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Parallel Trends in an Unparalleled Pandemic
Difference-in-differences for infectious disease
policy evaluation
Shuo Fenga and Alyssa Bilinski, PhDb,1

April 1, 2024

Researchers frequently employ difference-in-differences (DiD) to study the impact of public
health interventions on infectious disease outcomes. DiD assumes that treatment and
non-experimental comparison groups would have moved in parallel in expectation, absent
the intervention (“parallel trends assumption”). However, the plausibility of parallel trends
assumption in the context of infectious disease transmission is not well-understood. Our
work bridges this gap by formalizing epidemiological assumptions required for common DiD
specifications, positing an underlying Susceptible-Infectious-Recovered (SIR) data-generating
process. We demonstrate that popular specifications can encode strict epidemiological
assumptions. For example, DiD modeling incident case numbers or rates as outcomes will
produce biased treatment effect estimates unless untreated potential outcomes for treatment
and comparison groups come from a data-generating process with the same initial infection
and equal transmission rates at each time step. Applying a log transformation or modeling
log growth allows for different initial infection rates under an “infinite susceptible population”
assumption, but invokes conditions on transmission parameters. We then propose alternative
DiD specifications based on epidemiological parameters – the effective reproduction number
and the effective contact rate – that are both more robust to differences between treatment and
comparison groups and can be extended to complex transmission dynamics. With minimal
power difference incidence and log incidence models, we recommend a default of the more
robust log specification. Our alternative specifications have lower power than incidence or log
incidence models, but have higher power than log growth models. We illustrate implications
of our work by re-analyzing published studies of COVID-19 mask policies.

Difference-in-differences | Transmission dynamics | Infectious disease models | Observational
causal inference

Throughout the COVID-19 pandemic, researchers extensively studied the impact
of public health interventions on disease incidence and mortality, most often

with observational study designs (1). Difference-in-differences (DiD), already widely-
used in health and social sciences, was one popular approach for this work. DiD
assumes that treatment and non-experimental comparison groups would have moved
in parallel in expectation absent the intervention (the “parallel trends assumption”).
It uses this functional form assumption to impute counterfactual potential outcomes
and estimate treatment effects. In the context of COVID-19, DiD was employed
to evaluate policies including social distancing (2), school reopening (3), stay-at-
home orders (4), and school mask mandates (5) in the United States, as well mask
mandates in Germany (6) and contact tracing in England (7).

Outside of infectious disease, DiD has traditionally been used with outcomes
that are expected to evolve linearly over time. By contrast, epidemiological
theory predicts that infectious pathogens will spread non-
linearly as a function of interactions between susceptible and
infectious individuals. Mechanistic transmission dynamic
models that capture these interactions are often used in
epidemiology to prospectively project the impact of potential
disease mitigation measures. However, these models typically
rely on transporting effects from mechanistic or small-scale
studies, and there are growing concerns that this may produce
overly optimistic estimates of the impact of policies and
programs (8). For example, randomized controlled trial
estimates of the population-level reduction in transmission
from mask mandates were smaller than those used to inform
some transmission dynamic estimates (9). These limitations
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have increased interest in post-hoc policy evaluation using
methods like DiD to compare outcomes in treated areas with
those from similar untreated units.

However, there remains insufficient guidance on how to
best account for the quasi-exponential infectious disease
dynamics in DiD. Prior DiD work has noted that the parallel
trends assumption may hold for some model specifications but
not others (10, 11). In particular, Roth and Sant’Anna (10)
demonstrated that the parallel trends assumption is sensitive
to functional form unless strict conditions are met: if the
population can be divided into two groups, one with random
treatment assignment and another with stable distribution
of the untreated potential outcomes over both pre- and post-
intervention periods. Others have noted trade-offs between
robustness and power and suggested applying domain-specific
theory to select functional form (11).

Infectious disease transmission dynamic theory is well-
developed, offering an opportunity to guide DiD specification.
Nevertheless, one systematic review found that less than one-
fifth of COVID-19 health policy evaluations, including many
DiD applications, justified functional form or their choice
of model specifications (12). To better understand the use
of DiD in recent COVID-19 literature, we conducted a com-
prehensive review of all COVID-19 DiD analyses published
in Journal of the American Medical Association (JAMA)
network journals, New England Journal of Medicine (NEJM),
Proceedings of the National Academy of Sciences (PNAS),
Nature Research journals, Lancet journals, Health Affairs, and
Health Economics from 2020-2022 (Appendix A). We observed
considerable variation in their model specifications. Most
publications (17 of the 29 papers reviewed, 59%) used incident
counts or rates of cases or deaths as outcomes. Another 10
(34%) considered log-transformed incidence as the outcome
measure. The remaining 2 studies (7%) specified the growth
rate in log incidence as an outcome measure.

Most papers we analyzed (over 85%) did not offer spe-
cific epidemiological justification for their outcome choice.
However, some researchers, particularly in economics, have
cautioned against modeling incidence or mortality directly
in DiD with infectious disease outcomes (3, 4). For example,
Callaway and Li (4) noted that with an SIR data-generating
process, the parallel trends assumption would not hold if
untreated treatment and comparison trajectories differed and
proposed an unconfoundedness approach to condition on
pre-treatment state, in the spirit of matching on the full
pre-treatment pandemic trajectory. Two papers using log
growth rate as their outcome measures also motivated their
specification with an SIR model (3, 13).

We extend this prior work along three key dimensions.
First, we comprehensively catalog epidemiological assump-
tions required for DiD to recover unbiased treatment effects
with different model specifications, assuming an underlying
SIR process. This both summarizes the literature from an
epidemiological perspective and fills in gaps by, for example,
linking the log model specification to specific epidemiological
parameters and expanding prior discussion of log growth
models to address susceptible depletion. Second, we propose
new model specifications based on epidemiological parameters.
We show that these can both recover unbiased treatment
effects under less strict assumptions and be applied to more
complex transmission dynamic processes. Finally, we explore

the power of different model specifications and highlight
trade-offs involved in employing more robust specifications.

The rest of the paper proceeds as follows. Section 2
provides an overview of SIR and DiD models. In Section
3, we characterize epidemiological assumptions required for
DiD to produce unbiased treatment effects assuming an
underlying SIR data-generating process. We then propose
alternative DiD model specifications, based on parallel trends
in the effective reproduction number or effective contact rate.
Section 4 explores the statistical power of different model
specifications. Last, Section 5 demonstrates the implications
of our findings by re-analyzing previously published work on
evaluating the effect of mask policies on COVID-19 cases.

Models

Susceptible-Infectious-Recovered (SIR). Transmission dy-
namic models assume that infectious diseases spread based
on the frequency and intensity of interactions between
susceptible and infectious individuals. Susceptible-Infectious-
Recovered (SIR) models are a popular class of models that
assume exponential growth at the start of an outbreak, with
incidence declining as the susceptible population is depleted.

For this work, we posit a stochastic SIR data-generating
process that incorporates randomness in transmission and,
extending some prior work (e.g., Callaway and Li (4)), allows
transmission intensity to vary over time, reflecting shifts in
precautionary behaviors, vaccination, and variants. Given
initial populations of susceptible, infectious, and recovered
individuals in group d, {Sd,0, Id,0, Rd,0}, we assume the
number of individuals in each state evolves according to the
following set of equations:

Incidence: I∗
d,t+1 ∼ P ois

(
µt = βd,tId,t

Sd,t

N

)
[1]

Susceptible: Sd,t+1 = Sd,t − I∗
d,t

Infectious: Id,t+1 = (1 − γ)Id,t + I∗
d,t

Recovered: Rd,t+1 = Rd,t + γId,t

In this setup, we denote the number of incident infections for
unit d at time t as I∗

d,t+1 (in contrast to prevalent infections,
Id,t+1). Incident infections at time t+1 depend on βd,t, which
we denote the effective contact rate; the size of the infected
population, Id,t; and the fraction of susceptible individuals,
Sd,t/N , all in the previous time step, t. Per standard practice,
we assume incidence follows a Poisson distribution, although
most results presented can accommodate other distributions
with a mean of µt (4)∗. The number of removed (recovered
or dead) individuals at time t is γId,t, where 1

γ
is the average

length of the infectious period, equal to the generation interval
in an SIR framework, i.e., the time from the infection of a
primary case to a secondary infection generated.

In practice, researchers are often interested in contexts in
which the susceptible population remains large relative to
active and recovered infections over the period of interest,
meaning that E

[
I∗

d,t

]
≈ βd,tId,t. We formalize this mathe-

matically as an “infinite susceptible population” scenario, the
limit of the data-generating process as Sd,0 → ∞.

SIR models assume a closed and stable population of
N individuals for every unit d with homogeneous mixing

∗Astute readers may note that it is possible for I∗
d,t

to exceed Sd,t . This rarely occurs as typically
µt << Sd,t , but if a concern, the Poisson distribution can be substituted with a binomial.
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(i.e., βd,tId,t/N to be constant across individuals). Although
these assumptions are unlikely to hold exactly, they may
be reasonable approximations in many applications, when
researchers model outcomes at an aggregated level (e.g.,
counties or states). However, they may be less plausible
with more granular units of analysis or when the population
size is changing rapidly. We analyze this simple SIR process
in closed-form; in Extensions, we discuss generalizations to
more complex transmission dynamics.

Difference-in-Differences (DiD). We begin with a canonical
DiD setup with two units d ∈ {0, 1} and two time periods
t ∈ {t1, t2}. Assume unit 1 is treated at time t2 and unit
0 remains untreated in both time periods (14). We denote
the observed outcome of interest for unit d at time t as
Yd,t and the potential outcome for unit d at time t given
treatment k ∈ {0, 1} as Yd,t(k). The average treatment effect
on the treated (ATT) at time t2 is the expected difference in
potential outcomes for unit 1 at time t2 under intervention
and no-intervention scenarios:

AT T = E
(

Y1,t2 (1) − Y1,t2 (0)
)

Because Y1,t2 (0) is unobservable, DiD relies on the parallel
trends assumption, that the untreated potential outcomes in
both units evolve in parallel from t1 to t2, i.e.,

E
(

Y1,t2 (0) − Y1,t1 (0)
)

= E
(

Y0,t2 (0) − Y0,t1 (0)
)

[2]

Under this assumption, we can estimate an unbiased treat-
ment effect by solving for Y1,t2 (0) in Eq. 2 and applying
sample analogs:

ÂT T =
(
Y1,t2 − Y1,t1

)
−
(
Y0,t2 − Y0,t1

)
We can extend the parallel trends assumption to monotonic,
continuously differentiable transformations (g(·)) (15):

g

(
E [Y1,t2 (0)]

)
− g

(
E (Y1,t1 (0))

)
=

g

(
E [Y0,t2 (0)]

)
− g

(
E [Y0,t1 (0)]

)
[3]

In the following sections, we establish conditions under
which the transformed non-linear version of parallel trends
assumption (Eq. 3) holds under different specifications of
the DiD model, i.e., different Yd,t and g(·). In Extensions,
we generalize findings to DiD applications with more than
two units or time periods, noting that the conditions remain
largely unchanged.

