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Abstract 
Accurately evaluating the disease risks after low-dose ionizing radiation (IR) exposure 

are crucial for protecting public health, setting safety standards, and advancing research 

in radiation safety. However, while much is known about the disease risks of high-dose 

irradiation, risk estimates at low dose remains controversial. To date, five different 

parametric models (supra-linear, linear no threshold, threshold, quadratic, and 

hormesis) for low doses have been studied in the literature. Different dose-response 

models may lead to inconsistent or even conflicting results. 

In this manuscript, we introduce a data-driven deep neural network (DNN) model 

designed to evaluate dose-response models at low doses using Life Span Study (LSS) 

data. DNNs possess the capability to approximate any continuous function with an 

adequate number of nodes in the hidden layers. Being data-driven, they circumvent the 

challenges associated with misspecification inherent in parametric models. Our 

simulation study highlights the effectiveness of DNNs as a valuable tool for precisely 

identifying dose-response models from available data. New findings from the LSS study 

provide robust support for a linear quadratic (LQ) dose-response model at low doses. 

While the linear no threshold (LNT) model tends to overestimate disease risk at very low 

doses and underestimate health risk at relatively high doses, it remains a reasonable 

approximation for the LQ model, given the minor impact of the quadratic term at low 

doses. Our demonstration underscores the power of DNNs in facilitating comprehensive 

investigations into dose-response associations. 

 

Key Words: Linear Quadratic no threshold; dose-response models; Deep neural 

networks; low-dose IR exposure; disease risk assessment. 
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Introduction 
Ionizing radiation (IR) refers to radiation with sufficiently high energy to eject electrons 

from an atom or molecule, thereby creating ions. Both electromagnetic radiation (X- and 

γ-rays) and particle radiation (alpha-particles, electrons, or protons) fall under the 

category of ionizing radiation, as described in the WHO and BEIR VII reports [1-2]. 

Exposure to ionizing radiation, whether from natural or man-made sources, is inevitable 

in various environments. Major sources of natural radiation exposure include air, cosmic 

rays, food, or water [3], while exposure to artificial sources may vary within the 

population. Those at a higher risk of man-made radiation exposure include medical 

personnel, nuclear industry workers, individuals residing in air-contaminated regions, 

and patients undergoing medical procedures [4]. In the United States, the primary 

artificial sources of radiation are medical procedures like CT and X-ray scans, followed 

by indoor radon exposures and other anthropogenic sources [5]. According to the 

National Council on Radiation Protection and Measurements (NCRP), the average 

annual radiation dose in the U.S. currently stands at 6.3 mSv, having doubled over the 

past 20 years [6]. Accurately assessing the health risks associated with low-dose 

radiation (below 100 mGy) is crucial for establishing a scientific foundation for radiation 

protection and safety. Despite the well-established deleterious effects of high-dose IR, 

the health risks of low-dose IR remain controversial and subject to extensive debate [7, 

8]. 

Epidemiological studies represent a widely employed approach to assess the health 

effects of radiation on humans, with a primary focus on comparing cancer incidences or 

mortalities between exposed and control groups. The Excessive Relative Risk (ERR) 

measures the ratio or fold change of incidence or mortality rates above baseline, while 

the Excess Absolute Risk (EAR) quantifies the number of cases above the control 

group. Despite the abundance of epidemiological evidence, seemingly straightforward 

interpretation, the primary uncertainties in health risk assessment arise when examining 

low doses below 100 mGy. Currently, the literature presents five controversial types of 

low dose-response models: linear-no-threshold, threshold, supra-linearity, linear 

quadratic, and hormesis (sub-linearity), each defended passionately within scientific 
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discourse [7,10-14]. The Linear-No-Threshold (LNT) model, widely adopted by 

regulatory bodies for radiation risk assessment and health policy development, posits 

that every increment of radiation dose increases tumor risk for humans, with no 

designated 'safe' dose. In contrast, the threshold model contends that very small 

exposures to ionizing radiation are harmless. The supra-linearity model proposes that 

small doses of radiation are even more harmful than predicted by LNT, while the 

hormesis (sub-linearity) model suggests that radiation at very low doses can be 

beneficial. The linear quadratic model encompasses both supra-linearity and sub-

linearity, featuring positive or negative coefficients in the linear and quadratic terms. 

