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Abstract 1

The vaginal microbiota is structured into five main community state types (CST) that 2

are known to affect women’s health. CST shifts can occur in less than a day, but there 3

is a lack of follow-ups lasting more than a few months; a gap in the knowledge that 4

hampers our understanding of long-term dynamics. Analysing a longitudinal cohort of 5

125 women followed for a median duration of 10 months, we show that ‘optimal’ (CST 6

I, II, and V) or ‘sub-optimal’ CST III are more stable in time than the ‘non-optimal’ 7

CST IV. We also find that some probabilities of shifting from one CST to another are 8

associated with covariates such reported number of sexual partners or alcohol consumption. 9

Finally, we simulate population-level consequences of variations in behaviours. In addition 10

to providing one of the first insights on vaginal microbiota dynamics over a year, along 11

with a robust methodological analysis, these results open new perspectives to improve 12

our mechanistic understanding of microbial interactions in the vaginal environment and 13

develop new therapeutic strategies. 14
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Introduction 15

Epithelia of the human body are host to diverse arrays of microorganisms, referred to 16

collectively as microbiota, that are tightly associated with our health. This is particularly 17

true for the vaginal microbiota because its composition is strongly linked to the acquisition 18

risk of many sexually transmitted infections (STIs) [1], fertility, especially in the context 19

of medically-assisted procreation procedures [2], and general well-being [3]. 20

Over the last two decades, meta-barcoding sequencing of 16S DNA revealed that the 21

variations in vaginal microbiota, which traces back to Albert Döderlein in 1892, can be 22

explained through five main community state types, or CSTs [4]. Three of these are 23

referred to as ‘optimal’ and are dominated by a lactobacillus species (L. crispatus for CST I, 24

L. gasseri for CST II, and L. jensenii for CST III). A fourth one, CST III, can be seen as 25

‘sub-optimal’ because it is dominated by L. iners, which is metabolically distinct from other 26

lactobacilli and can be associated with pathologies [5]. Finally, CST IV is characterised by 27

a diverse assemblage of other anaerobic bacterial species from the Gardnerella, Prevotella, 28

or Fannyhessea genera. This latter CST is the one usually associated with diseases such as 29

bacterial vaginosis [6]. Metagenomics and transcriptomics techniques have allowed us to 30

refine the compositional structure of these CSTs and to better understand their functioning 31

[7], yet a dynamical perspective is still starting to emerge. 32

The vaginal microbiota composition evolves through life [8] and daily variations have 33

been scrutinised over a couple of months, with pioneering work analysing daily samples 34
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during 16 weeks in 32 women [9]. While longer follow-ups exist, they either specifically 35

focus on pregnancy [10, 11], the samples are taken at large intervals (typically more than 36

three months) [12], or sample sizes are modest (< 100) [13]. These circumstances limit the 37

scope to generally understand the transient dynamics of vaginal microbiota in reproductive- 38

aged women. Methodologically, many longitudinal studies aim to estimate the patterns of 39

transitions and stability among distinct community types [10, 11, 14]. However, the lack 40

of statistical power prevents these studies from examining how key risk factors modulate 41

community transitions. Therefore, despite the inherently dynamic nature of vaginal micro- 42

biota communities, the current understanding of the impacts of key covariates — including 43

demography, lifestyle factors, sexual practices, or medication — relies almost entirely on 44

cross-sectional studies [15]. As such, there exists a knowledge gap in factors responsible 45

for stabilising and destabilising vaginal microbiota communities. 46

We explore vaginal microbiota long-term dynamics through a unique collection of 2,103 47

samples, which provide us with a high-resolution longitudinal follow-up of 125 women 48

over more than 10 months for each on average. We implement Bayesian Markov models 49

to estimate transition probabilities between CSTs, simultaneously estimating associations 50

between the transitions and relevant covariates. Our study offers a new insight into the 51

stability and variability of the vaginal microbiota over a year and identifies important 52

covariates that can explain the variation we witness in human populations. 53
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Results 54

CSTs in the cohort 55

With 2,103 samples spanning over 1,323 total months of follow-up for 125 women, our 56

longitudinal dataset from the PAPCLEAR cohort represents one of the longest analysed 57

to date in the context of the vaginal microbiota (Figure 1). Study participants were be- 58

tween 18 and 25 years old at inclusion and additional characteristics are shown in Table 1. 59

The majority of the samples (73.7%) were self-collected at home, the rest being collected 60

upon on-site clinical visits, and the most common interval between analysed samples were 61

seven and 14 days (Fig. 1a). The median follow-up duration was 8.64 (5.36, 14.0) months 62

