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Abstract 

Background 

Within the 2015 American College of Medical Genetics/Association of Molecular 
Pathology (ACMG/AMP) variant classification framework, case-control observations 
can only be scored dichotomously as ‘strong’ evidence (PS4) towards pathogenicity 
or ‘nil’.  

Methods 

We developed the PS4-likelihood ratio calculator (PS4-LRCalc) for quantitative 
evidence assignment based on the observed variant frequencies in cases and 
controls. Binomial likelihoods are computed for two models, each defined by pre-
specified odds ratio (OR) thresholds. Model one represents the hypothesis of 
association between variant and phenotype (e.g. OR≥5) and model two represents 
the hypothesis of non-association (e.g. OR≤1). 

Results 

PS4-LRCalc enables continuous quantitation of evidence for variant classification 
expressed as a likelihood ratio (LR), which can be log-converted into log LR 
(evidence points). Using PS4-LRCalc, observed data can be used to quantify 
evidence towards either pathogenicity or benignity. Variants can also be evaluated 
against models of different penetrance. The approach is applicable to balanced 
datasets generated for more common phenotypes and smaller datasets more typical 
in very rare disease variant evaluation.  

Conclusion 

PS4-LRCalc enables flexible evidence quantitation on a continuous scale for 
observed case-control data. The converted LR is amenable to incorporation into the 
now widely used 2018 updated Bayesian ACMG/AMP framework.  
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Introduction 
The American College of Medical Genetics/Association of Molecular Pathology 
(ACMG/AMP) published in 2015 a provisional framework for the interpretation and 
classification of genomic sequence variants1. Codes and weightings were provided 
for evidence items comprising the frequency of variant observations in humans with 
and without phenotype, predictions for sequence changes of protein and splicing 
impact and assays of variant function. The intention of the 2015 ACMG/AMP 
framework was to improve the consistency and robustness of variant classifications, 
with the authors providing prescriptive criteria and quantitative thresholds for many 
evidence items. Nevertheless, the authors recognised the 2015 framework to be 
provisional; a number of modifications and specifications to the original framework 
have been subsequently developed through international expert consensus. The 
ClinGen Sequence Variant Interpretation Group (SVI) has developed specifications 
for more general evidence items, whilst more specifications relating to individual 
genes or sets of genes have been developed by Variant Curation Expert Panels 
(VCEPs)2-11. 

In the original 2015 ACMG/AMP framework, four ordinal evidence weightings were 
delineated (supporting, moderate, strong or very strong), with specification for how 
evidence items attaining these weightings were to be combined to provide overall 
classifications. In 2018, Tavtigian and SVI colleagues proposed a Bayesian 
reconfiguration of the framework, whereby evidence would instead be quantified as 
likelihood ratios (LRs, also termed OddsPath, odds of pathogenicity)12. By taking the 
logarithm (to base 2.08), these LRs might be translated into exponent (evidence) 
points (EPs), in such a way that the previous evidence weightings were transformed 
into a geometric progression of supporting (1 EP), moderate (2 EPs), strong (4 EPs) 
and very strong (8 EPs; Table 1)13,14. Assuming a prior probability of pathogenicity of 
10%, EPs can be summed (or the product of the LRs calculated) and can then be 
converted to posterior probabilities and assigned to one of five overall variant 
classifications: benign (<0.1% probability of pathogenicity), likely benign (0.1-10%), 
variant of uncertain significance (VUS; 10-90%), likely pathogenic (90-99%) and 
pathogenic (>99%). The SVI and VCEPs have applied this LR-based approach to 
quantify the evidence weighting for data relating to functional assays (PS3/BS3), 
phenotype specificity (PP4), and in silico predictions (PP3/BP4)15-19. It has been 
advised the forthcoming revision of the 2015 ACMG/AMP framework will adopt the 
LR-EP system and that non-integer EPs may be permissible, a substantial evolution 
from the confined prescriptions for evidence combinations laid out in the original 
2015 framework20. 