Model specifications

Assuming an underlying SIR data-generating process, dif-
ferent model specifications encode different epidemiological
conditions required for the parallel trends assumption to
hold, allowing unbiased estimation of the ATT with DiD. In
this section, we derive and provide intuition for assumptions
invoked across various specifications.

We summarize model specifications considered in Table 1,
increasing in robustness. These include the three specifica-
tions identified in our literature review, as well as two new

proposed specifications modeling the effective reproduction
number and effective contact rate. Each specification implies
a different interpretation of the ATT as noted in the fourth
column of Table 1. As a result, we detail methods for imputing
the average marginal effect on the incidence scale in Average
marginal effects.

For log specifications in Table 1, we assume that the
parallel trends assumption is defined in terms of log (E [Yd,t]).
However, 8 (or 28%) papers modeled log specifications
by transforming the outcome variable, assuming parallel
trends in E [log (Yd,t)], rather than log (E [Yd,t]). Although
E [log (Yd,t)] ≠ log (E [Yd,t]) (Jensen’s inequality), the two are
nearly equivalent when Yd,t is sufficiently large (Supplement
Proposition 1 and Corollary 1), and in practice, results are
unlikely to be affected by this approximation.

Last, note that each model specification in Table 1
can be formulated based either on the count or rate per
population of infections. In the literature reviewed (Appendix
A), about half (48%) of researchers modeled rates (i.e.,
infections or cases per unit population) rather than numbers
of infections or cases. This assumes frequency-dependent
transmission, i.e., the average number of secondary infections
per infectious individual remains relatively constant across
different population sizes (16). For parsimony in this
section, we assume that units have equal population sizes,
obviating the need to scale in derivations, and results that
follow could apply either to frequency-dependent or density-
dependent transmission. However, if population sizes differ
and frequency-dependent transmission is assumed, derivations
can be adapted accordingly by scaling model specifications
by population size (e.g., incidence per 100,000 population
rather than incident infection numbers).

Established model specifications.

Incidence. As previously noted, incidence was the most popular
model specification: Yd,t = I∗

d,t (with the identity link func-
tion). To understand epidemiological assumptions embedded
in DiD with incidence outcomes, we first obtain an expression
for expected incidence.

Proposition 1 (Expected incidence). Assuming an SIR
data-generating process (Eq. 1) with initial conditions
{Sd,0, Id,0, Rd,0}, expected incidence at time t + 1 can be
written as:

E
[
I∗

d,t+1
]

= βd,t

N

(
Sd,0 + (1 − γ)

βd,t−1

)
E
[
I∗

d,t

]
− ϵt,

where ϵt = (1 − γ)E
[
Id,t−1I∗

d,t

]
−
∑t

j=1 E
[
I∗

d,tI
∗
d,j

]
.

We derive Proposition 1 in Appendix B. Even with t1 and
t2 as adjacent time-steps, we cannot write E

[
I∗

d,t+1
]

as a
linear function of E

[
I∗

d,t

]
. Indeed, with this data-generating

process, there are not straightforward conditions under
which the parallel trends assumption holds for incidence,
log incidence, or log growth models other than equality in all
data-generating parameters.

We therefore explore assumptions required under “infinite
susceptible population” conditions (i.e., Sd,0 → ∞), implying
that the susceptible population is very large relative to active
and recovered infections. In this case, expected incidence can
be written as an iterative product of prior effective contact
rates and initial infection.
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Proposition 2 (Expected incidence (infinite susceptible
population)). Assuming an SIR data-generating process
(Eq. 1), with initial conditions {S0, I0, R0}, for t ≥ 1,

E

[
lim

Sd,0→∞
I∗

d,t+1

]
= βd,t

t−1∏
k=0

(1 − γ + βd,k) Id,0

= lim
Sd,0→∞

E
[
I∗

d,t+1
]

We then solve for conditions under which the “infi-
nite susceptible population” parallel trends assumption
holds as S1,0, S0,0 → ∞. Because E

[
limSd,0→∞ I∗

d,t

]
=

limSd,0→∞ E
[
I∗

d,t+1
]
, and g(.) is continuous, we write

limSd,0→∞ g (E [Yd,t]) to compress notation; because units
are assumed independent, taking the limit as S1,0, S0,0 → ∞
is equivalent to taking the corresponding limit on each unit.

Proposition 3 (Parallel trends: Incidence (infinite sus-
ceptible population)). Assuming an SIR data-generating
process (Eq. 1) and an incidence model specification(
Yd,t = I∗

d,t, g(y) = y
)
, the “infinite susceptible population”

parallel trends assumption (Eq. 3) holds between t1 and t2
under the following conditions:

lim
S1,0→∞

(
E [Y1,t2 (0)] − E [Y1,t1 (0)]

)
=

lim
S0,0→∞

(
E [Y0,t2 (0)] − E [Y0,t1 (0)]

)
⇐⇒

E
[
I∗

1,t1

] (
β∗

1,t1,t2 − 1
)

= E
[
I∗

0,t1

] (
β∗

0,t1,t2 − 1
)

,

where E
[
I∗

d,t1

]
= Id,0βd,t1−1

t1−2∏
k=0

(1 − γ + βd,k) ,

β∗
d,t1,t2 = βd,t2−1

βd,t1−1

t2−2∏
k=t1−1

(1 − γ + βd,k)

Proposition 3 follows from substituting results of Proposi-
tion 2 into Eq. 3 (proof in Appendix B). This result highlights
that the parallel trends assumption imposes strong conditions
on underlying transmission dynamics, even assuming an
“infinite susceptible population. Proposition 3 holds when
groups start with the same expected incidence

(
E
[
I∗

d,t1

])
at time t1 and continue to grow with a set of time-varying
effective contact rates (βt) and generation interval (γ) that
produce equal β∗

d,t1,t2 . (Parallel trends over time would
require equality across groups in this set of effective contact
rates). We illustrate these assumptions the first row of Figure
1, where trends are only parallel (noted by a checkmark)
when all input parameters are equal, and as a result
expected incidence trajectories match, between treatment
and comparison groups.

Proposition 3 also implies that traditional DiD diagnostics
like event study plots may be misleading for assessing
the plausibility of parallel trends assumption. In contrast
to traditional DiD which allows for level differences, this
specification requires evidence of equal epidemic trajectories.
Furthermore, visual inspections may be misleading at the
start of a new wave of disease, as groups may initially appear

similar, but increasingly diverge as a wave accelerates even
absent a treatment effect (Figure 1, panel 1(b)).

Log incidence. The second most common model specification
was log incidence, Yd,t = I∗

d,t with g(·) = log(·), often
motivated by the idea that disease transmission can be
exponential or nearly exponential (17, 18).

Proposition 4 (Parallel trends: Log incidence (infinite
susceptible population)). Assuming an SIR data-generating
process (Eq. 1) and a log incidence model specification(
Yd,t = I∗

d,t, g(·) = log(·)
)
, the “infinite susceptible popula-

tion” parallel trends assumption (Eq. 3) holds between t1 and
t2 under the following conditions:

lim
S1,0→∞

(
log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)])

)
=

lim
S0,0→∞

(
log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)])

)
⇐⇒

β∗
1,t1,t2 = β∗

0,t1,t2 ,

where β∗
d,t1,t2 = βd,t2−1

βd,t1−1

t2−2∏
k=t1−1

(1 − γ + βd,k)

The derivation for Proposition 4 follows similar logic
as that of Proposition 3 (Appendix B). Per Proposition 4,
with an “infinite susceptible population,” when log incidence
is used as outcome, the parallel trends assumption no
longer imposes restrictions on expected incidence at time
t1. Nevertheless, it still requires an equal product of effective
contact rates in both units between t1 and t2. We illustrate
these conditions in the second row of Figure 1.

Log growth. The third approach identified in our literature
review (“log growth”) modeled the change in log incidence
over adjacent time steps. Because this ratio is undefined in
the context where 0 is in the support of I∗

d,t, we model this

as Yd,t =
E
[

I∗
d,t

]
E
[

I∗
d,t−1

] , with g(·) = log(·).†

Proposition 5 (Parallel trends: Log growth (infinite
susceptible population)). Assuming an SIR data-generating
process (Eq. 1) and a log growth model specification(

Yd,t =
E
[

I∗
d,t

]
E
[

I∗
d,t−1

] , g(·) = log(·)
)

, the “infinite susceptible

population” parallel trends assumption (Eq. 3) holds between
t1 and t2 under the following conditions:

lim
S1,0→∞

(
log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)])

)
=

lim
S0,0→∞

(
log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)])

)
⇐⇒

log
(

β1,t2−1

β1,t1−1

)
− log

(
β1,t2−2

β1,t1−2

)
+ log

(
1 − γ + β1,t2−2

1 − γ + β1,t1−2

)
=

log
(

β0,t2−1

β0,t1−1

)
− log

(
β0,t2−2

β0,t1−2

)
+ log

(
1 − γ + β0,t2−2

1 − γ + β0,t1−2

)
†This framing is consistent with the practice of collapsing multiple time periods into a single step to

address zero-valued outcomes when using log growth models.
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Table 1. Transmission dynamic assumptions required for the parallel trends assumption, assuming an SIR data-generating process.

Assumptions: Treatment vs. comparison parameters
Specification Outcome Link1 Interpretation Susceptible Initial Effective

of ATT population2 incidence contact rates
g(.)