(Fig. 1b). On average, each participant contributed 11 samples (Fig. 1c). 63

The metabarcoding analysis on 16S RNA allowed us to assign each sample to a CST 64

(see the Methods). These were variable across women and over time (Fig. 1d). CST I, II, 65

and V are considered ‘optimal’ but the latter two are rare, so we pooled all three in further 66

investigation and refer to them as ‘CST I(II, V)’. Overall, optimal communities were the 67

most frequent, representing 44.5% of samples, followed by ‘sub-optimal’ (CST III) at 35.2% 68

and ‘non-optimal’ communities (CST IV) at 20.4% (Fig. 1e). 69

Probabilities of CST persistence 70

Given the longitudinal nature of our data, we used a continuous-time Markov model to 71

model CST variations over time (see the Methods). Simulations based on the estimated 72
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Figure 1: Summary of vaginal microbiota samples analysed in the PAPCLEAR
study. a) Intervals between sampling events for on-site clinical and home samples. b)
Follow-up duration per participant. c) Number of samples analysed per participant d)
Vaginal microbiota Community State Types (CST) over time in 125 participants. e) Fre-
quency of the optimal (CST I, II, and V), sub-optimal (CST III) and non-optimal (CST
IV) communities in all samples.

6



parameters of our model (i.e., a posterior predictive check), confirmed that it accurately 73

captures the observed CST prevalence (Fig. 2a). The optimal, CST I(II, V), and sub- 74

optimal, CST III, communities showed a high degree of stability, with weekly probabilities 75

to remain in the current state estimated at 87% (95% credibility interval, CrI, of 78 to 76

93%) and 81% (95% CrI of 68 to 90%), respectively. In contrast, the weekly persistence 77

Table 1: Summary profile of microbiota samples and covariates in the PAPCLEAR study.
Q1 and Q3 refer to first (25%) and third (75%) quantiles. Level = 1 indicates the presence
of a binary condition. See Appendix S1 for the covariate definitions.

Level Summary

Samples (Participants) 2103 (125)
CST (%) I(II,V) 935 (44.5)

III 740 (35.2)
IV 428 (20.4)

Sample type (%) Clinical 553 (26.3)
Home 1550 (73.7)

Sampling interval (median (Q1,Q3)) 21 (7, 28)
Follow-up duration (median (Q1,Q3)) 8.64 (5.36, 14.0)
Samples per subject (median (Q1,Q3)) 11 (7, 16)

Covariates
Identifying as ‘Caucasian’ (%) 1 102 (81.6)
BMI (median (Q1,Q3)) 21.19 (19.78, 23.46)
Alcohol (median (Q1,Q3)) 3.14 (1.40, 5.07)
Smoker (%) 1 36 (28.8)
Stress level (from 0 to 3, median (Q1,Q3)) 1.41 (1.00, 1.75)
Regular sport practice (%) 1 61 (48.8)
Red meat consumption (times per week, median (Q1,Q3)) 0.50 (0.16, 1.00)
Years since 1st menstruations (median (Q1,Q3)) 9 (7, 10)
Hormonal contraception (%) 1 32 (25.6)
Menstrual cup user (%) 1 46 (36.8)
Vaginal product user (%) 1 73 (58.4)
Tampon user (%) 1 89 (71.2)
Lifetime number of partners (median (Q1,Q3)) 5 (3, 11)
Lubricant use (%) 1 58 (46.4)
Regular condom use by partner (%) 1 23 (18.4)
Male affinity (%) 1 124 (99.2)
Chlamydia infection at inclusion (%) 1 7 (5.6)
Pregnancy during follow-up (%) 1 4 (3.2)
Vaginal douching (%) 1 4 (3.2)
Spermicide user (%) 1 1 (0.8)
Female affinity (%) 1 10 (8.0)
Systemic antibiotic treatment during the study (%) 1 65 (52.0)
Genital antibiotic treatment during the study (%) 1 30 (24.0)
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Figure 2: Prevalence and transition probabilities among vaginal microbiota com-
munity state types (CSTs). a. Observed (bars) and predicted prevalence (crosses) of
CSTs I (II, V), III and IV. The model predictions were generated by drawing 100 random
samplings from the posterior distributions and simulating the Markov model for each sam-
pled parameter set. b) Mean estimated weekly transition probabilities of CSTs I (II, V),
III and IV. The arrow thickness indicates the persistence or transition probability.

probability of the non-optimal CST IV was only 60% (95% CrI of 32 to 80%, Fig. 2b). 78