Unfortunately, no consensus exists among scientific communities regarding these 

hypotheses. 

Epidemiological studies have been cited as supporting various hypotheses, ranging 

from hormesis to supra-linearity at low doses. Notably, the life span studies (LSS) cohort 

from the Radiation Effects Research Foundation (RERF) has provided compelling 

evidence for the LNT risk model. However, LSS has also been implicated in supporting 

supra-linearity or the threshold model at low doses [14, 16]. Evidence from nuclear 

facility exposures at Hanford and Mayak plants has leaned towards supporting a 

threshold and LNT model, respectively [17]. Other studies examining medical 

exposures, home radon, and occupational radiation exposures have yielded 

inconclusive and even contradictory conclusions. The determination of the true model 

has significant implications for public decision-making and government regulations. 

 

To date, epidemiological studies have predominantly relied on parametric risk models, 

where risk estimations are significantly influenced by model specification. The grouping 

of data, selection of parametric models, and choice of statistical tests, even with 

identical data, can markedly impact conclusions drawn about low-dose risks. In light of 

this, our pilot study introduces a novel approach using a data-driven deep neural 

network for health risk estimation. 

The deep neural network (DNN) model possesses the ability to approximate any 

differentiable function with an adequate number of nodes in the hidden layers, as 

outlined in the universal approximation theory [18-20]. Characterized by its nonlinearity 
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and independence from specific parametric settings, the DNN learns the underlying 

dose-response relationship solely from data. This characteristic proves invaluable in 

overcoming the limitations associated with parametric models when assessing tumor 

risk at low doses. 

In our pilot study, the DNN serves as a powerful tool for exploring the dose-response 

relationship using life span studies (LSS) data and reconstructing the underlying dose-

response model at low doses. By virtue of its flexibility and capacity to adapt to complex 

relationships, the DNN may contribute to determining the types of dose-response 

models and guiding the accurate reconstruction of parametric risk models at low doses. 

 

Material and Methods 
Simulation Datasets: We generated simulation data with known parameters and 

various dose-response models. The objective was to assess the ability of the DNN 

model to accurately fit and describe dose responses using simulated data derived from 

"true" models of different shapes. 

 

Real Dataset:  The cancer incidence data for the life-span study (LSS) covering the 

1958-1998 follow-up period was acquired from the publicly available resources at 

https://www.rerf.or.jp/en/ [21]. The dataset comprises a person-year summary table 

containing 25,570 cells, encompassing 2,764,735 person-years of follow-up for 17,448 

solid tumors among 105,427 survivors. Stratification of the person-year table was 

conducted based on age at exposure, attained age, time since exposure, gender, city, 

and NIC (Not in City). For radiation dose estimation in this study, a person-year 

weighted, adjusted, and truncated DS02 colon dose was utilized. 

 

Deep Neural Network: We introduced a deep neural network approach for radiation 

risk prediction as illustrated in Figure 1. 
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Figure 1: Neural network structure for radiation risk prediction, where D and X represent the 

radiation dose and confounding factors, respectively. ERR stands for excess relative risk. The 

architecture includes 3 hidden layers with node counts of 256, 128, and 64, respectively. Both 

sigmoid and exponential activation functions were employed. The estimation of ERR is indicated 

in the rightmost shaded box, determined after model training. 

 

Given the radiation dose D, associated factors X, cancer incidence Y, and person-year 

Py, we build a neural network featuring 3 hidden layers with node counts of 256, 128, 

and 64, respectively. The selection of the number of nodes and layers is based on 

achieving the smallest test error. Assuming a Poisson distribution, for each cell i, 

𝑃𝑟(𝑌!	 	= 	 𝑦!) 	=
𝜇!#!𝑒$%! 	
𝑦!!

 

and  

𝜇!(𝑑! , 𝑥!) = 𝐸(𝑌!	|	𝜙(𝑑! , 𝑥! ,𝑊)) 	= 	𝑃𝑦!𝑒&((!,*!,+). 

 

The loss function corresponds to the negative log-likelihood (NLL) of a Poisson 

distribution, formulated as: 
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𝐿𝑜𝑠𝑠(𝑊) 	= 	𝑁𝐿𝐿(𝑊) 	= 	8[−𝑦!𝑙𝑜𝑔(𝜇!) 	+
!