(
Sd,0
) (

Yd,t1

) (
βd,t1−1, ..., βd,t2−1

)
Incidence Yd,t = I∗

d,t identity Difference = or Sd,0 → ∞ = =

Log incidence Yd,t = I∗
d,t log Percentage difference Sd,0 → ∞ =

constant ratio +

Log growth Yd,t =
E
(

I∗
d,t

)
E
(

I∗
d,t−1

) log Percentage change Sd,0 → ∞ βd,t = βd ∀t

or γ = 1
Difference in

Log Rt
3 Yd,t = Rd,t log avg. transmissions Sd,0 → ∞ known constant ratio

per infection
Log β 3

t Yd,t = βd,t log Difference in known constant ratio
effective contact rate

1 Log links can also be implemented as a transformation of Yd,t (e.g. Yd,t = log(I∗
d,t), with minimal bias provided the outcome value is sufficiently

large (Supplement Proposition 1). 2 For the first four specifications, we list assumptions provided that Sd,0 →, ∀d. Without this assumption, we
require stronger conditions on the full set of parameters. 3 Requires known generation interval

Fig. 1. Comparison of different model specifications

We vary the choice of outcome variable across rows and the underlying data-generating process across columns. We simulate
data from an SIR model and average outcomes over 1000 draws. Lines indicate the average outcome value for two units.
Assume unit 0 is graphed in blue, and unit 1 is graphed in red. There are no treatment effects in any scenario; therefore
plots display untreated potential outcomes. If trends are parallel (checkmark), then DiD would estimate unbiased treatment
effects with the corresponding model specification. Baseline parameters are N = 108, I0 = 50, 1

γ
= 10, βt = 0.105 ∀t. (a) “All

parameters match” matches all parameters between units for all t. (b) “Different initial infections” changes the initial number
of infections for the unit graphed in red to I1,0 = 100. (c) “Different transmission” sets β1,t = 0.2. (d) “Different time-varying
transmission” sets β1,t = 0.2 for the treated unit and doubles both β0,t and β1,t for time t ≥ 45. (e) “Non-trivial susceptible
depletion” sets a smaller population size N = 104 for both units and sets β1,t = 0.160.
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The implications of this condition are less straightforward

than those of prior specifications. First, the log growth
specification again imposes no requirements on expected
incidence at t1. Furthermore, although these results invoke
the “infinite susceptible population” assumption, this is less
restrictive in the log growth specification, a result of dividing
incidence at adjacent time-steps.

In the special case where the length of generation interval
is equal to the time step (γ = 1, i.e., no intergenerational
compounding)‡, Proposition 5 becomes:

lim
S1,0→∞

(
log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)])

)
=

lim
S0,0→∞

(
log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)])

)
⇐⇒

log
(

β1,t2−1

β1,t1−1

)
= log

(
β0,t2−1

β0,t1−1

)
Effective contact rates could then be allowed to differ between
groups and vary over time, providing that their ratios remain
constant across groups. In practice, this means that unbiased
treatment effect estimation could be achieved when units
differ in terms of baseline mask mandates or vaccination
coverage, provided this ratio remains unchanged over the
study period. However, this condition imposes restrictions
on both the generation interval (γ) and susceptible depletion
(Figure 1, panels 3(c) through 3(e)).

Proposed model specifications. Of the specifications charac-
terized above, log growth is the most flexible, allowing the
effective contact rate to differ across groups by a constant
ratio under certain conditions. However, these may be too
narrow for many applications. We therefore propose two
alternatives that allow us to relax assumptions further by
drawing on common epidemiological quantities: the log of
the effective reproduction number (Rt) and of the effective
contact rate (βt).

Log effective reproduction rate (Rt). The effective reproduction
number, traditionally denoted Rt,§ measures the average
number of secondary infections caused by each individual
infection over a time interval traditionally denoted t. This
quantity is commonly used to understand the risk of expo-
nential spread in a population (19), accounting for contact
patterns, precautionary behaviors, and immunity (20). It is
often benchmarked against a value of 1: if Rt < 1, incident
infections will decrease over time, and the goal of policies is
often to maintain Rt below 1 (18, 19, 21).

In this section, we consider modeling log(Rt) as the
outcome variable in DiD and demonstrate that this model
specification further relaxes the assumptions about the
underlying transmission dynamics. Although there are a few
possible formulations of the effective reproduction number
based on βt (22), we use the popular cohort-based definition
(21), which can be more easily mapped to intervention timing
than “instantaneous” approaches (e.g., Cori et al. (19)).

‡“No intergenerational compounding” implies that individuals who become infectious at time t

recover by the next time step t + 1.
§Because R is traditionally used both to denote the “Recovered” individuals and the effective

reproduction number, we follow this convention. In text that follows, R refers always to the effective
reproduction number.

Proposition 6 (Cohort definition of Rt). Assume that the
effective reproduction number is measured over a generation
interval of length 1

γ
for the cohort I∗

t becoming infectious at
time t. We define the cohort effective reproduction number:

Rd,t =
∞∑

j=t

(1 − γ)j−t βd,j
Sd,j

N

.

With this link (proof in Appendix B), we can characterize
the conditions required for the parallel trends assumption to
hold when the outcome specification is log Rd,t.

Proposition 7 (Parallel trends: Log Rt (infinite susceptible
population)). Assuming an SIR data-generating process
(Eq. 1), log-transformed effective reproduction number model
specification (Yd,t = log (Rd,t) , g(·) = log(·)), the “infinite
susceptible population” parallel trends assumption (Eq. 3)
holds if and only if

lim
S1,0→∞

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) =

lim
S0,0→∞

log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒

log

(∑∞
j=t2

(1 − γ)j−t2 β1,j∑∞
j=t1

(1 − γ)j−t1 β1,j

)
= log

(∑∞
j=t2

(1 − γ)j−t2 β0,j∑∞
j=t1

(1 − γ)j−t1 β0,j

)
Per Proposition 7, the log Rt specification requires only a

constant ratio between effective contact rates in treatment
and comparison groups during time-steps included in the
Rt estimate. With a short generation interval, aggregation
presents few practical concerns; with longer generational
intervals, researchers may be wary about spillover between
treatment and comparison timings.

Like other specifications discussed, this specification also
is sensitive to differential susceptible depletion. For small
populations or infectious diseases with intense transmission,
the susceptible population may deplete quickly and may do
so differentially across treated and comparison groups if they
start with different susceptible fractions. In this case, DiD
using log Rt as an outcome would produce biased treatment
effect estimates (Figure 1, panel 4(e)). In the context of
COVID-19, population susceptibility often declined rapidly
during major waves, underscoring the value of having an
model specification robust to non-trivial susceptible depletion.

Log effective contact rate (βt). Although the effective reproduc-
tion number is more often modeled in applied epidemiology,
the effective contact rate may be a more robust outcome.
Proposition 8 formalizes the conditions required for the
parallel trends assumption to hold when using a log βt model
specification.

Proposition 8 (Parallel trends: Log βt). Assuming
an SIR data-generating process (Eq. 1) and a log-
transformed effective reproduction number specification
(Yd,t = log (βd,t, g(·) = log(·))) the parallel trends assump-
tion (Eq. 3) holds if and only if

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) =
log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒

log(β1,t2 ) − log(β1,t1 ) = log(β0,t2 ) − log(β0,t1 )
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Proposition 8 follows from substituting Yd,t = βd,t into the

log-transformed parallel trends assumption as defined in Eq.
3. This specification simplifies the assumptions imposed by
Rt, requiring only a constant ratio on βt and is not sensitive
to susceptible depletion.

Estimation.

Rt and βt. Our two proposed outcomes, Rt and βt, are not
straightforward transformations of incident infections, but
can be obtained via maximum likelihood estimation assuming
an SIR model. For example, under the SIR data-generating
process (Eq. 1), we can obtain a maximum likelihood estimate
of βt:

Proposition 9 (Estimation of βd,t). Assuming an SIR data-
generating process (Eq. 1), with Id,t+1 ∼ P ois

(
βd,tSd,t

Sd,t
N

)
,

the maximum likelihood estimator of βd,t is:

β̂d,t =
I∗

d,t+1

Id,t
Sd,t

N

Beyond SIR models, we can also estimate Rt and βt assum-
ing more complex data-generating processes, another benefit
over incidence, log incidence, or log growth specifications
discussed further in Extensions.

ATTs. We can estimate ATTs of interest through regression:

g (E[Yd,t]) = α + ηd + τt

+ δ (TreatedUnitd × PostTreatmentt) , [4]

where Yd,t refers to the chosen model specification, α denotes
the intercept, ηd denotes the unit fixed-effect for each unit d,
and τt denotes the time fixed effect for each time period
t. TreatUnitd and PostTreatmentt are binary variables
indicating whether unit d is ever treated and whether the
time period t is post-intervention, respectively. With this
setup, δ is the ATT of interest. When g(.) is the identity, we
use OLS, and for a log link, we use Poisson regression. (As
mentioned above, we could often nearly equivalently model
E (log[Yd,t]) with OLS, but Poisson regression circumvents
the issues of managing zeros in the outcome variable with a
log transformation (10)). We use the wild score bootstrap
for inference (Appendix G) (23, 24).

Average marginal effects. When using non-incidence model
specifications, estimated regression coefficients may not
provide useful interpretations beyond their signs. To improve
interpretability, we convert coefficients from non-incidence
specifications back to the incidence scale by calculating their
average marginal effects (AME), enabling comparison across
different model specifications.

For log incidence and log growth models, we first estimate
untreated potential outcomes for the treated group using the
observed outcome trajectories in the treated units and the
estimated ATT and convert each to the incidence scale. We
then compute the difference between potential and observed
outcomes in the post-intervention period, and average the
differences over all units to obtain the AME. For log Rt

and log βt models, we estimate the potential outcomes
for each unit by simulating infections from an infectious
disease transmission model. We simulate the treated and
untreated potential trajectories for treated units 1000 times

and calculate the difference in the post-intervention period
to estimate AMEs. Detailed algorithms are provided in
Appendix E.

Extensions.

Generalizations of SIR models. In practice, epidemiologists rarely
assume simple SIR data-generating processes, in favor of mod-
els that capture more granular transmission dynamics. For
example, many models introduce an additional exposed state
(Susceptible-Exposed-Infectious-Recovered [SEIR]), which
tracks exposed but not yet infected individuals (Appendix F)
(25). Models can also be adapted to include heterogeneity
across subgroups or to agent-based frameworks that allow
heterogeneity in individual agents.