Covariates effect on transitions 79

To gain a mechanistic understanding of the CST shifts, we estimate the effect of covariates 80

jointly with the transition probabilities. Focusing on 16 covariates of interest and assuming 81

that they have a symmetrical effect on CST transitions, we identified alcohol consumption 82

as the most consistent driver of vaginal microbiota communities as it favoured the sub- 83

optimal over the optimal community (with 98% certitude, Fig. 3). This means that alcohol 84
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Figure 3: Estimated covariate effects on community transition rates. With the
symmetry assumption, there are only three main types of transitions. The impact of
covariates on community transition rates was estimated for a given set of community states
as the log hazard ratio, β. The figure shows the posterior distributions of exp(β), the hazard
ratio for the three sets of transition sets, and the corresponding 16 covariates. The numbers
on the right-hand side of each panel indicate the probability that the estimated effect is
different from the hazard ratio of 1 (i.e., the proportion of posterior distributions sampled
on the dominant side of the effect).

consumption increases the pace of transition from CST I(II, V) to CST III or reduces that in 85

the opposite direction by the same magnitude (our symmetry assumption does not allow 86

us to distinguish between the two). In addition, alcohol consumption tended to favour 87

CST IV over CST III (with 75% certitude, Fig. 3). 88

Other factors of possible effects on transitions (i.e., with more than 75% certitude) 89

included self-reported Caucasian identity, number of sexual partners, use of vaginal intimate 90

hygiene products, and body mass index (BMI). More precisely, identifying oneself as a 91

‘Caucasian’ and having a larger BMI both appeared to favour CST III over CST I(II, V) 92
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with 84 and 75% certitude, respectively. The number of sexual partners was also found to 93

potentially favour CST IV over CST III, increasing the risk of maintaining (or transitioning 94

to) CST IV with 88% certitude. 95

Finally, the use of vaginal hygiene products appeared to have multifaceted effects. 96

Between CST I(II, V) and CST III, their use was positively linked to maintaining or 97

transitioning to CST I(II, V) with 91% certitude. For the CST I(II, V) and CST IV pair, 98

this product use tended to favour a shift towards CST IV, with an 84% certitude. Between 99

CST III and CST IV, their use was more likely to support the persistence or move towards 100

CST III, also with a 91% probability. These findings indicate that further mechanistic 101

understanding of individual products marketed for ‘vaginal intimate hygiene’ is warranted. 102

Population-level consequence of covariate effects 103

Analysing transition rates at the individual level can help guide more mechanistic studies 104

at the within-host level, but they offer limited insights about population-level outcomes. 105

This is particularly true for covariates that are strongly involved in more than one type 106

of CST. Therefore, we performed simulations in which we varied a covariate while setting 107

all other factors to their representative reference value. Thanks to our estimated hazard 108

ratios (Fig. 3), we could predict the expected proportion of each CST in this simulated 109

population. This allowed us to see that covariates such as the reported use of vaginal 110

hygiene products, which are involved in many shits, appear to have a limited population 111

effect, with only a slightly decreasing frequency of CST IV with more frequent usage. 112

10



Tampon Vag. product

Partners Red meat Regular condom Regular sport Stress

Caucasian Cigarettes Horm. contra. Lubricant Menstr. cup

1st menstr. Alcohol Antibio. (Genital) Antibio. (Systemic) BMI

0.0 0.5 1.0 0.0 0.5 1.0

2 5 10 20 40 0 1 2 3 0.0 0.5 1.0 0.0 0.5 1.0 0 1 2 3

0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

3 6 9 12 15 0 1 4 10 0.0 0.5 1.0 0.0 0.5 1.0 20 25 30
0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Value

F
re

qu
en

cy

CST

I(II,V)

III

IV

Figure 4: Prevalence simulations predict population-level consequences of co-
variates. Based on estimated hazard ratios (Fig. 3), the population-level impact was
simulated for each covariate. The vertical dashed lines indicate the intercept used in
estimation: i.e., the population mean for continuous and 0.5 for binary variables. For
continuous variables, the range of values explored was determined by the minimum and
maximum values reported in the PAPCLEAR study .

Conversely, these simulations allowed us to confirm that the effect of alcohol on commu- 113

nity transition rates translates into a marked decline in CST I prevalence in favour of CST 114
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III at the population level in our simulations (Fig. 4). Compared to the average alcohol 115

consumer in this cohort, the predicted prevalence of the optimal community (CST I, II 116

and V) was 17% higher and lower for non-drinkers and the heaviest drinkers in the cohort, 117

respectively (>99% certitude). The alcohol-induced downfall of the optimal communities 118

is accompanied by an increase in both the sub- and non-optimal communities, although the 119

increasing trends are less certain separately. Nonetheless, the non-optimal CST IV tends 120

to be 11% (>88% certitude) higher among average drinkers than non-drinkers. 121

Finally, as expected from the transition rates, population-level simulations predict that 122

an increasing number of sexual partners tends to reduce the prevalence of the sub-optimal 123