𝜇! 		+ 𝑙𝑜𝑔(𝑦!!)]

=8[−𝑦!𝑙𝑜𝑔(𝑃𝑦!) 	− 𝑦!
!

𝜙(𝑑! , 𝑥! ,𝑊) 	+	𝑃𝑦!𝑒&((!,*!,+) + 𝑙𝑜𝑔(𝑦!!)].	 

After training the model, the excess relative risk (ERR) is estimated as  

𝐸𝑅𝑅 = 	
𝜇̂(𝐷, 𝑋)
𝜇̂(0, 	𝑋) − 1. 

 

The software is implemented in Python and TensorFlow. The determination of the 

number of nodes and layers is achieved through cross-validation, seeking the smallest 

mean negative log-likelihood of the validation data. A learning rate of 0.0001 is set, and 

the widely used Adam optimization algorithm is employed for parameter estimation. 

Adam leverages adaptive learning rates, tailoring individual rates for each parameter. 

The actual learning rate of Adam in each iteration is bounded by the step size 

hyperparameter (0.0001), which is a crucial parameter to select. We recommend 

experimenting with step sizes of 0.001, 0.0001, and 0.00001 based on the nature of the 

problem at hand. 

Dose-Response Models at Low Dose: There are five potential radiation risk models 

following low-dose radiation exposure, including Supra-linearity, Linear No Threshold 

(LNT), Threshold, Linear-quadratic, and Hormesis, as illustrated in Figure 2. 

  
Note that at low doses, the supra-linearity model exhibits a positive ERR with a 

decreasing gradient (slope) concerning dose. In contrast, the Linear no-threshold model 

Figure 2:  Different risk models 
for ERR at low dose.  
A: Supra-linearity,   
B: Linear no threshold (LNT), 
C: Threshold, 
D: Linear quadratic (LQ), 
E: Hormesis.  
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demonstrates a positive ERR with a constant gradient (partial derivative k) in relation to 

dose. The Threshold model indicates zero (or near-zero) ERR and zero gradients at low 

doses. The Linear quadratic model features a positive ERR with a linear gradient. The 

hormesis model, on the other hand, displays both a negative ERR and an increasing 

gradient at low doses. Consequently, we establish the following straightforward rules at 

very low doses: 

A: Supra-linearity, if 

𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥) > 0,		and		decreasing		
𝜕𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥)	

𝜕𝐷 . 
   
B: Linear no-threshold (LNT), if 

𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥) > 0,		and				
𝜕𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥)	

𝜕𝐷 = 𝑘. 
 
C: Threshold, if  

𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥) = 0. 

D: Quadratic, if  

𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥) > 0,		and				
𝜕𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥)	

𝜕𝐷 = 𝑎 + 𝑏𝐷. 

E: Hormesis, if 

𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥) < 0,		and		increasing			
𝜕𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥)	

𝜕𝐷 . 
 

Numerical Gradient Computation: Excess Relative Risks (ERRs) at a specific dose 

can be directly computed from the DNN model. However, the first-order derivatives 

need to be estimated numerically [22]. In this study, we employed the following two 

numerical differentiation methods.  
(i). Central Difference (2nd order): 

𝜕𝐸𝑅𝑅(𝐷, 𝑋 = 𝑥)
𝜕𝐷 ≈

𝐸𝑅𝑅(𝐷 + ∆𝐷, 𝑥) − 𝐸𝑅𝑅(𝐷 − ∆𝐷, 𝑥)
2∆𝐷 . 

(ii).  Central Difference (4th order): 
𝜕𝐸𝑅𝑅(𝐷, 	𝑋 = 𝑥)

𝜕𝐷

≈
𝐸𝑅𝑅(𝐷 − 2∆𝐷, 𝑥) − 8𝐸𝑅𝑅(𝐷 − ∆𝐷, 𝑥) + 8𝐸𝑅𝑅(𝐷 + ∆𝐷, 	𝑥) − 𝐸𝑅𝑅(𝐷 + 2∆𝐷, 𝑥)

12∆𝐷 , 
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where ∆𝐷 is the step size. There are more accurate approximations in the Python 

package [22], but we did not detect any significant differences with different numerical 

methods.  