One of the most fundamental observations indicating that a variant is disease-
associated (i.e. pathogenic) is observation of that variant at a higher frequency in 
individuals with the relevant disease/phenotype (cases) than in those without 
(controls). Such case-control evidence was assigned code PS4 in the 2015 
ACMG/AMP framework1. In the 2015 framework paper, discussion by authors 
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highlighted that the strength of association might vary between different gene-
phenotype dyads, as well as that the precision of the estimated effect size (i.e. the 
confidence interval) was an important consideration alongside the point estimate; the 
recommendation in the paper was allocation of ‘strong’ evidence for PS4 where 
OR>5 and the lower 95% CI>11.  However, PS4 is one of the few codes for which 
there has been no subsequent specification by the SVI, with the stipulations by 
VCEPs varying widely around how evidence might be allocated for PS4 7,11. The 
overlap of use of the same datasets for PS4 as with codes for variant frequency in 
controls (PM2, BA1, BS1) and lack of provision for case-control data evaluation 
towards benignity have also been recognised as current limitations. 

There is therefore requirement for a mechanism by which to translate across from 
the frequentist stipulations relating to case-control odds ratios (as per the current 
2015 ACMG/AMP framework) into a Bayesian quantitation of a likelihood ratio 
(commensurate with the 2018 SVI framework evolution and forthcoming ACMG 
framework revision)13,21. Recently, Kanti et al. analysed SNP-array dataset on 
75,657 breast cancer cases and 52,987 controls of European ancestry, calculating 
age-specific log-relative risk from survival analysis, to generate LRs for 24 BRCA1 
and 68 BRCA2 variants22. Such methodology is well-suited for comprehensive 
prospective analyses of large case-control datasets where individual-level 
annotations for age and other parameters are available. However, we also require 
tools accessible to clinical diagnostic scientists to empower flexible and accurate 
quantitation of evidence from summary-level case-control data in the context of 
reactive classification of clinically identified variants. 

We present here the PS4-likelihood ratio calculator (PS4-LRCalc; Figure 1), by 
which the observed frequency of a given variant in a series of cases can be 
compared to the observed frequency in a series of controls to quantitatively compare 
(i) the likelihood of the variant having an effect size at (or above) a specified level 
(target OR of association) to (ii) the likelihood of the variant having an effect size at 
(or below) a specified level (target OR of non-association). The ratio of these two 
likelihoods generates an LR that, when converted as described above, provides EPs 
of the form used within the Bayesian-points-ACMG framework, as described by 
Tavtigian et al.12,23. If derived from independently ascertained case-control series, 
these points can then be summed to generate a combined PS4 score. 

Methods 

Derivation of likelihood ratio (LR)  

We assume that observations of variant counts in cases and controls follow a 
binomial distribution. We use the binomial likelihood function to compute likelihoods 
for two models that represent competing hypotheses about the risk of disease 
associated with a specific variant. The first model, the hypothesis of association, is 
that the underlying effect size generating the observed variant distribution comprises 
an OR greater than the stated target OR of association, for example OR≥5. The 
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second model, the hypothesis of non-association, is that the variant in not disease-
causing; that is, the underlying effect size is less than the stated target OR of non-
association, typically OR≤1 (noting that this may also encompass a protective effect; 
see Table 1). The likelihoods of the hypotheses of association and non-association, 
given the observed data, are hereafter termed the likelihood of association and 
likelihood of non-association, respectively (see Supplementary Methods for 
additional detail and worked example).  

The PS4-likelihood ratio (PS4-LR) towards pathogenicity (equivalent to the odds of 
pathogenicity in the Bayesian framework described by Tavtigian et al.) is calculated 
by dividing the likelihood of association by the likelihood of non-association13,21. The 
LR is then converted to a logarithm (of base 2.08) to generate a log likelihood ratio 
(LLR), also termed exponent points or evidence points (EPs), which correspond to 
PS4 evidence weighting in the 2015 ACMG/AMP framework, as shown in Table 1.  

 

Table 1. Flexible LR-based assignment of evidence weightings, as described in the 2018 
Bayesian evolution of the ACMG/AMP framework. As described by Tavtigian et al., evidence 
criteria for which a likelihood ratio towards pathogenicity can be quantified may be converted to 
exponent points (EPs) through log-transformation (to base 2.08)13,21,23. This continuous approach 
reflects evidence strength quantitatively, in contrast to the categorical approach of the 2015 
ACMG/AMP framework.  
 
