of different groups have then a stronger impact and the metrics investigated vary
more strongly with the variance.

Changing the slope γ at fixed b0 and σ2
b0

also has a small quantitative effect: small values of γ
means that the rate of transition λXNC→X towards compliant behavior is high even for low ICU
occupancy, leading thus to an overall more compliant population, a smaller number of deaths and
a lower ICU peak. Conversely, a large γ with an abrupt logistic curve implies a low λXNC→X when
the ICU occupancy is below b0, with therefore lower compliance at the beginning of the spread, and
finally a stronger impact of the spread.

Finally, we present in the Supplementary Material an analysis of the impact of heterogeneity of
the midpoint b0 of the transition from non-compliant to compliant behavior (i.e., of the impact of
having σ2

b0
> 0). We investigate the same three metrics of the number of deaths, the ICU peak

height, and the ICU peak date as a function of b0 and σ2
b0
, and for 5 possible functions relating

perceived severity to the midpoint value. Notably, the results for the five functions are very similar,
as shown by the very small values of the Canberra distances between the heatmaps describing the
outcomes of the models. In almost every scenario, increasing the variance σ2

b0
at fixed b0 leads to

an increase in the number of deaths and a later but higher peak of ICU occupancy. Indeed, the
heterogeneities in the transition rate λXNC→X mean that groups with low perceived severity go back
to being compliant only for higher ICU occupancy rates, with respect to the case of σ2

b0
= 0, and

therefore have more contacts at the beginning of the spread, helping the disease propagate. The fact
that groups with high perceived severity, on the opposite, become more compliant, is not enough to
compensate for this effect.
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3.4 Dynamics of the spread

Transizione C

Base

Figure 7: Fraction of vaccinated individuals (first row - the black dashed line reports the global
fraction of vaccinated individuals in the population), infected individuals (second row), cases (third
row - obtained as the sum of recovered individuals and deaths), deaths (fourth row), and individuals
in ICU (fifth row) as a function of time (days), for each perceived severity group. Each column
corresponds to a different value of the variance σ2

a0
, going from 0 to 0.3, with a0 = 0.6. The other

parameters are α = 10, γ = 5, b0 = 0.75, and σ2
b0

= 0.

Figure 7 shows the temporal evolution of several important metrics characterizing the unfolding of
the spread in the population, for a fixed average midpoint a0 = 0.6, several values of the variances
σ2
a0
, and for a linear functional form linking perceived severity and midpoint a0: the fraction of

vaccinated individuals, of individuals in the I compartment, the cumulative fraction of cases (given

20

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305600doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305600
http://creativecommons.org/licenses/by-nc/4.0/


by the sum of recovered individuals and deaths), of deaths and the ICU occupancy.
For σ2

a0
= 0 (first column), the whole population has the same rate of relaxation to the non-

compliant behavior λX→XNC . We note that the curves for the different perceived severity curves
are however distinct, because of the differences in age distribution in the different groups, and of
the differences in numbers of contacts and in epidemiological parameters in the different age groups.
In the case considered in Fig. 7, the common midpoint a0 is rather large (60% of the population
vaccinated). Thus, the rate of relaxation remains small for a long time and the population keeps a
low number of contacts during the whole duration of the first peak of the epidemic curve. As the
vaccination campaign progresses however, individuals start to have more contacts, and this triggers
a second wave of infections, clearly seen as a second peak in the curves showing the evolution of the
fraction of infected individuals. Interestingly however, as a large fraction of the population is then
vaccinated, especially among the elderly given the vaccination strategy, this second peak has only a
limited impact in terms of ICU occupancy and deaths.

For larger values of the variance, high perceived severity groups have a higher midpoint of the
logistic curve; they thus remain compliant longer (until the vaccination reaches a larger fraction of
the population). Low perceived severity groups instead have a lower midpoint and tend to relax their
behavior sooner. As a result, the first peak of the fraction of infected individuals becomes higher,
especially for the groups with low perceived severity (note that the final fraction of vaccinated
individuals in groups of perceived severity 1 and 2 slightly decreases, because a larger fraction
becomes infected and thus does not need vaccination). The second peak instead disappears. Overall,
the early relaxation of behaviors of the groups with low perceived severity has an impact on the whole
population: even the epidemic curves for the groups with high perceived severity change shape, with
a higher early peak of cases and the disappearance of the second peak. The final total number of
cases is larger for the low perceived severity groups (who, having a higher number of contacts, are
particularly affected) and smaller for the high perceived severity groups (thanks to the disappearance
of the second wave). However, as the early peak is higher and broader even for high perceived severity
groups (largely comprised of elderly individuals), it impacts these groups at a time in which vaccine
coverage is still limited and causes, therefore, a higher ICU peak and a higher number of deaths.
Overall, the early relaxation even for only some groups of individuals leads to a worse outcome
for all groups of perceived severity, including the ones who remain more compliant. This result
confirms indeed from a dynamical perspective the results of Fig. 6 highlighting a worsening of the
final situation at high a0 when σ2

a0
increases.