Our proposed model specifications involving the effective
reproduction number and the effective contact rates remain
conceptually meaningful quantities and can still be estimated
assuming more complex transmission dynamics. Wallinga and
Teunis’s cohort-based Rt estimator can accommodate a wide
range of underlying data-generating processes, producing an
unbiased estimate when a directed network for infectious
disease transmission is defined and the generation interval
is known or can be estimated (21). When the time-step is
approximately equal to the generation interval, estimates of
Rt can be converted to βt by dividing by the susceptible
population fraction. (For COVID-19 applications detailed
below, we assume a generation time of approximately a
week and model Rt at weekly intervals). More complex
approximation of a time-varying βt, rather than assuming
constant βt over a generation interval, may be needed when
generation intervals are longer.

Time-step aggregation. When a disease is relatively rare, re-
searchers may choose to aggregate data over time above
the level of the infectious disease process timestep (e.g.,
aggregating days into weeks or months). In this case, we
require the aggregated parallel trends assumption:

g

(
E
[
Y1,t(0)

∣∣t ∈ T1
])

− g

(
E
[
Y1,t(0)

∣∣t ∈ T0
])

=

g

(
E
[
Y0,t(0)

∣∣t ∈ T1
])

− g

(
E
[
Y0,t(0)

∣∣t ∈ T0
])

, [5]

where T0 and T1 are the collections of pre- and post-
treatment time periods. Here for Eq. 5 with an identity or a
log link to be true, it is sufficient to assume that the original
parallel trends assumption (Eq. 3) holds for every two time
periods t1 and t2 such that 1 ≤ t1 ≤ T0 < t2 ≤ T , where
T0 is the time of intervention. This result follows from the
linearity of expectation for the identity link; for a log link,
we derive the condition in Supplement Proposition 2.

Multiple units and time periods. In practice, researchers often
have more than 2 periods and more than 2 units in their study
population. We can extend the parallel trends assumption
(Eq. 3) to both multiple units and multiple time periods:

g

(
E
[

Yd,t(0)
∣∣d ∈ N1, t ∈ T1

])
− g

(
E
[

Yd,t(0)
∣∣d ∈ N1, t ∈ T0

])
=

g

(
E
[

Yd,t(0)
∣∣d ∈ N0, t ∈ T1

])
− g

(
E
[

Yd,t(0)
∣∣d ∈ N0, t ∈ T0

])
,

[6]
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where N1 and N0 denote the collections of treated and control
units and T0 and T1 are the collections of pre- and post-
treatment time periods. In this context, we can estimation
procedures following those outlined in Estimation.

Multiple pre- and post-time periods With multiple pre- and
post-time periods, we can meet the conditions for Eq. 6 with
the same parallel expected trajectories condition required
for time-step aggregation (Corollary 2). This translates to
similar conditions required for each model specification in
Propositions 3-5 and 7-8, except that conditions must hold
for all time period pairs, rather than just t1 and t2.

In the special case of staggered intervention roll-out, simply
averaging over the post-intervention treatment effects does
not yield a sensible estimand unless additional homogeneity
assumptions are imposed (14). Recently developed estimators
allow for more flexible treatment effect estimation, such as
those proposed by Callaway and Sant’Anna (26), Sun and
Abraham (27) and Borusyak et al. (28). In general, these
methods proposed ways to construct a group-time treatment
effect for each treatment-adoption cohort, aggregating these
group-time effects to obtain an overall ATT, and the above
assumption would again suffice for unbiased effect estimation.

Multiple treated and comparison units With multiple treated
units, Eq. 6 requires that transformed average differences
between pre- and post-treatment outcomes be equal across
treated and untreated units. This too follows from assuming
parallel trends between pairs of treated and comparison
units. Outside of this scenario (or scenarios with equal
data-generating parameters for all units within treatment
or comparison groups), researchers may need to exercise care
in identifying appropriate groups, particularly for incidence
specifications, as equal averages across data-generating pa-
rameters for treatment and comparison groups is not sufficient
for equal expected incidence (Proposition 2).

Power Analysis

Power to detect treatment effects may vary across model spec-
ifications (29). We therefore performed a simulation study
to explore the performance of the five model specifications in
the previous section.

Simulation setup. With an SIR model (Eq. 1), we simulated
infection trajectories in 50 units over a total time interval
of 17 weeks, with an average generation interval of 10 days(
γ = 1

10

)
. Twenty-five units (50% of all units) were randomly

designated as treated units. We introduced 100 seed infections
to the population at time 0 and set a constant baseline
effective contact rate βt ∈ {0.100, 0.115}. We then varied the
baseline effective contact rate in treated units to be either
equal to that of untreated units or 10% greater. For treated
units, we introduced an intervention that changed the effective
contact rate at week 9. We varied the magnitude of the
treatment effect as a multiplicative factor (δ) on the baseline
transmission rate, by setting 0.70 ≤ δ ≤ 1.3. The scenario
δ = 1 corresponded to the null-effect case, i.e., no change in
transmission is introduced in the treatment group. We also
varied the population size in each unit, N ∈ {5000, 10000}.
Simulation specifications are also summarized in Table A1.

We estimated the five outcomes outlined in Table 1. For Rt,
we used the Wallinga-Teunis estimator and divided estimates

by the susceptible fraction to estimate βt. After estimating
these outcome, we excluded the first 5 weeks of data for
all specifications because previous studies have noted Rt

estimates are often biased at the start of a time series (22).¶
We also discarded the last 5 weeks of data to account for a
similar bias due to delayed reporting (21).

We estimated treatment effects per Estimation and
reported the probability of rejecting the null in each scenario
using confidence intervals generated by wild score bootstrap
(24). These corresponded to power in the case where δ ̸= 1
and type I error where δ = 1. We used a significance level of
0.05, and all results shown are an average of 1000 simulations.

Simulation results. Figure 2 summarizes the power (δ ̸= 1)
and type I error (δ = 1) when initial infections, initial
susceptible fractions, and transmission parameters are all
equal between the treatment and control groups. The left
and right panels differ in the scale of effect size: the left
plots the effect size (δ) which is a multiplicative factor on
the baseline effective contact rate, and the right plots the
percentage change in infection due to the change in effective
contact rate.

In this case, all specifications controlled type I error
(horizontal dashed line at 0.05) absent a treatment effect.
With a non-null treatment effect, incidence and log incidence
specifications produced the highest power, with minimal
difference between the two. Of the remaining specifications,
the log growth specification had the lowest power, while
log Rt and log βt had greater power, albeit slightly less
than incidence and log incidence specifications. For example,
with a treatment effect corresponding to a 5% increase
in cumulative incidence over 6 weeks (e.g., 500 additional
infections per a population of 10,000 individuals), the log
growth specification had 80% power, while the other four
model specifications had power exceeding 95%.

When the baseline effective contact rate differs between
treatment and comparison groups, all methods except log βt

produced biased treatment effect estimates, failing to control
type I error at δ = 1 (Figure 3). Although the fraction of the
susceptible population depleted was lower with N = 10, 000,
type I error remained higher than in the N = 5, 000 due to
higher power with a larger population.

Case Studies

Removing school mask mandates in Massachusetts.

Background. We last explore the implications of different
specifications through two published case studies. We first
consider an analysis of school mask mandates. On February
28, 2022, Massachusetts lifted its universal mask requirement
in schools. Seventy of the 72 school districts lifted mask
mandates shortly thereafter, but two districts, Boston and
Chelsea, did not remove mask requirements until June 2022.
The New England Journal of Medicine published a staggered
DiD analysis estimating the impact of district-level mask
policies, with weekly COVID-19 cases per 1000 as the outcome
variable, using data from September 2021 to June 2022 (5).
The analysis showed a statistically and practically significant

¶There are some other approaches established in the literature to adjust when analyzing empirical
data, such as inferring the unobserved initial generations of infections using a linear exponential
growth model (30).
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Fig. 2. Power of models with all parameters equal between treatment and comparison groups

The top and bottom plots differ in the baseline effective contact rates: (a) β0,t = β1,t = 0.1, and (b) β0,t = β1,t = 0.115.
Within each plot, left and right panels differ in the scale of effect size: the left plots the effect size as a multiplicative effect
on baseline βd,t, and the right the percentage change in cumulative incidence. Across rows, we vary the population size. We
generated data from an SIR model per Eq. 1. Solid colored lines indicate the average probability of rejecting the null over 1000
simulations. The dashed line indicates a significance level of 0.05.
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Fig. 3. Power of models with baseline effective contact rate in treated units to be 10% greater than that of untreated units

The top and bottom plots differ in the scale of effect size: (a) β0,t = 0.1, β1,t = 0.11, and (b) β0,t = 0.115, β1,t = 0.1265. The
left and right panels differ in the scale of effect size: the left plots the effect size as a multiplicative effect on baseline βd,t, and
the right the percentage change in cumulative incidence. Across rows, we vary the population size. We generated data from an
SIR model per Eq. 1. The solid colored line indicates the average probability of rejecting the null over 1000 simulations in
the βt model. Points at δ = 1 indicate the failure to control type I errors in all other models. The dashed line indicates a
significance level of 0.05.
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increase in cases (an additional 45 cases per 1000 students and
staff) associated with the removal of school mask mandates.

We extended this analysis with log incidence and log
growth specifications. We did not estimate effective repro-
duction number and effective contact rate estimates because
the these are not typically estimated for subpopulations or
below the county-level (22, 31).

Re-analysis methods. We applied the authors’ DiD approach
to incidence, log incidence, and log growth models, which is
similar to the specification in Estimation, but accounts for
staggered treatment roll-out by estimating and averaging
group-time average treatment effects (AT T (g, t)), where
groups are defined based on time of treatment. We first
replicated their specification using the Callaway & Sant’Anna
estimator (26), with results presented in Supplement Table A2.
As log incidence and log growth specifications do not allow
zero outcomes, we implemented these with Poisson regression,
first using the Callaway & Sant’Anna estimator and then
a similar alternative by Sun and Abraham (27), that more
straightforwardly supports inference with Poisson regression.
For both, we present the average over all AT T (g, t). We then
calculated AMEs for log incidence and log growth treatment
effects.

Re-analysis results. Figure A1 plots district-level COVID-19
cases per 1000 over the study period. Using the Callaway
& Sant’Anna estimator, we replicated the authors’ original
findings, with an estimated 46 additional cases per 1000
students and staff (Figure A2). With the Sun & Abraham
estimator, there was similarly an increase of 48 cases per 1000
students and staff (95% CI: 40, 57) (Table 2).