Likelihood ratio range Evidence 

points 
Direction of evidence ACMG/AMP (2015) 

Evidence strength 
≥350 (2.088) 8 Towards pathogenicity Very strong 
≥18.7 (2.084) & <350 4 Towards pathogenicity Strong 
≥4.33 (2.082) & <18.7 2 Towards pathogenicity Moderate  
≥2.08 (2.081) & <4.33 1 Towards pathogenicity Supporting 
≤0.48 (2.08-1) & >0.23 -1 Towards benignity Supporting 
≤0.23 (2.08-2) & >0.053 -2 Towards benignity Moderate 
≤0.53 (2.08-4) & >0.0029 -4 Towards benignity Strong 
≤0.0029 (2.08-8) -8 Towards benignity Very strong 
 
PS4-LRCalc was developed in Python (v3.11), and analyses were performed using 
PyCharm (v23.1.1, Professional Edition) for remote development on a high-
performance computing cluster. The online tool for LR calculator use was developed 
using Shiny for Python. 

Results 

Quantifying evidence towards pathogenicity: large, balanced case-control 

datasets (cancer susceptibility genetics scenario) 

In Tables 2 and 3 and Figure 2a-f, we present illustrative scenarios of hypothetical 
variants observed in 10,000 cases and 10,000 controls, applying for our hypothesis 
of association a target OR of 5. This OR was selected for demonstration on account 
of being the threshold for disease association proposed in the 2015 ACMG/AMP 
framework. Thus, in each case a likelihood ratio (LR) is generated from comparison 
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of the likelihood of the true underlying OR being ≥5 against the likelihood of the true 
underlying OR being ≤1 (the target OR of non-association). In scenarios 1-3 (Table 
2), ‘strong’ evidence would have been awarded in the existing 2015-ACMG/AMP 
framework PS4 specification (2015-ACMG-PS4), as the observed OR exceeds 5 and 
lower 95% confidence interval exceeds one. However, the magnitude and 
confidence of association represented by these three scenarios of observed data 
vary widely: the LRs vary 1011-fold and EPs range from 6.1 to 43.0. Conversely, in 
scenarios 4-6 (Table 2), no evidence would be allocated under 2015-ACMG-PS4. 
However, in scenario 4, based on the observed data, the likelihood of association is 
more than five-fold greater than the likelihood of non-association: this equates to 2.3 
EPs. In scenario 5, one fewer instance of the variant was observed in the case 
series compared to scenario 4, meaning the observed OR is lower (OR=4.0; 95% CI 
= 0.45-35.80) but nevertheless, the confidence interval readily encompasses the 
target OR of association (OR=5), and the likelihood of association (that the true 
underlying is OR≥5) is more than two-fold greater than the likelihood of non-
association (that the true underlying OR≤1), translating to 1.2 EPs. Similarly, in 
scenario 6 (Figure 1c), the observed OR is 4.5 (0.97-20.84): whilst no evidence 
would be allocated under 2015-ACMG-PS4, the likelihood of association (OR≥5) is 
almost seventeen-fold greater than the likelihood of non-association (OR≤1), which 
equates to 3.9 EPs.  

 

Table 2. Exemplar case-control scenarios generating exponent points (EPs) towards 
pathogenicity when using PS4-LRCalc. Shown are illustrative sets of variant observations in case 
and control datasets of equal size (10,000 individuals each) and the respective likelihood ratio 
(LR) and exponent points (EPs) generated for each using PS4-LRCalc. In scenarios 1-3, 
assignation of PS4 at ‘strong’ would have been possible under the 2015 ACMG/AMP framework; 
integration of PS4-LRCalc allows more refined quantification of evidence strength, such that the 
equivalent of ‘very strong’ evidence can be applied for scenarios 2 and 3. The variants depicted 
in scenarios 4-6 fail to fulfil the prescriptive 2015 ACMG/AMP criteria for application of PS4. Use 
of PS4-LRCalc, by contrast, allows application of PS4 at evidence strengths that are attenuated 
when compared to scenarios 1-3. Scenarios 1, 3 and 6 are further illustrated in Figure 2a-c. 