 

Simulations 
We conducted simulations for low-dose IR exposure using data generated from known 

model structures and various dose-response functions, as outlined below: 

𝑌 = 𝑒𝑥𝑝 Y4.57𝐹 + 5.12𝑀 − 0.035𝐶𝑖𝑡𝑦 + 4.12log e--
./
f − 0.11 e-*$0/

1/
f − 0.061𝑁𝐼𝐶	i j1 +

𝑓(𝐷)𝑒𝑥𝑝 l−0.17 e-*$0/
1/

f − 1.3𝑙𝑜𝑔 e--
./
fmn,  

where F: Female, M: Male, City: Hiroshima (Yes/No), aa: attained age, ax: age at 

exposure, NIC: not in the city (Yes/No), and Y: Incidence rate. The coefficients in the 

simulation model were initially derived from a linear dose-response model using person-

year summary data [1]. Attained age and age at exposure are randomly generated from 

the person-year table within the ranges of 13-101 and 0-80, respectively. The 

computational results, encompassing various dose-response functions (f(D)s), attained 

ages, and age at exposures, are presented in Figures 3 and Supplementary Figure 1, 

respectively. 
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Figure 3: Plots of true ERRs and DNN-estimated ERRs, along with their first-order derivatives, 

for various dose-response models, with the age at exposure and attained age set at 30 and 70, 

respectively. Left panels: Plots of true ERRs with different dose-response functions (f(D)s); 

Middle panels: Plots of the estimated ERRs using DNN; Right panels: Plots of the first-order 

derivatives obtained from DNN. Figures 3 A-E represent the dose-response models of supra-

linear, Linear No-Threshold (LNT), threshold, quadratic, and hormesis, respectively. 

 

As depicted in Figure 3, the dose-response functions (f(D)s) for supra-linear, Linear No-

Threshold (LNT), threshold, linear quadratic, and hormesis models are given by 
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5𝐷 + 0.5𝐷!/#,			0.51𝐷,		 )
= 0,																								𝑖𝑓	𝐷 < 		0.0562

= 5𝐷 − 0.5𝐷
!
",			𝑖𝑓	𝐷 ≥ 0.0562.

, 𝐷 + 0.5𝐷$,  and  0.8 −	 %.'()*

!(	, #
$.$&-

' , 

respectively. Note that we deliberately assigned much smaller nonlinear coefficients in 

each model to assess the DNN's capability to detect nonlinear effects and accurately 

capture true dose-response relations. In our simulation model, the true Excess Relative 

Risk (ERR) is represented as f(D) with an attained age of 70 and an age at exposure of 

30, where the age-modified term is 1.  Particularly, in Figure 3A, moving from left to 

right, the plots represent supra-linear patterns for true ERR, estimated ERR, and 

estimated 𝜕𝐸𝑅𝑅 𝜕𝐷o . We subsequently refitted a nonlinear regression using the 

estimated ERR and known dose, as shown in the middle panel. The resulting estimated 

ERR is 𝐸𝑅𝑅p = 4.986𝐷 + 0.179𝐷1/3	 (adjusted 𝑅4 = 0.9997). In comparison to the true 

model (𝐸𝑅𝑅 = 5𝐷 + 0.5𝐷1/3), the estimated coefficient of the linear term (4.986) closely 

approximates its true value of 5, while the estimated coefficient of the nonlinear term 

(0.179) is smaller than the true value of 0.5. Nonetheless, the DNN accurately identifies 

the supra-linear model type, with an estimated 𝐸𝑅𝑅p > 0 and decreasing 𝜕𝐸𝑅𝑅p
𝜕𝐷o  at low 

doses, as illustrated in the middle and right panels of Figure 3A. Similarly, in Figure 3B, 

we obtained the estimated ERR as 𝐸𝑅𝑅p = 0.525𝐷 (adjusted 	𝑅4 = 1) after re-fitting the 

linear model with the estimated ERR from DNN (middle panel), which closely aligns with 

the true model of 0.51D. The  𝜕𝐸𝑅𝑅p
𝜕𝐷o  appears akin to white noise unrelated to the 

dose, with a mean around 0.525 (right panel). Despite the challenge of obtaining a 

perfectly horizontal line for 𝜕𝐸𝑅𝑅p
𝜕𝐷o  due to roundoff errors and approximations, the 

right panel of Figure 3B indicates that 𝜕𝐸𝑅𝑅p
𝜕𝐷o  is a constant across different doses. 