Figure A1 suggests that clusters do not have the same
initial levels. Over the full study period, estimated treatment
effects declined with a log incidence specification to 13 (95%
CI: -31, 47) cases per 1000 students and staff (Table 2). The
point estimate in the log growth specification was near 0,
but highly uncertain; we could not rule out differences up
to 120 cases per 1000 students and staff. However, with a
shorter post-intervention horizon, both the incidence and
the log incidence specifications detected a statistically and
practically significant increase of 7-9 cases per 1000 students
and staff over 5 weeks following the lifting of school mask
mandates, with an effect of similar magnitude (but more
uncertainty) in the log growth specification.

Kansas mask mandates.

Background. On July 3, 2020, Kansas adopted an executive
order requiring face masks in most indoor and outdoor public
places. As this was initially only adopted by 15 counties (32),
JAMA Network Open published a DiD analysis evaluating the
effect of county-level mask mandate adoption on daily COVID-
19 rates (33). The authors used incidence specifications,
where the 7-day moving average of COVID-19 cases per
100,000 was used as the outcome variable, and the policy was
evaluated at 21 days after the executive order was effective
(i.e., July 24, 2020 was the intervention time) to account
gradual uptake and the lagged impact of behavior on cases.
The authors found a statistically and practically significant
reduction in COVID-19 cases (-20 cases per 100,000 with 95%
CI: -27 to -14) following the executive order.

Re-analysis methods. We first replicated the authors’ original
specification with small modifications:

Yd,t = α + ηd + τt+
δ (TreatedCountyd × PostTreatmentt) + ϵd,t,

where the outcome Yd,t was the county-level number of
cases per 100,000 population (i.e., an incidence model), and
the remaining variables and coefficients were defined as in
Estimation. In our re-analysis, we aggregated data to
the week-level and excluded counties with zero reported
COVID-19 cases prior to the announcement of mask mandates.
We also excluded covariates (an indicator for no reported
cases and the number of days since the first recorded case
in the county) to avoid recent methodological concerns
about verifying the parallel trends assumption conditional on
covariates (34).

We then re-analyzed the Kansas mask mandate example
with the other four specifications. For log Rt and log βt

models, we obtained county-level data on Rt from COVIDes-
tim nowcasting (31) and translated this to βt by dividing
Rt by the estimated susceptible fraction as illustrated in
Proposition 6. We used estimated the susceptible fraction
using cumulative infections from COVIDestim nowcasting
(31) and each county’s 2019 population data from the Census
Bureau (35) to impute susceptible fractions. For AMEs with
log(Rt) and log(βt), we used an SEIR model, parameterizing
for COVID-19, with an average of 5 days of infectiousness
and a 3-day incubation period (36).

Re-analysis results. Our treatment effect estimate using a
slightly modified incidence model was −22 cases per 100,000
(95% CI: −28 to −15), very similar to the original estimate
(-20 cases per 100,000 with 95% CI: -27 to -14).

Table 2 summarizes the estimated treatment effects and
average marginal effects obtained using all five specifications.
We observed a similar treatment effect in the log incidence
specification compared to the incidence specification. Effects
were smaller and insignificant for log growth and log Rt

specifications. However, in this application, many counties
experienced considerable susceptible depletion (e.g., the
estimated susceptible fraction dropped by 40% in Nemaha
and 43% in Norton over the study period), a potential threat
to the validity of log growth and log Rt models. By contrast,
the log βt specification produced a significant treatment effect
at 90% confidence level, with an average marginal effect of
-11 cases per 100,000.

Discussion

DiD is a popular method for observational causal inference
in health policy. This arises in part from its flexibility:
DiD allows researchers to estimate treatment effects, even
absent comparison groups that exactly match the treatment
group. DiD is traditionally agnostic as to why treatment and
comparison groups differ in level but are believed to have
matching trends (11). However, by synthesizing DiD with
a mechanistic model for infectious disease transmission, we
showed how context-specific theory informs interpretation of
the parallel trends assumption.

Assuming an underlying SIR framework, our paper first
formalized the epidemiological conditions under which the
parallel trends assumption holds for the three common model
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Table 2. Results from re-analyzing the effect of face mask policies in empirical examples

Study Length of post- Outcome Treatment effect1 Average marginal
intervention periods specification (95% CI) effect2 (95% CI)

Incidence 8.6∗ (5.7, 11.5) 8.6∗ (5.7, 11.5)
Removing school 5 weeks Log incidence 1.62∗ (1.26, 2.09) 6.9∗ (1.8, 10.8)
mask mandates Log growth 0.97 (0.77, 1.22) 8.6 (−10.9, 16.6)

in Massachusetts 4 Incidence 48.1∗ (38.9, 57.1) 48.1∗ (38.9, 57.1)
15 weeks Log incidence 1.19 (0.90, 1.57) 13.0 (−31.3, 47.1)

Log growth 0.89 (0.70, 1.13) −71.4 (−3036.0, 120.5)

Incidence −21.6∗ (−28.3, −14.8) −21.6∗ (−28.3, −14.8)
Mask mandates Log incidence 0.33∗ (0.22, 0.59) −55.1∗ (−101.2, −19.1)

in Kansas counties 5 19 weeks Log growth 0.96 (0.74, 1.25) −9.5 (−2139.8, 25.3)
Log Rt 0.97 (0.90, 1.05) −6.1 (−22.2, 8.3)
Log βt 0.95† (0.86, 1.01) −10.8† (−36.0, 2.6)

1 Treatment effect refers to the point estimate in coefficients obtained from OLS (incidence model) or average relative risk per unit from Poisson
regression (other four models)
2 Average treatment effects are imputed as described in Section Average marginal effects and Appendix E. AMEs for log Rt and log βt models
are calculated assuming an SEIR transmission process per Section F
* represents significance at α = 0.05
† represents significance at α = 0.10

specifications in the COVID-19 literature: incidence, log
incidence, and log growth. Although modeling incidence
was popular in the COVID-19 medical and health policy
literature (Appendix A), this approach requires identical
data-generating processes between all treated and comparison
units, as others have previously noted (4). Modeling log
incidence allows for different numbers of initial infections but
still requires equal effective contact rates and an “infinite
susceptible population” assumption. Nevertheless, because
we found incidence and log incidence specifications to have
very similar power, we recommend that researchers default
to the latter, binning data or applying Poisson regression if
there are zero-valued outcomes (37). By contrast, although
log growth specifications allow for more flexibility, they comes
with a significant power cost.

We argued that the log growth specification approximates
assuming parallel trends in the effective contact rate (e.g.,
assuming similar behavior but different vaccination rates
across units). Both modeling log growth and the log of
effective reproduction number (a similar but higher power
alternative) may produce biased estimates in the context
of susceptible depletion. Our most robust alternative is
therefore modeling the log of effective contact rate (βt)
directly. We showed that this approach has higher power
than modeling log growth, performs well under more flexible
assumptions, and can be estimated with zero-valued outcomes
using Poisson regression. We also demonstrated that this
can be applied to more diverse and complex underlying
transmission processes. As a result, our work provides a useful
bridge between post-hoc policy evaluation and prospective
transmission dynamic models that serve as a backbone of
infectious disease epidemiology.

Last, we apply different model specifications to previously
published examples, highlighting trade-offs between bias and
power and emphasizing the importance of evaluating and
discussing the plausibility of assumptions required for a
chosen specification.

This work has several limitations. First, even our
most robust specifications may not be plausible in practice.
Nevertheless, our approach allows for more flexibility than
many proposed alternatives. For example, Callaway and Li
(4) proposed an alternative estimator in the context of early
COVID-19 that assumed unconfoundedness after conditioning
on all pre-treatment period outcomes. This method performs
well in the early stages of an epidemic when conditions
across units in both groups are similar. However, it may
be challenging to find exact matching units over the full
epidemic history, especially when the effective contact rate
is time-varying due to shifting precautionary behaviors or
vaccination rates. Relatedly, although our approach can
be extended to a wide array of models, we do not consider
the implications of spillovers, which may obscure treatment
effects.

Second, estimating the effective reproduction number and
the effective contact rate can be challenging in practice. Many
past studies (e.g., O’Driscoll et al. (20), Gostic (22)) have
discussed challenges and proposed approaches for translating
observed cases and deaths into estimates of infections and
the effective reproduction number, which would be valuable
when applying our methods. Last, our results highlight that
in many cases, policy evaluations may be underpowered to
detect effects of substantive interest. Future efforts could
take a decision-analytic approach to integrate the results of
policy evaluations with costs and benefits of implementing
different model specifications.

Overall, our work provides a framework for integrating
transmission dynamics into DiD and proposes novel methods
to support rigorous evaluation of infectious disease policies.
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B. Proofs

Proposition 1 (Expected incidence). Assuming an SIR data-generating process (Eq. 1) with initial conditions {Sd,0, Id,0, Rd,0}, expected
incidence at time t+ 1 can be written as:

E
[
I∗

d,t+1
]

=
βd,t

N

(
Sd,0 +

(1 − γ)
βd,t−1

)
E
[
I∗

d,t

]
− ϵt,

where ϵt = (1 − γ)E
[
Id,t−1I∗

d,t

]
−
∑t

j=1 E
[
I∗

d,tI
∗
d,j

]
.

Proof. Given {Id,0, Sd,0, Rd,0}, constant generation interval 1
γ

, and effective contact rates (βd,t), we have per Eq. 1:

Sd,t = St−1 − I∗
d,t = Sd,0 −

t−1∑
i=1

I∗
d,t

Id,t = (1 − γ) Id,t−1 + I∗
d,t

We denote incidence at time t+ 1:

I∗
d,t+1 =

βt

N
Sd,tId,t + ϵt+1,

where E [ϵt] = 0 because I∗
d,t ∼ Pois

(
βd,t−1Id,t−1

Sd,t−1
N

)
.