CST III with up to 92% certitude in favour of non-optimal CST IV (with up to 84% certi- 124

tude). Perceived ethnic identity also hinted at trends at the population level as participants 125

who identified as ‘Caucasian’ were estimated to show an 11% higher occurrence of CST III 126

(with 84% certitude). We also find that CST IV (non-optimal) communities tend to be 127

less frequent in regular condom users (8% lower prevalence with 88% certitude), which is 128

consistent with previous association studies [16–18]. 129

Unobserved individual variability in community transition 130

While we incorporated 16 covariates into our model, some variations among women remain 131

unaccounted for. To quantify these, we estimated the extent of individual variability (i.e., 132

unobserved heterogeneity) in community transitions for each transition pair. 133

The highest variability was observed among women in the transitions involving ‘recov- 134
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ery’ to an optimal CST from CST IV (Fig. 5). On the other hand, inverse transitions 135

exhibited some of the lowest individual variability. The same is true, although to a lesser 136

extent, for the shifts from sub-optimal CST III to optimal CSTs. 137

These results suggest that there are limited pathways leading to the deterioration of 138

vaginal microbiota communities, whereas the routes to recovery can be highly individu- 139

alised. As these variations remained unexplained by the 16 covariates we investigated, 140

further research attention is warranted to better understand the diversity of microbiota 141

recovery trajectory. 142
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Discussion 143

Vaginal microbiota is a key component of women’s health. Pioneer work has studied its 144

daily variations for up to 16 weeks [9], but longer-term dynamics remain largely unknown. 145

By analysing follow-ups in 125 women with unprecedented length (more than 10 months 146

on average and more than 16 samples per participant), we estimate the probabilities to 147

shift from one CST to another. These are consistent with the ones from earlier studies, 148

especially with a model that included the data from four cohorts [14]. Interestingly, in a 149

cohort following pregnant women, CST I was found to be more stable than in ours, which 150

could be due to hormonal changes [10]. 151

We also succeeded in testing the effect of relevant covariates on these transition rates, 152

while estimating them, which represents a strong methodological advance. We identify 153

several covariates with strong effects, some of which are echo earlier studies. For example, 154

the association between CST IV and the number of partners is consistent with the hypoth- 155

esis that external importation of microbes could alter the dynamics of vaginal microbiota 156

and in line with earlier work []. The same is true for our result that (non-optimal) CST 157

IV tends to be less frequent in regular condom users, which is consistent with previous 158

association studies [16–18]. 159

Our study represents a rare European long-term cohort, yet it does not support a 160

balanced design concerning ethnicity with over 80% of participants representing the Cau- 161

casian identity (Table 1). We do find that participants who do not identify themselves as 162
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Caucasian are less found in CST I is consistent with many studies showing associations 163

between self-perceived ethnicity and CST [4, 19, 20]. As the relative importance of biolog- 164

ical, societal and environmental factors remains an open question [18], further studies are 165

warranted to investigate in Europe. 166

The reported use of products for vaginal hygiene (e.g. intimate soap) appears to have 167

an effect on several transitions, which makes it difficult to link to a CST in particular. 168

Finally, one of the strongest associations we find is between the amount of self-reported 169

alcohol consumption and CST III. There are reports that go in this direction but, generally, 170

there is little data on the link between diet and CST. 171

Strikingly, antibiotic consumption had little effect on CST transitions. This was true 172

for local treatment (genital application of metronidazole) or system treatment (antibiotic 173

treatment via oral intake). The strongest signal was between systemic use and CST III, 174

which is consistent with existing literature. An interpretation of this result is that CST 175

dynamics can be fast, as shown by daily monitoring. Therefore, since our sampling is 176

typically independent from treatment, CSTs are likely to have returned to a more basal 177

state when sampled. 178

These results have limitations. One of these is that, for our model to achieve conver- 179

gence, we had to assume symmetry in the transition risks. This means that for alcohol 180

consumption, for example, we do not know whether it increases the risk to shift away 181

from an optimal CST or decreases the likelihood of leaving a sub-optimal CST. Another 182

limitation inherent to all these studies is that even if we included many covariates, these 183
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patterns could be explained by ‘hidden variables’ or participants’ general lifestyles. 184

Our model outputs, especially the inspection of the random effects, indicate that a 185

large part of the variability remains to be explained. One possibility could be that we miss 186

important covariates. Another could be that the CSTs classification level is too coarse. Fu- 187

ture studies could analyse sub-CSTs, but this would greatly increase the number of possible 188

transitions, thereby raising an acute statistical challenge (here we already had to collapse 189