Once again, DNN accurately identified the linear model type with a straight line in 𝐸𝑅𝑅p 

and a constant 𝜕𝐸𝑅𝑅p
𝜕𝐷o . Furthermore, in Figure 3D, DNN accurately identifies the 

quadratic model type with a positive ERR and a linear 𝜕𝐸𝑅𝑅p
𝜕𝐷o  (right panel), despite 

the estimated model coefficients being slightly different as 𝐸𝑅𝑅p = 1.106𝐷 + 0.3404𝐷4 

(adjusted 𝑅4 = 1) compared to the true model 𝐷 + 0.5𝐷4. Moreover, in Figure 3E, DNN 

appropriately recognizes the hormesis model type with a negative 𝐸𝑅𝑅p	and an 
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increasing 	𝜕𝐸𝑅𝑅p
𝜕𝐷o 	at very low doses. The estimated model from DNN, 𝐸𝑅𝑅p =

	0.783 −	 /..60789
17	: "

#.#%&;
'  (adjusted 𝑅4 = 0.9987), closely resembles the true model ERR = 

0.8 −	 /.6789

17	: "
#.#%;

'.   Finally, detecting a threshold model is somewhat challenging due to its 

lack of full differentiability. As illustrated in the middle panel of Figure 3C, the most 

suitable continuous function for the estimated ERR from DNN is given by 𝐸𝑅𝑅p =

0.2019 + 3.279𝐷 − 0.6215𝐷1/3 (adjusted 𝑅4 = 0.9382), which partially captures the 

nonzero part of the true threshold model: 

𝐸𝑅𝑅 = 	 r
= 0,																								𝑖𝑓	𝐷 < 		0.0562

= 5𝐷 − 0.5𝐷
1
3,			𝑖𝑓	𝐷 ≥ 0.0562.

.	 

Nevertheless, DNN still presents compelling evidence for a threshold model, as 𝐸𝑅𝑅p 	≈

0		 at very low doses (middle panel of Figure 3C). Similar observations with different 

ages at exposure are noted in Supplementary Figure 1. Overall, DNN proves to be more 

efficient in distinguishing differentiable dose-response models (supra-linear, linear, 

linear-quadratic, and hormesis), but it exhibits some inefficiency in detecting a threshold 

model due to the lack of full differentiability in the model. In general, it remains a 

valuable tool for uncovering the underlying type of dose-response models. 

 
LSS Cohort Data 
We constructed a feed-forward DNN model with one input, one output, and three hidden 

layers, as depicted in Figure 1. The first, second, and third hidden layers consist of 256, 

128, and 64 nodes, respectively. The selection of the number of nodes and hidden 

layers is based on minimizing the average negative log-likelihood. In addition to 

radiation dose, six other covariates—namely, attained age, age at exposure, time since 

exposure, sex, city, and NIC—are incorporated into the model. The dataset was 

randomly split into 80% training and 20% validation data. Prior to input into the DNN, all 

variables were normalized to have zero means and standard deviations of 1. The 

corresponding output represents solid tumor incidence. 

After training the model, we generated test data and estimated the 	𝐸𝑅𝑅p  and 𝜕𝐸𝑅𝑅p
𝜕𝐷o  

at low doses (< 100 mGy). The computational results are presented in Figure 4. 
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Figure 4: Estimated Excess Relative Risk (ERR) and its first-order partial derivative for different 

ages at exposure (Ax) and attained ages (Aa) for a woman residing in Nagasaki. A: Ax = 10 and 

Aa = 30; B: Ax = 15 and Aa = 40; C: Ax = 20 and Aa = 50; D: Ax = 30 and Aa = 70; E: Ax = 40 

and Aa = 70; F: Ax = 50 and Aa = 70. 