Taking the expectation of both sides:

E[I∗
d,t+1] = E

[
βd,t

N
Sd,tId,t + ϵt+1

]
Noting that ϵt+1 has mean 0 −→

=
βd,t

N
E
[
Sd,tId,t

]
Substituting Sd,t, Id,t from above −→

=
βd,t

N

[
E

[(
Sd,t−1 − I∗

d,t

)(
(1 − γ)Id,t−1 + I∗

d,t

)]]
Expanding product −→

=
βd,t

N
E
[
Sd,t−1I

∗
d,t + (1 − γ)Sd,t−1Id,t−1 − (1 − γ)Id,t−1I

∗
d,t − I∗2

d,t

]
Taking expectations and noting E

(
Sd,t−1Id,t−1

)
=

E
[
I∗

d,t

]
βd,t−1

−→

=
βd,t

N

(
E
[
Sd,t−1I

∗
d,t

]
+

(1 − γ)
βd,t−1

E
[
I∗

d,t

]
− (1 − γ)E

[
Id,t−1I

∗
d,t

]
− E
[
I∗2

d,t

])
Noting that Sd,t = Sd,0 −

t−1∑
i=1

I∗
d,t −→

=
βd,t

N

(
Sd,0E

[
I∗

d,t

]
+

(1 − γ)
βd,t−1

E
[
I∗

d,t

]
− (1 − γ)E

[
Id,t−1I

∗
d,t

]
−

t∑
j=1

E
[
I∗

d,tI
∗
d,j

])
Collecting terms −→

=
βd,t

N

(
Sd,0 +

(1 − γ)
βd,t−1

)
E
[
I∗

d,t

]
− ϵt,

where ϵt = (1 − γ)E
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Id,t−1I∗

d,t

]
−
∑t

j=1 E
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I∗

d,tI
∗
d,j

]
.
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Proposition 2 (Expected incidence (infinite susceptible population)). Assuming an SIR data-generating process (Eq. 1), with initial
conditions {S0, I0, R0}, for t ≥ 1,

lim
Sd,0→∞

E
[
I∗

d,t+1
]

= βd,t

t−1∏
k=0

(
1 − γ + βd,k

)
Id,0

Proof. We prove Proposition 2 by induction. For explication, we write I∗
d,t = βd,t−1Id,t−1

Sd,t−1
N

+ ϵt, where E [ϵt] = 0 because

I∗
d,t ∼ Pois

(
βd,t−1Id,t−1

Sd,t−1
N

)
. Population size N is assumed constant (Eq. 1) over time, with N = Sd,0 + Id,0 +Rd,0 for all t.

Base case (t = 1):
We first take the expectation of Id,1:

E

[
lim

Sd,0→∞
Id,t+1

]
= E

[
lim

Sd,0→∞
(1 − γ)I0 + βd,0Id,0

Sd,0
N

+ ϵd,1

]
Noting that lim

Sd,0→∞

Sd,0
N

= lim
Sd,0→∞

Sd,0
Sd,0 + Id,0 +Rd,0

= 1 and E[ϵd,1] = 0 −→

= (1 − γ + βd,0)Id,0

We then take the expectation of incidence at time t+ 1 = 2:

E

[
lim

Sd,0→∞
I∗

d,t+1

]
= E

[
lim

Sd,0→∞
I∗

d,2

]
Substituting in from Eq. 1 −→

= E

[
lim

Sd,0→∞
βd,1Id,1

Sd,1
N

+ ϵd,2

]
Noting that E[ϵd,2] = 0 −→

= βd,1E

[
lim

Sd,0→∞
Id,1

Sd,1
N

]
Substituting in from Eq. 1 −→

= βd,1E

[
lim

Sd,0→∞

(
(1 − γ)Id,0 + βd,0Id,0

Sd,0
N

+ ϵd,1

)(
Sd,0 − βd,0Id,0

Sd,0
N

− ϵd,1

N

)]
Rearranging the limit of products as a product of limits because both are finite −→

= βd,1E

[
lim

Sd,0→∞

(
(1 − γ)Id,0 + βd,0Id,0

Sd,0
N

+ ϵd,1

)
lim

Sd,0→∞

(
Sd,0
N

−
βd,0Id,0Sd,0

N2 −
ϵd,1
N

)]
Noting that lim

Sd,0→∞

Sd,0
N

= lim
Sd,0→∞

Sd,0
Sd,0 + Id,0 +Rd,0

= 1 and E[ϵd,1] = 0 −→

= βd,1

(
(1 − γ)Id,0 + βd,0Id,0

)
= βd,1

(
1 − γ + βd,0

)
Id,0 = βd,1E

[
lim

Sd,0→∞
Id,1

]

Induction step: Assume that:

E

[
lim

Sd,0→∞
I∗

d,t

]
= βd,t−1E

[
lim

Sd,0→∞
Id,t−1

]
= βd,t−1

t−2∏
k=0

(
1 − γ + βd,k

)
Id,0

We will show that this implies that the same holds for the next time step, i.e.,

E

[
lim

Sd,0→∞
I∗

d,t+1

]
= βd,tE

[
lim

Sd,0→∞
Id,t

]
= βd,t

t−1∏
k=0

(
1 − γ + βd,k

)
Id,0
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We have:

E

[
lim

Sd,0→∞
I∗

d,t+1

]
= E

[
lim

Sd,0→∞
βd,tId,t

Sd,t

N
+ ϵd,t+1

]
Substituting in E[ϵd,t+1] = 0 −→

= βd,tE

[
lim

Sd,0→∞
Id,t

Sd,t

N

]
Substituting in from Eq. 1 −→

= βd,tE

[
lim

Sd,0→∞

(
(1 − γ)Id,t−1 + I∗

d,t

)(Sd,t−1 − I∗
d,t

N

)]
Rearranging the limit of products as a product of limits because both are finite −→

= βd,tE

[
lim

Sd,0→∞

(
(1 − γ)Id,t−1 + I∗

d,t

)
lim

Sd,0→∞

(
Sd,0
N

−

∑t−1
j=1 βd,jId,jSd,j

N2 −
ϵd,j

N

)]
Noting lim

Sd,0→∞

Sd,0
N

= 1, E[ϵd,j ] = 0 ∀j −→

= βd,tE

[
lim

Sd,0→∞

(
(1 − γ)Id,t−1 + I∗

d,t

)]
Applying (1) and lim

Sd,0→∞
E
[
I∗

d,t

]
= lim

Sd,0→∞
βd,t−1E

[
Id,t−1

]
−→

= lim
Sd,0→∞

βd,t

(
1 − γ + βd,t−1

)
E
[
Id,t−1

]
Applying that lim

Sd,0→∞
βt−1E [It−1] = βd,t−1

t−2∏
k=0

(
1 − γ + βd,k

)
Id,0 −→

= βd,t

t−1∏
k=0

(
1 − γ + βd,k

)
Id,0

This completes the induction step.

Last, note that the dominated convergence theorem allows us to exchange limit and expectation because for all Sd,0, I∗
d,t(Sd,0)

is stochastically dominated by I∗
d,t

′ ∼ Pois
(
βd,t−1

∏t−2
k=0

(
1 − γ + βd,k

)
Id,0
)

(i.e., I∗
d,t

′ from in a modified SIR process in which
I∗

d,t
′ ∼ Pois(βd,t−1It−1)) over all d, t.

Proposition 3 (Parallel trends: Incidence (infinite susceptible population)). Assuming an SIR data-generating process (Eq. 1) and
an incidence model specification

(
Yd,t = I∗

d,t, g(y) = y
)

, the “infinite susceptible population” parallel trends assumption (Eq. 3) holds
between t1 and t2 under the following conditions:

lim
S1,0→∞

(
E [Y1,t2 (0)] − E [Y1,t1 (0)]

)
=

lim
S0,0→∞

(
E [Y0,t2 (0)] − E [Y0,t1 (0)]

)
⇐⇒

E
[
I∗

1,t1

] (
β∗

1,t1,t2 − 1
)

= E
[
I∗

0,t1

] (
β∗

0,t1,t2 − 1
)
,

where E
[
I∗

0,t1

]
= Id,0βd,t1−1

t1−2∏
k=0

(
1 − γ + βd,k

)
,

β∗
d,t1,t2 =

βd,t2−1
βd,t1−1

t2−2∏
k=t1−1

(
1 − γ + βd,k

)
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Proof. For t1, t2 ≥ 2 and d ∈ {0, 1}, we have:

lim
Sd,0→∞

(
E
[
Yd,t2 (0)

]
− E
[
Yd,t1 (0)

])
Substituting from Proposition 2 −→

=βd,t2−1

t2−2∏
k=0

(
1 − γ + βd,k

)
Id,0 − βd,t1−1

t1−2∏
k=0

(
1 − γ + βd,k

)
Id,0

Rearranging terms −→

=Id,0

t1−2∏
k=0

(
1 − γ + βd,k

)(
βd,t2−1

t2−2∏
k=t1−1

(
1 − γ + βd,k

)
− βd,t1−1

)
Collecting terms −→

=β∗
d,0,t1Id,0

(
β∗

d,t1,t2 − 1
)
,

where β∗
d,0,t1 =βd,t1−1

t1−2∏
k=0

(
1 − γ + βd,k

)
, β∗

d,t1,t2 =
βd,t2−1
βd,t1−1

t2−2∏
k=t1−1

(
1 − γ + βd,k

)
Substituting the above expression into the parallel trends condition, we obtain ‖:

LHS = lim
S1,0→∞

E [Y1,t2 (0) − Y1,t1 (0)] = β∗
1,0,t1I1,0

(
β∗

1,t1,t2 − 1
)
, and

RHS = lim
S0,0→∞

E [Y0,t2 (0) − Y0,t1 (0)] = β∗
0,0,t1I0,0

(
β∗

0,t1,t2 − 1
)

Proposition 4 (Parallel trends: Log incidence (infinite susceptible population)). Assuming an SIR data-generating process (Eq. 1) and
a log incidence model specification

(
Yd,t = I∗

d,t, g(·) = log(·)
)

, the “infinite susceptible population” parallel trends assumption (Eq. 3)
holds between t1 and t2 under the following conditions:

lim
S1,0→∞

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) = lim
S0,0→∞

log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒

β∗
1,t1,t2 = β∗

0,t1,t2 ,

where β∗
d,t1,t2 =

βd,t2−1
βd,t1−1

t2−2∏
k=t1−1

(
1 − γ + βd,k

)
Proof. For t1, t2 ≥ 2 and d ∈ {0, 1}, we expand as follows:

lim
Sd,0→∞

log
(
E
[
Yd,t2 (0)

])
− log

(
E
[
Yd,t1 (0)

])
Substituting in from Proposition 1 −→

= log

(
βd,t2−1

t2−2∏
k=0

(
1 − γ + βd,k

)
Id,0

)
− log

(
βd,t1−1

t1−2∏
k=0

(
1 − γ + βd,k

)
Id,0

)
Dividing out common terms −→

= log

(
βd,t2−1
βd,t1−1

t2−2∏
k=t1−1

(
1 − γ + βd,k

))
= log

(
β∗

d,t1,t2

)
Therefore, the “infinite susceptible population” parallel trends assumption (Eq. 3) holds if and only if

lim
S1,0→∞

log (E [Y1,t2 ]) − log (E [Y1,t1 ]) = lim
S0,0→∞

log (E [Y0,t2 ]) − log (E [Y0,t1 ]) ⇐⇒

log
(
β∗

1,t1,t2

)
= log

(
β∗

0,t1,t2

)
⇐⇒

β∗
1,t1,t2 = β∗

0,t1,t2

‖Note that in the special case of constant exponential growth, Yd,t = Id,0βt , this condition reduces to Y1,t1