At smaller values of the average midpoint, such as a0 = 0.15, Figure 6 showed that the increase
of the variance resulted in a smaller number of deaths and ICU peak heights while maintaining
peak timing. We show the impact on the epidemic dynamics of a non-zero variance for a0 = 0.15
in the Supplementary Material. In scenarios without group heterogeneities (σ2

a0
= 0), simultaneous

behavioral relaxation occurs early, preventing second infection peaks. With higher variance (σ2
a0
),

infection peaks for low perceived severity groups grow taller, as their midpoint is negative, rendering
them non-compliant from the start. Conversely, higher midpoints for high perceived severity groups
lead to smaller infection peaks and reduced ICU occupancy. Consequently, in such scenarios, high
heterogeneities in behaviors provide increased protection to high perceived severity groups, composed
of a high fraction of elderly individuals, reducing, thus, severe outcomes.

We moreover check (shown in the Supplementary Material) that the shift from an epidemic curve
with two peaks to one with a single peak as the variance is increased occurs for all the five functions
between perceived severity and midpoint considered in the model, albeit with some differences. In
particular, for the Start End Linear function, the epidemic curves for the three groups of intermediate
perceived severity (who keep a midpoint close to the average) retain two peaks. The low perceived
severity group relaxes its behavior early, and has consequently a higher early peak, while the high
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perceived severity group, relaxing its behavior only very late, becomes more protected during the
second peak. Notably, the evolution of the ICU curve shapes with the variance σ2

a0
is instead the

same for all functions investigated.
We also explore (shown in the Supplementary Material) different values of the slopes α and γ

and of the midpoint b0. The shift from a two peaks profile to a single peak of the curve showing the
fraction of infected individuals vs. time is obtained in almost every scenario analyzed, with the only
exception of a very smooth C to NC transition (low α) or small values of a0.

We moreover investigate the impact of taking into account heterogeneities of perceived severity
in the midpoints b0 of transition rate λXNC→X , at fixed a0 and σ2

a0
= 0. As σ2

b0
increases, we observe

a very similar scenario as the one seen in Fig. 7: the increase in behavior heterogeneity leads to a
higher first peak and to the disappearance of the second peak of the epidemic curve, with an overall
increased pressure on the ICU occupancy and an increase in the number of deaths.

Finally, we perform a sensitivity analysis with respect to several epidemiological parameters
(shown in the Supplementary Material), focusing in particular on vaccine efficacy, initial conditions,
average length of the stay in ICU, and maximum number of ICU beds. We also consider a scenario
with different latent and pre-symptomatic periods corresponding to the Alpha variant. We obtain
similar results to the ones described above.

4 Discussion

The disease perception of individuals influences their adoption or disregard of preventive mea-
sures, which in turn impacts disease spread. Its significance is particularly pronounced during
non-emergency times, such as a post-pandemic period, when the implementation of protective mea-
sures is solely reliant on individual choices and there are no top-down restrictions. Our study
proposes a novel data-driven modeling framework that integrates disease perception, as measured
by the perceived severity, as a key determinant of behavioral change. In particular, we explored a
scenario with a competition between a COVID-19 wave and a vaccination campaign, where individu-
als possess differences in behaviors based on their perceived severity. Individuals with low perceived
severity relax behaviors sooner as the vaccination campaign progresses and adopt protective mea-
sures only when the epidemiological conditions are more severe (namely, higher occupation of ICU)
than individuals with high perceived severity. We leverage CoMix data for Italy [7, 33] to inform
this interplay between COVID-19 dynamics, vaccination efforts, and behavioral changes driven by
perceived severity: these data make it possible on the one hand to stratify the population both in age
groups and in groups of perceived severity, and on the other hand to build contact matrices describ-
ing the contacts between different groups, in both situations of compliance and non-compliance to
protective measures. Our work marks a twofold addition to the current literature, expanding theo-
retical frameworks to incorporate data-informed disease perception and investigating how behavioral
variations linked to perceived severity affect disease transmission and models’ outcomes.