CSTs I, II, and V to introduce covariates into the model). In the same vein, analysing 190

metagenomics data could provide additional valuable insights on vaginal microbiota long- 191

term dynamics [21]. For example, for women who appear to have stable CSTs, we could 192

identify the proportion of lineage replacements. This would also allow us to investigate the 193

effect of antibiotic treatments on the prevalence of resistance genes in the metagenome. 194

Finally, a promising avenue for future studies would be to jointly analyse CST dynamics 195

and sexually transmitted infections, especially human papillomaviruses (HPV). Earlier 196

studies have found a weak association between CST IV and the risk of HPV detection [22] 197

but the CST effect was tested after estimating transition rates and, more importantly, 198

this study pooled all high-risk HPV and all low-risk HPVs, making it difficult to identify 199

coinfections or reinfections. The PAPCLEAR cohort having genotype-specific follow-ups 200

[23], it could provide new insights into the link between CST and HPV infection, while 201

even identifying causal relationships. 202
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Material and methods 203

Longitudinal clinical data 204

Samples originate from the PAPCLEAR monocentric longitudinal cohort study, which 205

followed N = 149 women longitudinally between 2016 and 2020. Its inclusion criteria were 206

to be between 18 and 25 years old, to live in the area of Montpellier, France, to be in good 207

health (no chronic disease), not to have a history of HPV infection (e.g., genital warts or 208

high-grade cervical lesion), and to report at least one new sexual partner over the last 12 209

months. Additional details about the protocol can be found elsewhere [24]. 210

Participants were enrolled by putting up posters and handing out leaflets at the main 211

sexually transmitted infection detection centre (CeGIDD) within the University Hospital 212

of Montpellier (CHU) and in the Universities of the city. To increase enrolment, posters 213

were also hung at bus stops near the CHU. 214

The inclusion visit was performed by a gynaecologist or a midwife at the CeGIDD 215

outside operating hours. After an interview, several samples were collected, including 216

vaginal swabs with eSwabs (Coppan) in Amies preservation medium. The samples were 217

aliquoted right after the visit and stored at -20°C, before being transferred at -70°C within 218

a month. Participants also filled in a detailed questionnaire, which formed the basis of 219

epidemiological covariates analysed in this study. 220

Subsequent clinical visits were scheduled every 2 or 4 months, depending on the HPV 221

status. Between two visits, women were asked to perform 8 self-samples at home with 222
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eSwabs in Amies medium and to keep them in their freezer. Samples were brought back 223

in an isotherm bag at the next visit. These were stored with the swab at -70°C until 224

processing. 225

Microbiota metabarcoding and quantification 226

The microbiota metabarcoding was performed on 200µL of vaginal swabs specimen stored 227

at -70◦ in Amies medium. The DNA extraction was performed using the MagAttract 228

PowerMicrobiome DNA/RNA Kit (Qiagen). Next-generation sequencing of the V3-V4 229

region of the 16S gene [25] was performed on an Illumina HiSeq 4000 platform (150 bp 230

paired-end mode) at the Genomic Resource Center at the University of Maryland School 231

of Medicine. 232

The taxonomic assignment was performed using the internal software package Speci- 233

ateIT (https://github.com/Ravel-Laboratory/speciateIT) and the community state 234

type was determined using the VALENCIA software package [26]. 235

Covariates 236

In the PAPCLEAR study, questionnaires were given to each participant to record patient- 237

level meta-data. In Supplementary Methods, we outline these variables with a variable 238

label (in italics), brief description and relevance for the vaginal environment. 239

Out of the 22 covariates initially considered, we excluded six (Chlamydia, Female 240

affinity, Male affinity, Pregnancy, Spermicide and Vag. douching) as data were severely 241

18
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skewed towards the most common value (> 90% of data). All these covariates are time- 242

homogeneous meaning that the variation is among women, and static through time. To 243

facilitate the comparison of covariate effects, we centred and scaled continuous variables [27] 244

and deviation-coded binary variables. These transformations ensure that all covariates are 245

modelled in a comparable scale and the intercept is located at a “representative refer- 246

ence value” of the modelled population. Four continuous covariates (i.e., Alcohol, BMI, 247

Partners, and Red meat) were log-transformed before scaling due to their right-skewed 248

distribution. 249

During their follow-ups, any use of medication was listed by the study staff. Within 250

these, we identified antibiotic treatments and separated the ones corresponding to ‘Gyne- 251

cological anti-infectives and antiseptics’ (‘G01’ ATC codes), which all consisted in metron- 252

idazole treatments, to those corresponding to ‘Antibacterials for systemic use’ (‘J01’ ATC 253

codes), which were more diverse in terms of molecules. Since we had the exact dates of 254

treatment, these could be included as time-varying covariates into the model. 255