(
βt2−t1 − 1

)
= Y0,t1

(
βt2−t1 − 1

)
.
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Proposition 5 (Parallel trends: Log growth (infinite susceptible population)). Assuming an SIR data-generating process (Eq. 1) and a

log growth model specification
(
Yd,t =

E
[

I∗
d,t

]
E
[

I∗
d,t−1

] , g(·) = log(·)
)

, the “infinite susceptible population” parallel trends assumption (Eq. 3)

holds between t1 and t2 under the following conditions:

lim
S1,0→∞

(
log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)])

)
= lim

S0,0→∞

(
log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)])

)
⇐⇒

log
(
β1,t2−1
β1,t1−1

)
− log

(
β1,t2−2
β1,t1−2

)
+ log

(
1 − γ + β1,t2−2
1 − γ + β1,t1−2

)
= log

(
β0,t2−1
β0,t1−1

)
− log

(
β0,t2−2
β0,t1−2

)
+ log

(
1 − γ + β0,t2−2
1 − γ + β0,t1−2

)
Proof. For t1, t2 ≥ 2 and d ∈ {0, 1}, we have:

lim
Sd,0→∞

log
(
E
[
Yd,t2

])
Substituting in from Proposition 1 −→

= log

(
βd,t2−1

t2−2∏
k=1

(
1 − γ + βd,k

)
Id,0

)
− log

(
βd,t2−2

t2−3∏
k=1

(
1 − γ + βd,k

)
Id,0

)
Simplifying −→

= log
(
βd,t2−1
βd,t2−2

(
1 − γ + βd,t2−2

))

Similarly, log
(
E
[
Yd,t1

])
= log

(
βd,t1−1
βd,t1−2

(
1 − γ + βd,t1−2

))
. Therefore,

lim
Sd,0→∞

log
(
E
[
Yd,t2

])
− log

(
E
[
Yd,t1

])
Substituting from above −→

= log
(
βd,t2−1
βd,t2−2

(
1 − γ + βd,t2−2

))
− log

(
βd,t1−1
βd,t1−2

(
1 − γ + βd,t1−2

))
Rearranging terms −→

= log
(
βd,t2−1
βd,t1−1

)
− log

(
βd,t2−2
βd,t1−2

)
+ log

(
1 − γ + βd,t2−2
1 − γ + βd,t1−2

)
Substituting the above equation back to both sides of the parallel trends assumption defined in Eq. 3 completes the proof.

Proposition 6 (Cohort definition of Rt). Assume that the effective reproduction number is measured over a generation interval of length
1
γ

for the cohort I∗
t becoming infectious at time t. We define the cohort effective reproduction number:

Rd,t =
∞∑

j=t

(1 − γ)j−t βd,j
Sd,j

N

.

Proof. Eq. 1 defines the average number of secondary infections per infected individual at time t as βd,t
Sd,t

N
. Of individuals who become

infected at time t, Eq. 1 also defines the fraction removed at each time step as 1 − γ. This gives us the effective reproduction number
corresponding to the cohort becoming infectious at time t:

Rd,t =
∞∑

j=t

(1 − γ)j−t βd,j
Sd,j

N

Proposition 7 (Parallel trends: Log Rt (infinite susceptible population)). Assuming an SIR data-generating process (Eq. 1), log-
transformed effective reproduction number model specification

(
Yd,t = log

(
Rd,t

)
, g(·) = log(·)

)
, the “infinite susceptible population”

parallel trends assumption (Eq. 3) holds for all t1, t2 if and only if

lim
S1,0→∞

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) = lim
S0,0→∞

log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒

log

(∑∞
j=t2

(1 − γ)j−t2 β1,j∑∞
j=t1

(1 − γ)j−t1 β1,j

)
= log

(∑∞
j=t2

(1 − γ)j−t2 β0,j∑∞
j=t1

(1 − γ)j−t1 β0,j

)
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Proof. In Proposition 6, we defined Rd,t =

∑∞
j=t

(1 − γ)j−t βd,j
Sd,j

N
. Substituting this formulation of Rd,t into the parallel trends

assumption in Eq. 3, we obtain:

lim
S1,0→∞

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) = lim
S0,0→∞

log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒

lim
S1,0→∞

log (R1,t2 ) − log (R1,t1 ) = lim
S0,0→∞

log (R0,t2 ) − log (R0,t1 ) ⇐⇒

lim
S1,0→∞

log
(
R1,t2

R1,t1

)
= lim

S0,0→∞
log
(
R0,t2

R0,t1

)
⇐⇒

Substituting from Proposition 6 −→

lim
S1,0→∞

log

(∑∞
j=t2

(1 − γ)j−t2 β1,jS1,j∑∞
j=t1

(1 − γ)j−t1 β1,jS1,j

)
= lim

S0,0→∞
log

(∑∞
j=t2

(1 − γ)j−t2 β0,jS0,j∑∞
j=t1

(1 − γ)j−t1 β0,jS0,j

)
⇐⇒

Taking limits −→

log

(∑∞
j=t2 (1 − γ)j−t2 β1,j∑∞
j=t1

(1 − γ)j−t1 β1,j

)
= log

(∑∞
j=t2

(1 − γ)j−t2 β0,j∑∞
j=t1

(1 − γ)j−t1 β0,j

)

Proposition 8 (Parallel trends: Log βt). Assuming an SIR data-generating process and a log-transformed effective reproduction number
specification

(
Yd,t = log

(
βd,t

)
, g(·) = log(·)

)
, the parallel trends assumption holds for all t1, t2 > t− 1 if and only if

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) = log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒
log (β1,t2 ) − log (β1,t1 ) = (log(β0,t2 ) − log (β0,t1 )

Proof. Proposition 8 follows from a direct substitution of the outcome Yd,t = βd,t into the log-transformed parallel trends assumption as
defined in Eq. 3:

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) = log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)]) ⇐⇒
log(β1,t2 ) − log(β1,t1 ) = log(β0,t2 ) − log(β0,t1 )

Proposition 9 (Estimation of βd,t). Assuming an SIR data-generating process (Eq. 1), with Id,t+1 ∼ Pois
(
βd,tSd,t

Sd,t
N

)
, the maximum

likelihood estimator of βd,t is:

β̂d,t =
I∗

d,t+1

Id,t
Sd,t

N

Proof. Because we assume:

I∗
t+1|It ∼ Pois

(
βtIt

St

N

)
,

the likelihood (L) and log-likelihood (ℓ) functions can be defined:

L
(
βt|I∗

t+1, It, St, N
)

=

(
βtIt

St
N

)I∗
t+1 e−βtItSt/N

I∗
t+1!

ℓ
(
βt|I∗

t+1, It, St, N
)

∝ I∗
t+1 log

(
βtIt

St

N

)
− βtIt

St

N

Setting
∂ℓ
(

βt|I∗
t+1,It,St,N

)
∂βt

= 0 to obtain the maximum likelihood estimator:

0 =
ℓ
(
βt|I∗

t+1, It, St, N
)

∂βt

=
I∗

t+1

βtIt
St
N

It
St

N
+ It

St

N

=
I∗

t+1
βt

− It
St

N

=⇒ β̂t =
I∗

t+1

It
St
N
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Supplement Proposition 1 (Log transformation). Assume that Eq. 3 holds with a log link, such that:

log (E [Y1,t2 (0)]) − log (E [Y1,t1 (0)]) = log (E [Y0,t2 (0)]) − log (E [Y0,t1 (0)])

Then,

E
[

log (Y1,t2 (0)) − log (Y1,t1 (0))
]

− E
[

log (Y0,t2 (0)) − log (Y0,t1 (0))
]

≈
(
V ar(Y1,t1 )
2E[Y1,t1 ]2

−
V ar(Y1,t2 )
2E[Y1,t2 ]2

)
−
(
V ar(Y0,t1 )
2E[Y0,t1 ]2

−
V ar(Y0,t2 )
2E[Y0,t2 ]2

)

Proof. We can approximate E
[
log(Yd,t)

]
with a second-order Taylor series expansion (38):

E
[
log(Yd,t)

]
≈ log

(
E
[
Yd,t

])
−
V ar(Yd,t)

2E
[
Yd,t

]2

Substituting this approximation for each term in E
[

log (Y1,t2 (0)) − log (Y1,t1 (0))
]

− E
[

log (Y0,t2 (0)) − log (Y0,t1 (0))
]

completes the

proof.

Corollary 1. If the outcome is log incidence in Supplement Proposition 1, Yd,t = I∗
d,t with a log link, then,

E
[

log (Y1,t2 (0)) − log (Y1,t1 (0))
]

− E
[

log (Y0,t2 (0)) − log (Y0,t1 (0))
]

≈
(

1
2E[I∗

1,t1
]

−
1

2E[I∗
1,t2

]

)
−
(

1
2E[I∗

0,t1
]

−
1

2E[I∗
0,t2

]

)

Proof. Per Eq. 1, we assume the incidence I∗
d,t follows a Poisson distribution. As a result, the second-order term becomes:

V ar
(
I∗

d,t

)
2E
[
I∗

d,t

]2 =
E
[
I∗

d,t

]
2E
[
I∗

d,t

]2 =
1

2E
[
I∗

d,t

]
Substituting this into the result from Proposition 1 completes the proof.

Supplement Proposition 2 (DiD with time-step aggregation). Assume that the parallel trends assumption (Eq. 3) holds with a log link
for every pair of individual pre- and post-intervention time steps between the average outcome in the treated and comparison groups.
That is, for any pre-intervention time step t1 and post-intervention time-step t2, we assume

log
(
E [Y1,t2 (0)]

)
− log

(
E [Y1,t1 (0)]

)
= log

(
E [Y0,t2 (0)]

)
− log

(
E [Y0,t1 (0)]

)
Then, the aggregated parallel trends assumption (Eq. 5) also holds:

log
(
E
[
Y1,t(0)

∣∣∣t ∈ T2

])
− log

(
E
[
Y1,t(0)

∣∣∣t ∈ T1

])
= log

(
E
[
Y0,t(0)

∣∣∣t ∈ T2

])
− log

(
E
[
Y0,t(0)

∣∣∣t ∈ T1

])
,

where T1 and T2 denote aggregations of pre- and post-intervention time periods.