Figures 4A-F consistently reveal a quadratic dose-response relationship across different 

ages at exposure and attained ages in the LSS cohort. For example, in Figure 4A, a 

linear 𝜕𝐸𝑅𝑅p
𝜕𝐷o  is detected (left panel), and fitting a quadratic model (𝑎 + 𝑏𝐷 + 𝑐𝐷4)  

with the estimated ERR yields an estimated dose-response model of 𝐸𝑅𝑅p = 	1.497𝐷 +

0.9173𝐷4  with an adjusted 𝑅4 = 1, indicating nearly perfect fitting. Similar results are 

observed with other ages at exposure and attained ages (Figures 4B-4F), suggesting a 
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Linear quadratic (LQ) model with the LSS cohort data. While the coefficients of both 

linear and quadratic terms diminish with increased age at exposure and/or an older 

attained age, the LQ model remains the most fitting dose-response model for the data, 

consistently achieving a perfectly adjusted 𝑅4	𝑜𝑓	1  for different age groups. Despite 

potential bias in the estimated coefficients relative to the true model, as observed in the 

simulation, DNN accurately identified the type of quadratic dose-response model. 

Additionally, Supplementary Figure 2 indicates that a log-linear dose-response model 

(𝐸𝑅𝑅 = 𝑎𝑒<9)  is not a valid option for the LSS cohort data, as the log(𝐸𝑅𝑅)	exhibits a 

supra-linear trend with different ages. 

 
Discussion and Conclusions 
Accurately assessing the health risk of low-dose radiation is crucial for establishing a 

scientific foundation for radiation protection and safety. Parametric risk models, 

extensively studied and employed by academics and government agencies, offer 

simplicity and ease of interpretation. However, designing these models requires 

substantial domain expertise, and mis-specifying them may result in bias and inaccurate 

risk estimation. In contrast, data-driving DNNs prove highly efficient and robust, capable 

of approximating any underlying continuous functions and achieving state-of-the-art 

performance without the constraints of predefined function forms. Nevertheless, the 

inherent challenge with DNNs lies in their black-box nature, making their internal 

decision-making processes opaque and challenging to interpret. This lack of 

transparency raises significant concerns, particularly in critical applications such as 

healthcare, where understanding the reasoning behind a decision is essential. 

 

To bridge the gap between the remarkable performance of DNNs and the 

comprehensibility of parametric models, it is valuable and of strong interest to identify 

the type of a parametric dose-response model from data with the guidance of DNNs. 

This pilot study represents our initial effort in this direction. DNNs, free from the problem 

of model misspecification, can be employed to discern different dose- response models 

at low doses and guide the construction of a correct parametric risk model. 
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Our simulations, employing known dose-response functions and model structures, 

highlight that DNN offers a valuable approach for discerning types of dose-response 

models. In our analysis of real data from the LSS cohort, we identify a LQ dose-

response model, contrasting with a linear no-threshold (LNT) model. While the LNT 

model may overestimate the risk at very low doses, it tends to underestimate the risk at 

relatively high doses. Nonetheless, the LNT model serves as a reasonable 

approximation for LQ, given the minor contribution of the quadratic term at very low 

doses. 

 

DNN proves effective in identifying and analyzing complex relationships between doses 

and responses, playing a pivotal role in providing valuable insights into various types of 

dose-response models. Additionally, it uncovers subtle nuances in dose-response 

relationships that might be overlooked by traditional statistical approaches. 

Consequently, DNN holds significant potential to advance our understanding of dose-

response modeling, enabling more accurate predictions and enhancing decision-making 

in the realm of radiation protection. 
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Supplementary Figure 1: Plots of True Excess Relative Risks (ERRs) and Deep Neural Network 

(DNN) Estimated ERRs, Along with their First-Order Derivatives, for Various Dose-Response 

Models at Ages 40 and 70. Left Panels: Plots of the True ERRs with Different Functional Forms 

(f(D)). Middle Panels: Plots of the Estimated ERRs using DNN. Right Panels: Plots of the First-

Order Derivatives from DNN.  Supplementary Figures 1A-E depict the dose-response models of 

supra-linear, Linear No-Threshold (LNT), threshold, linear quadratic, and hormesis, respectively, 

with consideration of the age at exposure and attained ages of 40 and 70. 
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Supplementary Figure 2: Estimated Logarithm of Excess Relative Risk (log(ERR)) and its First-

Order Partial Derivative for Various Ages at Exposure (Ax) and Attained Ages (Aa) in a Woman 

Residing in Nagasaki. Panel A: Ax=10 and Aa=30; Panel B: Ax=15 and Aa=40; Panel C: Ax=20 

and Aa=50; Panel D: Ax=30 and Aa=70; Panel E: Ax=40 and Aa=70; Panel F: Ax=50 and 

Aa=70. 
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