The model 256

Markov modelling 257

Markov models are statistical models used to represent systems that transition between 258

discrete states over time. These models are said to be ‘memoryless’, meaning that the 259

probability of transition to another state depends on the current state, but not its historical 260
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path. In clinical research, these models are often used to predict the transitions among 261

health states (e.g., health, illness and remission), and the propensity to transition between 262

these states is estimated from longitudinal follow-up data. Because the exact timing of 263

these transitions is rarely known, clinical follow-up data are typically modelled using the 264

continuous-time Markov model [28], in which the probability of transition over a given 265

interval depends on the instantaneous transition intensity and the amount of time spent 266

in the current state. 267

Transition intensities 268

Transition intensities refer to the instantaneous rate of moving from state i to state j, a 269

process that may be affected by a vector of covariates, X. Taking the form of a proportional 270

hazards model, these rates can be expressed as: 271

qp,i,j = Exp(µp,i,j + βi,j X), (1)

where µp,i,j is the log-intercept, i.e. the baseline when all covariates are 0, and βi,j is 272

the log-coefficient expressing the impact of a covariate(s). This intercept is further defined 273

by the equation 274
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µp,i,j = (µ̂i,j + sp,i,j) · µsd + µ̄, (2)

where µ̄ and µsd are the prior mean and standard deviation of the log-intercept such 275

that µ̂i,j · µsd + µ̄ constitutes the non-centred parameterisation of the population-level 276

intercept, µi,j and is assumed to be normally distributed, i.e., µ̂i,j ∼ N (0, 1). 277

Additionally, we allow for unobserved heterogeneity in µ, i.e., sp,i,j , where 278

s = diag(sds) · Ls · zs. (3)

We sample from the corresponding weakly informative priors, namely sds ∼ t4(0, 1), 279

Ls ∼ LKJCorrCholesky(2), and zs ∼ N (0, 1), as recommended by the Stan development 280

community [29,30]. 281

For regression coefficients, the student-t distributions with degrees of freedom 4 to 7 are 282

recommended as generic, weakly informative, priors [30]. We sampled β from β ∼ t4(0, 1), 283

which places a comparatively wide tail within the recommendation. As all of our covariates 284

have been proposed to impact vaginal microbiota communities a priori (see above), we did 285

not strongly regularise the priors, for example, through the use of the horseshoe priors [31]. 286

We note that all covariates were modelled simultaneously such that the interpretation of 287
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each coefficient is conditional upon other covariates included and accounts for the influence 288

of other factors. We assumed that the covariates symmetrically affect the transitions (i.e., 289

βj,i = −βi,j), implying that the influence of any particular factor on moving from one 290

community state to another remains consistent, regardless of the direction the transition. 291

Collectively, the transition intensities form the Q matrix, in which the sum of intensities 292

across a row, i.e., all transitions from a particular state, is defined to be zero, such that we 293

have the following equation for the diagonal entries: 294

qi,i = −
∑
j ̸=i

qi,j . (4)

Transition probabilities and likelihood 295

Taking the matrix exponential of the Q matrix for each participant, we compute the matrix 296

P such that: 297

P = Exp
(
(tk+1 − tk) Q

)
, (5)

where k represents the sample identity for a given individual. The P matrix contains 298

the transition probabilities between two observations (at k and k+1) and tk+1−tk indicates 299

the elapsed time between two observations. 300
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Finally, the probability of observing a given state at the next sampling event (i.e. at 301

k + 1) is modelled by the categorical distribution: 302

yk+1 ∼ Categorical
(
P [yk, ]

)
(6)

where P [yk, ] is the yk
th row of the P matrix containing the probabilities of transition 303

from the state observed at k. 304

Model fitting 305

We used a Bayesian approach to fit the above continuous-time Markov model to longitu- 306

dinal data of vaginal microbiota CSTs. Our model was written in Stan 2.26.1 and fitted 307

through the RStan interface 2.32.3 [32]. 308

One participant lacked information on the years since their initial menstruation. We 309

imputed missing values using the mice package [33] and generated 20 imputed datasets 310

to be fitted separately. For each imputed dataset, we fitted the model in parallel using 311

four independent chains, each with 2, 000 sampled iterations and 1, 000 warmup iterations. 312

The MCMC samples from separate runs (i.e., based on differently imputed data) were 313

subsequently combined for inference. 314

We confirmed over 4, 000 combined effective samples and ensured convergence of inde- 315

pendent chains (R̂ < 1.1) for all parameters [34]. We carried out a posterior predictive 316
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check by comparing the observed and predicted CST frequency. We also quantified the 317

posterior z-score and posterior contraction to examine the accuracy and precision of pos- 318

terior distributions and the relative strength of data to prior information [35] (Supporting 319