 
Cases Controls Observed effect size ACMG 

2015 
framework 

(OR≥5, 
LCI≥1) 

Likelihood of OR≥5 vs 
Likelihood of OR≤1 

Scenario 
number 

Cases 
with 
variant 

Total 
Cases  

Controls 
with 
variant 

Total 
Controls 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

P (chi-
squared) 

P (Fishers 
exact) LR EPs 

1 10 10,000 2 10,000 5.0 1.10 22.84 0.04 0.04 STRONG 33.28 4.8 

2 100 10,000 20 10,000 5.0 3.12 8.15 4.71x10-13 4.69x10-14 STRONG 3.97x1013 42.8 

3 20 10,000 2 10,000 10.0 2.34 42.87 2.87x10-4 1.20x10-4 STRONG 2.35x104 13.7 

4 5 10,000 1 10,000 5.0 0.58 42.82 0.22 0.22 None 5.29 2.3 

5 4 10,000 1 10,000 4.0 0.45 35.80 0.37 0.37 None 2.41 1.2 

6 9 10,000 2 10,000 4.5 0.97 20.85 0.07 0.07 None 16.79 3.9 

 

Quantifying evidence towards benignity 

PS4-LRCalc also enables quantitation of evidence towards benignity, as illustrated in 
Table 3. Again, we considered in each case the likelihood of association (target 
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OR=5) versus the likelihood of non-association (target OR=1) based on observed 
data. In scenarios 7-9, we illustrate a range of scenarios in which the observed odds 
ratio is OR=1, but with increasing numbers of variant observations there is 
increasingly stronger evidence provided towards benignity. In scenarios 10 and 11, 
the frequency of the variant in controls is greater than that in cases, providing 
increasingly powerful evidence towards benignity. 

 

Table 3. Exemplar case-control scenarios generating exponent points (EPs) towards benignity when 
using PS4-LRCalc. Shown are illustrative sets of case-control observations in datasets of equivalent 
size and their equivalent likelihood ratios (LRs) and exponent points (EPs) under the PS4-LRCalc 
model. The 2015 ACMG/AMP framework does not permit the use of lack of case-control signal as 
evidence for benignity. However, in scenarios 7-9, calculation of LRs using PS4-LRCalc allows 
application of PS4 in the benign direction at increasing strength – from the equivalent of moderate to 
very strong – as the number of variant observations increases. In scenarios 10 and 11, EPs for 
variants with ostensibly protective effects, i.e. observed at higher frequency in controls than cases, 
reach the equivalent of ‘very strong’ in the benign direction. Scenarios 8, 9 and 10 are further 
illustrated in Figure 2d-f. 

 
Cases Controls Observed effect size 

ACMG 2015 
framework 

(OR≥5, 
LCI≥1) 

Likelihood of OR≥5 vs 
Likelihood of OR≤1 

Scenario 
number 

Cases 
with 
variant 

Total 
Cases  

Controls 
with 
variant 

Total 
Controls 

Odds 
Ratio 

Lower 
95% CI 

Upper 
95% CI 

P (chi-
squared) 

P (Fishers 
exact) 

Likelihood 
ratio 

LLR: 
Exponent 
(evidence) 
points 

7 1 10,000 1 10,000 1.0 0.06 15.99 1.00 1.00 None 0.15 -2.6 

8 2 10,000 2 10,000 1.0 0.14 7.10 1.00 1.00 None 7.10x10-2 -3.6 

9 10 10,000 10 10,000 1.0 0.42 2.40 1.00 1.00 None 3.75x10-4 -10.8 

10 2 10,000 4 10,000 0.5 0.09 2.73 0.68 0.69 None 2.59x10-3 -8.1 

11 2 10,000 10 10,000 0.2 0.04 0.91 0.04 0.04 None 1.55x10-7 -21.4 

 

