Abstract
Recent advances in Artificial Intelligence (AI) have started disrupting the healthcare industry, especially medical imaging, and AI devices are increasingly being deployed into clinical practice. Such classifiers have previously demonstrated the ability to discern a range of protected demographic attributes (like race, age, sex) from medical images with unexpectedly high performance, a sensitive task which is difficult even for trained physicians. Focusing on the task of predicting sex from dermoscopic images of skin lesions, we are successfully able to train high-performing classifiers achieving a ROC-AUC score of ∼0.78. We highlight how incorrect use of these demographic shortcuts can have a detrimental effect on the performance of a clinically relevant downstream task like disease diagnosis under a domain shift. Further, we employ various explainable AI (XAI) techniques to identify specific signals which can be leveraged to predict sex. Finally, we introduce a technique to quantify how much a signal contributes to the classification performance. Using this technique and the signals identified, we are able to explain ∼44% of the total performance. This analysis not only underscores the importance of cautious AI application in healthcare but also opens avenues for improving the transparency and reliability of AI-driven diagnostic tools.
Competing Interest Statement
R.D. reports fees from L'Oreal, Frazier Healthcare Partners, Pfizer, DWA, and VisualDx for consulting; stock options from MDAcne and Revea for advisory board; and research funding from UCB.
Funding Statement
S.U.G., A.J.D., and S.-I.L. were supported by the National Science Foundation (CAREER DBI-1552309 and DBI-1759487) and the National Institutes of Health (R35 GM 128638 and R01 AG061132). R.D. was supported by the National Institutes of Health (5T32 AR007422-38) and the Stanford Catalyst Program.
Author Declarations
I confirm all relevant ethical guidelines have been followed, and any necessary IRB and/or ethics committee approvals have been obtained.
Yes
The details of the IRB/oversight body that provided approval or exemption for the research described are given below:
I confirm that all necessary patient/participant consent has been obtained and the appropriate institutional forms have been archived, and that any patient/participant/sample identifiers included were not known to anyone (e.g., hospital staff, patients or participants themselves) outside the research group so cannot be used to identify individuals.
Yes
I understand that all clinical trials and any other prospective interventional studies must be registered with an ICMJE-approved registry, such as ClinicalTrials.gov. I confirm that any such study reported in the manuscript has been registered and the trial registration ID is provided (note: if posting a prospective study registered retrospectively, please provide a statement in the trial ID field explaining why the study was not registered in advance).
Yes
I have followed all appropriate research reporting guidelines, such as any relevant EQUATOR Network research reporting checklist(s) and other pertinent material, if applicable.
Yes
Data Availability
The dataset used is publicly available and can be accessed from: ISIC (https://challenge.isic-archive.com/data/)