Information S1). 320

Counterfactual predictions 321

We took advantage of the parameterised model to simulate the population-level outcomes 322

of each covariate, assuming that all covariates, but a focal one, are at the representative 323

reference value (as described above) and then varying the focal parameter within the range 324

of values observed in the studied cohort. The model predictions were generated by ran- 325

domly drawing 100 samplings from the posterior distributions and simulating the Markov 326

model for each sampled parameter set. We focused on the CST frequency as the outcome 327

of interest. 328
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S1: Description of the study covariates 527

1st menstr. Number of years since the first menstruation: The morphology of the human vagina 528

changes throughout the life of a woman and the onset of puberty marks a key event 529

that triggers cascading changes [36]. 530

Alcohol Average number of glasses of alcoholic drinks consumed per week: Chronic presence 531

of alcohol in the genital environment has been linked to a shift in the immune and 532

microbiological conditions [37]. 533
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Antibiotics Consumption of antibiotics during the study: The bacterial composition responds 534

rapidly and transiently to antibiotics treatments that target bacteria either broadly 535

or with a narrow taxonomic scale [38]. 536

BMI Body mass index (BMI): Obesity has been implicated in elevating vaginal microbiota 537

diversity and promoting Prevotella associated with bacterial vaginosis [39]. 538

Caucasian Identity as Caucasian ethnicity: Ethnicity has been linked to variation in vaginal 539

microbiota compositions in several studies [40]. However, causal mechanisms remain 540

an open question. 541

Cigarettes Cigarette smoking: Smoking has been implicated in the development of BV due to its 542

anti-estrogenic effects and the presence of harmful substances such as benzo[a]pyrene 543

diol epoxide (BPDE). [41]. 544

Horm. contra. Use of hormonal contraception during the study: The vaginal hormonal landscape is 545

affected by the use of hormonal contractions [42]. 546

Lubricant Use of lubricant during the study: Personal lubricants contain various chemicals that 547

differentially impact the growth of vaginal microbes in-vitro [43]. 548

Menstr. cup Use of menstrual cup during the study: The vaginal microenvironmental may be 549

altered by the use of menstrual cups both physically and chemically. An elevated 550

risk of fungal infections has been reported [44]. 551
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Partners Cumulative number of sexual partners: The genital microbiome can be transferred 552

between sexual partners [45]. Such an external input could destabilise the resident 553

community. 554

Red meat Average number of meals that include red meat consumption per week: Diet alters 555

the vaginal environment for microbes. An unhealthy diet, linked to a high proportion 556

of red meat consumption, has been linked to an elevated risk of BV [46]. 557

Regular condom Regular use of condoms during sexual intercourse: Condom use can modify the vagi- 558

nal microenvironment by altering the exchange of microbes between partners [16]. 559

Regular sport Engaging in regular sporting activities, over 50% of the time: Physical activities 560

influence immune responses, with leisure-time physical activity associated with a 561

reduced risk of suspected bacterial infections compared to sedentary behaviour [47]. 562

Stress Average stress level reported from 0 (min) to 3 (max): Stress hormones may disrupt 563

vaginal flora, for instance, by inhibiting glycogen production, which is the primary 564

fuel for lactobacilli [48]. 565

Tampon Use of tampons during the study: The use of internal contraceptives like tampons 566

directly alters the vaginal environment, although negative effects from tampon use 567

are seldom reported [49]. 568

Vag. product Use of vaginal cream/tablet/capsule/gel/wipe during the study: Women frequently 569

use over-the-counter vulvovaginal treatments that contain a variety of chemical com- 570
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ponents. However, the clinical effectiveness of these products in preventing bacterial 571

vaginosis (BV) is seldom systematically evaluated [50]. 572

Chlamydia Tested positive for chlamydia 573

Female affinity Affinity to female: Genital microbiome transfers during sexual activity are anticipated 574

to vary based on the genders of the partners [51] 575

Male affinity Affinity to male: Genital microbiome transfers during sexual activity are anticipated 576

to vary based on the genders of the partners [51] 577

Pregnancy History of pregnancy: Pregnancy significantly changes the cervicovaginal environ- 578

ment, with increased estrogen from the ovaries and placenta leading to higher vaginal 579

glycogen. This supports the growth of Lactobacillus species [52]. 580

Spermicide Use of spermicide during study: Spermicides use chemicals to prevent sperm from 581

reaching an egg, but their use can change vaginal microflora, potentially increasing 582

the risk of genitourinary infections [53]. 583

Vag. douching Use of vaginal douching during study: Vaginal douching, the practice of washing in- 584

side the vagina with a liquid solution, has been shown to increase the risk of disturbing 585

the natural balance of vaginal flora [54]. 586

38



Supplementary Results 587

S2: Pairwise correlations between covariates 588

There were no strong correlations among covariates, with the strongest correlation found 589

between BMI and stress (r = 0.41). 590
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Figure S1: Correlation between covariates. Pairwise Pearson’s correlation coeffi-
cients between covariates
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S3: Assessment of posterior accuracy, precision and prior contraction 591