Quantifying evidence towards pathogenicity: different models of penetrance  

In clinical cancer susceptibility genetics, genes associated with breast cancer are 
deemed to be of high penetrance if the association between pathogenic variants in 
that gene and phenotype is typically of OR≥4 (for example BRCA1, BRCA2), whilst 
genes for which pathogenic variants are typically of effect size (OR) 2-4 are deemed 
to be of moderate penetrance (for example, CHEK2). However, for some variants in 
BRCA1 and BRCA224, observed data suggest reduced penetrance for breast cancer 
of OR=2-4, risks more comparable to those ascribed to moderate penetrance 
genes25. Guidance exists for clinical management of patients with these reduced 
penetrance BRCA1/BRCA2 variants. It may therefore be of utility on occasion to be 
able to assess BRCA1/BRCA2 case-control variant data against both models of 
penetrance: considering firstly evidence of association at standard high penetrance 
(OR≥4) and for evidence of association at reduced penetrance (OR≥2). For example, 
if a variant is observed at a frequency of 12/10,000 in cases and 6/10,000 in 
controls, these observations would not constitute evidence for association against a 
target OR of association of 4, whilst against a target OR of 2 these observations 
would constitute moderate evidence (LR=5.5, EP=2.3; see Supplementary Table 1). 
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Quantifying evidence towards pathogenicity: unbalanced datasets with small 

case series (rare disease genetics scenario) 

We present in Supplementary Table 2 illustrative ultra-rare disease-type scenarios; 
that is, small numbers of variant observations in modest-sized case series being 
compared to large population control cohorts. We illustrate the impact of varying the 
hypothesis of association, considering OR≥1000, OR≥100 and OR≥10 in keeping 
with effect sizes commensurate with very rare Mendelian diseases. 

Approaches to accommodate data uncertainty 

The PS4-LRCalc approach provides, based on the observed data, quantitation of the 
comparative likelihoods of the underlying OR being at or above a higher value (target 
OR of association) versus at or below another, lower value (target OR of non-
association). PS4-LRCalc will inherently reflect sample size (power, sampling 
variability), namely that the magnitude of the LR attained for a variant of a given 
frequency and strength of disease association will be determined by the magnitude 
of the case and control data series. If the observed data are accurate and robust, 
then this LR most directly quantifies the evidence towards pathogenicity (or 
benignity) afforded from the observed data.  

However, on occasion there may be uncertainty regarding the accuracy of 
genotyping or phenotyping of the case (and/or control) series. This is an issue 
inherent to any application of case (or control) data towards variant classification, 
rather than the issue being particular to the PS4-LRCalc. However, by virtue of its 
parameterisation, PS4-LRCalc affords various options for introducing ‘conservatism’ 
to the case-control analysis, the selection and specification of which will be 
predicated on the level of uncertainty of data accuracy and/or desire for 
conservatism: 

(i) Adjustment of the opposing hypothesis: quantitation of evidence can 
be rendered more conservative by adjusting the competing hypothesis. 
That is, where unadjusted data provides evidence towards pathogenicity, 
the target OR of non-association may be increased. In Supplementary 
Table 3, we illustrate how the LR/LLR are impacted by comparing a target 
OR of association of OR=5 to different target ORs of non-association, 
namely OR=1, OR=2 and OR=5.  

(ii) Sensitivity analysis: by reducing the number of case observations and/or 
increasing control observations (commensurate with degree of uncertainty 
and ‘trust’ in the data), it is possible to assess the robustness of the 
unadjusted case-control signal. For example, if the count of case 
observations with the variant is n=2, reducing the case count to n=1 and 
reconducting LR quantification may inform the confidence around the 
original prediction. The logical extension of this principle is that the n=1 
case variant scenario should be sensitivity-tested at n=0 (i.e. therefore n=1 
case series are effectively disallowed). This strategy may be particularly 
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pertinent in rare disease scenarios in which the case denominator is 
modest, meaning that each observation of an instance of the variant in a 
case is contributing substantially to the evidence weighting.  