Proof. By imposing parallel trends (Eq. 3) for any pair of individual pre- and post-intervention time steps, we have for any t1 and t2,

log
(
E [Y1,t2 (0)]

)
− log

(
E [Y1,t1 (0)]

)
= log

(
E [Y0,t2 (0)]

)
− log

(
E [Y0,t1 (0)]

)
⇐⇒

log
(

E [Y1,t2 (0)]
E [Y1,t1 (0)]

)
= log

(
E [Y0,t2 (0)]
E [Y0,t1 (0)]

)
⇐⇒

E [Y1,t2 (0)]
E [Y1,t1 (0)]

=
E [Y0,t2 (0)]
E [Y0,t1 (0)]

⇐⇒

E [Y1,t2 (0)]E [Y0,t1 (0)] = E [Y0,t2 (0)]E [Y1,t1 (0)] [(*)]

For the parallel trends condition to hold on the aggregated time periods T1 and T2, we want to show

log
(
E
[
Y1,t(0)

∣∣∣t ∈ T2

])
− log

(
E
[
Y1,t(0)

∣∣∣t ∈ T1

])
= log

(
E
[
Y0,t(0)

∣∣∣t ∈ T2

])
− log

(
E
[
Y0,t(0)

∣∣∣t ∈ T1

])
Note that if aggregation occurs by summing, rather than averaging, both the LHS and RHS are multiplied by the number of time steps,
which does not affect the result. For each side of the above equation, the difference in log expected outcomes can be written as a sum of
time steps:
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log
(
E
[
Yd,t(0)

∣∣∣t ∈ T2

])
− log

(
E
[
Yd,t(0)

∣∣∣t ∈ T1

])
= log

(
E

[∑
t∈T2

Yd,t(0)

])
− log

(
E

[∑
t∈T1

Yd,t(0)

])

= log

(
E
[∑

t∈T2
Yd,t(0)

]
E
[∑

t∈T1
Yd,t(0)

])

= log

(∑
t∈T2

E
[
Yd,t(0)

]∑
t∈T1

E
[
Yd,t(0)

])

Therefore, Eq. 5 holds for T1 and T2) if and only if∑
t∈T2

E [Y1,t(0)]∑
t∈T1

E [Y1,t(0)]
=

∑
t∈T2

E [Y0,t(0)]∑
t∈T1

E [Y0,t(0)]
⇐⇒(∑

t∈T2

E [Y1,t(0)]

)(∑
t∈T1

E [Y0,t(0)]

)
=

(∑
t∈T2

E [Y0,t(0)]

)(∑
t∈T1

E [Y1,t(0)]

)
⇐⇒

Distributing the sum −→∑
t2∈T2

∑
t1∈T1

E [Y1,t2 (0)]E [Y0,t1 (0)] =
∑

t2∈T2

∑
t1∈T1

E [Y0,t2 (0)]E [Y1,t1 (0)] ,

where the last equality is true because Eq. 3 holds for every pair of pre-intervention t1 and post-intervention t2.

Corollary 2. Assume that the parallel trends assumption (Eq. 3) holds with a log link for every pair of individual pre- and post-
intervention time steps between the average outcome in the treated and comparison groups as in Supplement Proposition 2. Then the
extended parallel trends assumption (Eq 6) holds on the transformed average differences between pre- and post-treatment outcomes across
treated and untreated groups:

log
(
E
[
Y1,t(0)

∣∣t ∈ T2
])

− log
(
E
[
Y1,t(0)

∣∣t ∈ T1
])

= log
(
E
[
Y0,t(0)

∣∣t ∈ T2
])

− log
(
E
[
Y0,t(0)

∣∣t ∈ T1
])

,

where T1 and T2 are set of pre- and post-treatment time periods, respectively.

Proof. The proof follows directly from Supplement Proposition 2, with only the definitions of T1 and T2 changed.
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C. Figures

Fig. A1. COVID-19 cases per 1000 students and staff in 72 school districts in Massachusetts

Each line plots the case trajectory in one school district. The dashed vertical line represents the time at which the state-level
mask mandate was lifted.

Fig. A2. Event study plot from replicating the original analysis Cowger et al. (5)

The estimated treatment effects with associated 95% confidence intervals obtained from fitting the incidence specification,
which is the model specification in the original analysis, are plotted against the time to treatment.
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Fig. A3. COVID-19 cases per 100,00 population in Kansas

Each line plots the case trajectory in one county in Kansas. The dashed vertical line represents the time at which the executive
order took effect.
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D. Tables

Table A1. Simulation parameters

Parameter Description Values

N Total number of units 50

N1 Number of treated units 25

pop Population size for each unit One of {5, 000, 10, 000}

T Total number of weeks 17

Tburnin Number of weeks in the burn-in period 5

T0 Number of weeks in the pre-intervention period 4

I0 Number of initial infections at time 0 100
1
γ

Generation interval 10 days

β Effective contact rate (constant over time) One of {0.100, 0.115}

ϕ
Ratio in the effective contact rates between the
treated and control groups One of {1.0, 1.1}

δ Effect size One of {0.70, 0.80, 0.90, 0.95, 1.00, 1.05, 1.10, 1.20, 1.30}

α Statistical significance level 0.05

Table A2. Results from re-analyzing the effect of removing school mask mandates on COVID-19 cases in Massachusetts using Callaway and
Sant’Anna estimator

Outcome specification Treatment effect1 Average marginal effect2

Incidence 47.4 47.4
Log incidence 2.0 10.0
Log growth -2.2 -179.5

1 Treatment effect refers to the point estimate in coefficients obtained from OLS (incidence model) or Poisson regression (log incidence and log
growth models) 2 Average treatment effects are imputed as described in Section Average marginal effects and Appendix E.
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E. Algorithms

Algorithm 1 (Estimation of average marginal effects for log incidence and log growth specifications) Given the observed outcomes in the
treated units, Y1, ..., YN1 , and the estimated ATT, δ̂t, we impute the AME as follows:

1. Calculate the fitted untreated potential outcome for the treated group in the scale of the model specification for each treated unit i
and post-intervention period t > T0 using the observed empirical outcome trajectory and the estimated ATT: Ŷd(0) = Yd,t − δ̂t

2. Recover the fitted untreated potential outcome for the treated unit i in the case scale, Î∗
d,t

(0), from Ŷd,t(0) according to the definition
of model specifications per Table 1. For log growth, we take the last period prior to intervention as baseline, and construct the
untreated potential outcomes by dividing the baseline outcome by the fitted treatment effect coefficient. We repeat division for each
post-intervention period to recover the untreated trajectories for the treated units.

3. Calculate the difference between the observed treated outcome and the fitted control potential outcome trajectories to obtain the
marginal effect (ME) for each unit i over the entire post-intervention time periods: MEi =

∑
t∈T1

(
I∗

d,t − Î∗
d,t

(0)
)

4. The AME is the average of the calculated differences over all treated units: AME = 1
N1

∑
i∈N1

(MEi)

Algorithm 2 (Estimation of average marginal effects for log Rt or log βt models) For COVID-19, we assume on average 5 days of
infectiousness and 3 days of mean exposure period (36). We use input data on the initial susceptible fraction and infections, as well as
empirically estimated effective contact rates over the period of interest βt, t ∈ [t1, t2]. We then use estimated time-varying ATTs for the
effective contact rate, δ̂t to impute the AME as follows:

1. Calculate the fitted treated potential outcomes as an average from 1000 infection trajectories simulated from an SEIR model with
effective contact rates set to

(
βt + δ̂t

)
, corresponding to an effective reproduction number Rt = 5

(
βt + δ̂t

)
.

2. Calculate the fitted untreated potential outcomes for the treated group as an average from 1000 infection trajectories simulated from
an SEIR model with effective contact rate set to β0, corresponding to an effective reproduction number Rt = 5β0.

3. The AME for a log Rt or a log βt model is then given by the average difference in projected infections over the post-intervention
period between fitted trajectories: MEi =

∑
t∈T1

(
I∗

d,t − Î∗
d,t

(0)
)

, AME = 1
N1

∑
i∈N1

(MEi).

F. SEIR framework

We summarize the SEIR framework using the following equations:

Susceptible: Sd,t+1 = Sd,t −
(
βd,tId,t

Sd,t

N
+ ϵd,t+1

)
Exposed: Ed,t+1 = (1 − ψ)Ed,t +

(
βd,tId,t

Sd,t

N
+ ϵd,t+1

)
Infectious: Id,t+1 = (1 − γ)Id,t + ψEd,t

Recovered: Rd,t+1 = Rd,t + γId,t

Compared with an SIR model specified in Eq. 1, the only additional parameter introduced here is ψ, which in our analysis is assumed to
be a constant rate of infectious given exposure.

G. Inference

We conduct inference using the wild score bootstrap, which allows for valid inference with heteroskedastic data and a small number
of clusters when a generalized linear model is used for estimation. This is a generalization of the wild cluster bootstrap, proposed by
Cameron et al. (23). The more widely-used wild cluster bootstrap perturbs the residual distribution for each bootstrap replicate based
on a cluster-level random variable with mean 0 and variance 1, usually drawn from a Rademacher distribution (23, 24). Although this
technique performs well with a small number of clusters, it requires a symmetric distribution in the residuals with mean 0, which is not
satisfied by a Poisson generalized linear model (GLM). More broadly, this idea of perturbing distributions in bootstrap samples can be
applied to the score contributions in the context of GLMs (23). Given any maximum likelihood estimation process, the score contribution
for cluster c can be computed as the sum of score vectors in all observations from cluster c, where a score vector is the first derivative of
the log-likelihood function. In each bootstrap replicate, we re-weight the score distribution based on an auxiliary cluster-level random
variable with mean 0 and variance 1, and calculate a Wald statistic is calculated using the weighted scores. The p-value is the proportion
of bootstrap replicates for which the bootstrapped Wald statistics exceed the observed Wald statistic under the null.

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 10, 2024. ; https://doi.org/10.1101/2024.04.08.24305335doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.08.24305335
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Literature Review
	Proofs
	Figures
	Tables
	Algorithms
	SEIR framework
	Inference