We leveraged the properties of posterior distributions to identify potential model fitting

problems that might manifest from our model assumptions. To examine the accuracy

and precision of posterior distributions, we first generated simulated observations based

on the estimated posterior mean parameters. We then refitted our model to the simulated

observations (i.e., secondary fitting) to compute the posterior z-score for each parameter,

which measures how closely the posterior recovers the parameters of the data generating

process [35]:

z =
Esim−Epost

σsim
,

where Epost denotes the posterior mean of the fit to the actual data that we consider the 592

‘true’ parameter. Esim and σsim denote the mean and standard deviation of the posterior 593

distribution of the secondary fitting. The smaller the z-score, the closer the bulk of the 594

posterior is to the true parameter [35]. In contrast, large z-values may be indicative of 595

overfitting and, or poor prior specifications [35]. 596

To examine the influence of the likelihood function in relation to prior information, we

computed the posterior contraction, k:

k = 1−
σ2
post

σ2
prior
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where σ2
post and σ2

prior correspond to the variance of posterior and prior distributions, 597

respectively. The k values close to zero indicate that data contain little information (i.e., 598

rendering priors strongly informative). Conversely, values close to 1 indicate that data are 599

much more informative than the prior [35]. 600

We found that the most of our model parameters and hyperparameters — were esti- 601

mated with accuracy and precision and identifiability, with the absolute posterior z-scores 602

below three (Fig. S1). A small number of individual variation in transition rates, sds 603

showed a tendency towards overfitting (the absolute posterior z-scores above three). Thus, 604

caution might be warranted when interpreting the extent of between-women variation in 605

CST transition rates, a small number of z-scores exceeding the absolute number of three 606

is unlikely to be a cause of concern [35]. We found that the posterior distributions for 607

covariate coefficients, β, contracted by over 75% compared to the prior distribution, for all 608

but one covariate effect, meaning that the covariate coefficients were well-identified from 609

data (Fig. S1). Although we used generic priors recommended by Stan [55], the Ls param- 610

eters that define correlations among between-woman variation showed limited posterior 611

contraction (i.e., ≤∼ 0.25), indicating that these parameters are poorly informed by data. 612

As such, we refrain from making biological inferences about these correlations. 613
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Figure S2: Accuracy, precision and identifiability of estimated parameters. Pos-
terior z-score (y-axis) measures how closely the posterior recovers the parameters of the
true data-generating process and posterior contraction (x-axis) evaluates the influence of
the likelihood function over the prior, respectively. Smaller absolute posterior z-scores in-
dicate that the posterior accurately recovers the parameters of the data-generating process:
the absolute value beyond three to four may indicate substantial bias [35]. The posterior
contraction values close to one indicate that data are much more informative than the
prior. The estimated parameters are represented by a filled dot.

43



S4: Predicted difference in community state type (CST) prevalence at 614

various counterfactual scenarios. 615

Our counterfactual simulations predicted that alcohol consumption and the number of 616

partners are factors that impact the population-level outcome in terms of the prevalence 617

of different community state types. 618

The prevalence of the optimal community (CST I (II, V)) in a counterfactual population 619

comprising the heaviest drinkers was predicted to be 37% lower than that of non-drinkers 620

(with >99% certitude) (Fig. S??). The prevalence difference of the sub-optimal and non- 621

optimal communities in the same comparisons was an increase of 22% (98% certitude) and 622

16% (84% certitude), respectively. Similar comparisons between the populations of heaviest 623

drinkers and average drinkers yielded a reduction of 20% in the optimal communities (>99% 624

certitude) and the population of average drinkers versus non-drinkers predicted a 17% lower 625

prevalence of the optimal communities. 626
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Figure S2: Difference in community state type (CST) prevalence at predicted
various counterfactual scenarios. The differences were calculated from posterior sam-
ples simulated at 0 and 1 for binary variables and at the population maximum and minimum
values recorded by the PAPCLEAR for continuous variables (left panel). Additional dif-
ferences were computed between the population maximum and mean (middle panel) and
the population mean and minimum for continuous variables (right panel).
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