(iii) Application of a confidence interval to the target ORs (the target OR of 
association and the target OR of non-association): rather than using the 
target OR for association (e.g. OR=5), it is possible to utilise the lower 
(70%, 90% or 95%) confidence interval of this estimate, as derived from 
the expected counts under the hypothesis of association. Rather than 
using the target OR for non-association (e.g. OR=1), it is possible to utilise 
the upper (70%, 90% or 95%) confidence interval of this estimate, as 
derived from the expected counts under the hypothesis of non-association 
(see Supplementary Methods). An LR incorporating one or both of these 
values is thus attenuated (i.e. more conservative) compared to an LR 
derived using the direct target ORs. Of note, where there are low total 
variant observations and/or unbalanced case-control dataset size this will 
have a substantive impact on the standard error of the OR, such that 
addition of a confidence interval will result in accordingly aggressive 
diminution of the LR (i.e. this approach may be highly punitive in these 
scenarios, Supplementary Table 4).  

There is an additional rules-based restriction which may warrant consideration to 
avoid generation of an LR from comparison of two hypotheses each of miniscule 
likelihood. In some scenarios with well-powered case-control signal, the target ORs 
of non-association and association may lie below and above the confidence interval 
limits of the observed OR estimate, respectively. In these scenarios, the likelihoods 
of association and non-association will constitute only a minuscule proportion of the 
total likelihood space. However, if the miniscule likelihood of the observed data 
hypothesis of association is substantially greater than the miniscule likelihood for the 
hypothesis of non-association, an LR of sizeable magnitude can be generated 
(Supplementary Figure 1). In such a scenario in practice, there is high confidence of 
an effect intermediate between the two hypotheses, meaning that interrogation 
against a much higher target OR of association is thus unlikely to be a clinically 
meaningful endeavour. 

Accessible tool for direct access to PS4-LR-calculator tool 

An online Shiny for Python tool is available at https://turnbull-
lab.shinyapps.io/ps4_lrcalc/. This allows the input of (i) case and control variant 
observations and denominators, (ii) a target odds ratio of association, (iii) a target 
odds ratio of non-association, and (iv) (optional) confidence intervals. The outputs 
include the relative likelihoods, a likelihood ratio, evidence points and a distribution 
curve of likelihoods.  
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Discussion 
We present PS4-LRCalc, which enables quantification of evidence towards variant 
pathogenicity/benignity based on a continuous output from a statistical model rather 
using a dichotomous evidence allocation. The PS4-LRCalc approach allows 
evaluation of the observed data against a pre-specified ‘target OR of association’ 
and a pre-specified ‘target OR of non-association’, thus quantified as an LR which 
effectively serves to bridge the frequentist-Bayesian divide. This approach is 
applicable across a spectrum of use-cases, including both the highly penetrant 
effects observed from small case series in investigation of ultra-rare Mendelian 
disease, as well as less penetrant effects inferred from the larger case series 
available for the investigation of more common phenotypes for example for variants 
in cancer susceptibility genes. The advantages of the PS4-LRCalc approach include: 

• Firstly, the evidence is quantified as a LR, which is then converted into an 
LLR, which equates to a number of exponent (evidence) points. This 
approach is consistent with the 2018 Tavtigian-SVI adaptation of the 2015 
ACMG framework which is to be adopted in the forthcoming ACMG 
framework update.  

• Secondly, the evidence strength (LLR) is quantified on a continuous scale, 
affording direct quantitative reflection of the magnitude of evidence towards 
pathogenicity afforded by the observed data. This offers dramatically 
improved flexibility compared to the 2015-ACMG-PS4 specification of 
dichotomous options of strong evidence or no evidence. 

• Thirdly, the parameterisation of the PS4-LRCalc model allows specification of 
target ORs of interest. This enables flexibility around specifying these 
hypotheses, for example, examining models of different penetrance.  

• Fourthly, this approach allows ready combination of evidence from multiple 
(independent) studies/sources, with summing of evidence points (or 
multiplication of likelihood ratios).  

• Fifthly, this approach allows quantitation of evidence towards benignity based 
on observed data; arguably an elegant complement or alternative to the 
current BA1/BS1 codes, by which evidence towards benignity is assessed 
based purely on variant frequency in controls. 