Results show that behavioral heterogeneities influenced by perceived severity have a substantial
impact on the evolution and outcome of the epidemic. These heterogeneities generate two opposing
effects. On the one hand, the longer adoption of protective measures by high perceived severity
groups (comprising a high proportion of elderly individuals) resulted in higher protection for those
individuals. On the other hand, virus spread was facilitated by low perceived severity groups relaxing
behaviors more easily. The prevailing effect depended on the overall behavior of the population. In
populations that were overall less compliant on average, characterized by high numbers of deaths and
ICU peaks, increasing behavioral heterogeneities led to a reduction in these metrics. Conversely,
in populations that were on average more compliant, lower severe outcomes were observed, but
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increasing heterogeneities resulted in an increase in deaths and ICU occupancy. Epidemiological
curves gave more insight into this phenomenology. Indeed, when differences in behaviors among
groups were not taken into account, we observed a double peak in the evolution of the fraction
of infected: the second peak was due to the contemporary relaxation of behaviors by the whole
population when the vaccination campaign reached a large enough fraction of the population. Thanks
to the high immunization provided by the vaccine, this second peak had small consequences in
terms of ICU occupancy and deaths. On the contrary, an increase in the heterogeneities among
perceived severity groups caused the disappearance of the second infection peak in favor of a higher
first peak for the whole population, resulting in more deaths and ICU hospitalizations, due to the
absence of widespread vaccine protection at the time of this first peak. Additionally, our simulations
revealed that the specific way we modeled the dependency between behavior relaxation and perceived
severity had a small impact on crucial metrics such as the number of deaths and the height of
the ICU peak. The sensitivity analysis reported in the Supplementary Material confirmed the
robustness of our results. Modifying key epidemiological parameters provided similar pictures, with
behavioral heterogeneities consistently impacting metrics and epidemic peaks in the same way across
the majority of analyzed scenarios.

Our study comes with several limitations. First of all, we considered a very simple vaccination
mechanism. We included in the model a single dose instead of two or more, we assumed a fully
working vaccine from the beginning, with no waning phenomenon. Furthermore, despite making
extensive use of data and basing our choices on evidence from literature, our model uses several
assumptions for which it is not possible to perform a quantitative validation; among those, the
mechanism of behavioral change and the expression of the transition rates between compliant and
non-compliant compartments based on perceived severity. Additionally, this theoretical framework
is intended not for making specific predictions on disease spreading, but rather for conducting
comparative analyses of hypothetical scenarios.

Our work has on the other hand some important research and public health implications. Our
modeling framework is a data-driven step towards a more comprehensive understanding of how
disease perception, particularly perceived severity, can impact the complex dynamics of disease
spreading. The strong impact of differences in disease perception on the model’s outcome highlights
the importance of taking such heterogeneities into account in models aiming to capture the dynam-
ics of infectious disease transmission and calls for more extensive, continuative, and comprehensive
data collections to help uncover which aspects of behavior are most influential. In particular, this
study adds insights to the relatively limited empirical research in this area, setting the stage for
further exploration and broader understanding necessary to better grasp human adaptive behaviors,
especially during non-emergency times. It also paves the way for creating additional data collections
drawing on individuals’ personal experiences and perceived risks to help study individual and col-
lective protective strategies. From the perspective of public health, a data-informed identification
of the principal factors that drive changes in behavior provides new ways for predicting these shifts
and creating more effective communication strategies to reduce transmission among individuals. For
instance, our model’s results highlight how the relaxation of behaviors by a limited fraction of the
population, who experience a low perceived severity, can negatively impact other groups of the pop-
ulation even if those continue to adopt a self-protective behavior. Communication strategies should
thus raise awareness of the global benefits of protective behaviors especially in those groups of the
population who are less likely to be affected severely by the disease, to highlight the benefits for
at-risk populations.

23

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305600doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305600
http://creativecommons.org/licenses/by-nc/4.0/


Acknowledgments

DP and ADG acknowledge support by the VERDI project (101045989), funded by the European
Union. Views and opinions expressed in this article are however those of the author(s) only and
do not necessarily reflect those of the European Union or the Health and Digital Executive Agency.
Neither the European Union nor the granting authority can be held responsible for them. AB
acknowledges support from the Agence Nationale de la Recherche (ANR) project DATAREDUX
(ANR-19-CE46-0008). All the authors are grateful to Dr Michele Tizzani for support with CoMix
data and useful discussions.

Conflicts of Interest

None declared.

24

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprintthis version posted April 12, 2024. ; https://doi.org/10.1101/2024.04.10.24305600doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.10.24305600
http://creativecommons.org/licenses/by-nc/4.0/


References

[1] N. Ferguson, “Capturing human behaviour,” Nature, vol. 446, no. 7137, pp. 733–733, 2007.

[2] A. Vespignani, “Predicting the behavior of techno-social systems,” Science, vol. 325, no. 5939,
pp. 425–428, 2009.
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