• Finally, we outline several potential approaches by which to manage 
uncertainty inherent to clinical data of uncertain quality/provenance.  

Application of summary-level case-control data for variant interpretation carries a 
number of cautions and caveats: these apply equally to the existing 2015-ACMG-
PS4 as to the PS4-LRCalc approach:  

• There should be appropriate matching of ethnicity between case and control 
series.  
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• The standards for sequencing/genotyping and downstream QC (quality 
control) must be considered, in particular where they differ between cases 
and controls.  

• The provenance of the data (for example, if extracted from a publication) is 
particularly important where variant numbers are small (meaning that single 
observations may substantially influence the outcome).  

• If there is any level of enrichment or over-selection amongst the case series, 
this will cause inflation in the observed OR in relation to that of an unselected 
cohort. If the cohorts have been genotyped for a specific variant of known 
effect size, an ‘enrichment factor’ for the cohort could be calculated, by which 
observed ORs may be suitably down-adjusted. Finally, using summary-level 
variant frequencies in cases and controls will disregard differential variant 
distribution in the context of variable age-related penetrance (namely, where 
the variant is disproportionately frequent in younger age groups, in which 
background rates of disease are lower).  

We have created an accessible methodology and user-friendly publicly available tool 
enabling flexible, accurate quantitation for variant classification of case-control data 
as a likelihood ratio and respective exponent evidence points. In particular, this 
approach affords (i) allocation of lower levels of contributary evidence in instances 
for which the confidence and/or effect size would not attain ‘strong’ by the 
dichotomous cut-off of 2015-ACMG-PS4 (ii) allocation of higher than ‘strong’ levels 
of contributary evidence where supported by observed data, and (iii) evidence 
towards benignity. We anticipate this type of approach and tool will be of utility to 
diagnostic clinical scientists and clinicians with increased availability of newly 
collated large diagnostic testing and population sequencing datasets, in particular on 
update of the ACMG/AMP framework, in which evidence quantitation will be more 
continuous and utilise an LR/LLR framework. 
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Figures 

 

Figure 1. Overview of PS4-LRCalc framework for flexible PS4 application. (1) For a given set of case-control 
variant observations, the expected background odds of selecting a case among variant carriers are calculated 
using the equivalent observed odds among non-carriers. (2) The background odds are then scaled according to 
the ORs of association and non-association and converted to an expected probability of selecting a case among 
variant carriers under each hypothesis. (3) Variant observations in cases and controls are then modelled using a 
binomial likelihood function, which evaluates the likelihood that a given probability (p) of case selection would 
generate the observed data (k variant observations in cases across n total observations); note that these 
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probabilities directly convert to odds values, which in turn generate a continuum of odds ratios across all possible 
values of p. (4) The likelihood ratio towards pathogenicity is determined by quantifying the total likelihood of 
association (L(Assoc); red area under curve) and dividing it by the total likelihood of non-association 
(L(NonAssoc); blue area under curve). The likelihood ratio (LR) can then be converted to Tavtigian exponent 
points (EPs) by taking its log (to base 2.08). 

 

Figure 2. Comparison of applicable strength for the PS4 criterion between the 2015 ACMG/AMP guidelines and 
PS4-LRCalc for selected case-control scenarios. Counts of carriers (V+) and non-carriers (V-) of a variant 
between cases and controls are illustrated for exemplar scenarios indicative of (a-c) pathogenicity and (d-f) 
benignity shown in Tables 2 and 3. In the PS4-LRCalc approach, the distribution of variant carrier observations 
between cases and controls is modelled using a binomial likelihood curve, in which the likelihood of association 
(OR≥5, red) is divided by the likelihood of non-association (OR≤1, blue) to generate a likelihood ratio (LR) 
towards pathogenicity, that can then be converted to Tavtigian exponent points (EPs) towards pathogenicity or 
benignity and a corresponding applicable evidence strength under the 2015 ACMG/AMP framework. Notably, our 
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approach allows assignation of EPs for scenarios that may not fulfil the existing ACMG/AMP PS4 guidance, 
including in support of benignity. 
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