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Abstract  

 

The most well-known pathogenic risk factor for myeloid neoplasms (MN) is clonal 
hematopoiesis of indeterminate potential (CHIP) 1. However, MN can develop in CHIP negative 
individuals, indicating that additional markers of clonal expansion might also be informative. 
Heteroplasmy, defined as the presence of mitochondrial DNA (mtDNA) mutations in a subset of 
cellular mtDNA, has been associated with hematological malignancies 2 and could represent a 
marker of clonal expansion 3. However, the relationship between heteroplamsy and CHIP, as 
well as its association with the incidence of MN in the general population is not known. In this 
study, we explored the association between somatic mtDNA and nuclear DNA (nDNA) 
mutations (mito-nuclear interaction), its impact on MN incidence, and whether its inclusion to the 
latest CHIP-based MN prediction algorithm could improve risk stratification in over 440,000 
participants in the UK Biobank and Atherosclerosis Risk in Communities (ARIC) studies. We 
found that heteroplasmy count and heteroplasmic variants predicted to be more deleterious 
were enriched in individuals with CHIP, particularly in those with significantly expanded clones 
(VAF ≥20%), with more than one CHIP mutation, and with mutations in the spliceosome 
machinery. Individuals with both heteroplasmy and CHIP were more likely to develop MN than 
participants with either entity alone. Furthermore, we found a significant and independent 
association of predicted pathogenic effect of heteroplasmic variants with incident MN, 
suggesting a causal role of mtDNA variations in MN pathogenesis, even in the absence of 
CHIP. Finally, incorporating heteroplasmy into an existing risk score model for MN in individuals 
with CHIP significantly improved the sensitivity by 13.1% and identified 34.4% more cases in the 
high-risk group (10-year risk ≥10%). In sum, our findings suggest that heteroplasmy, in addition 
to being a marker of clonal expansion, may be a causal biomarker of MN development, with 
clinical utility in the general population.   
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Introduction  

Screening, detection, and control of early malignancy or premalignant lesions are the 
hallmark of secondary prevention of cancer. This set of interventions, while successfully applied 
in various solid tumor malignancies, has not been widely adopted in myeloid neoplasm (MN), 
likely due to the lack of precise biomarkers of MN risk 4–6. In recent years, significant progress 
has been made, fueled mainly by advances in cancer genomics and next-generation 
sequencing (NGS). The broad application of this technology to large population-based cohorts, 
providing easy access to sequencing data for the scientific community, allowed for the 
identification of clonal expansion of hematopoietic cells, also known as clonal hematopoiesis 
(CH), in over 10% of the adult population1,7–9. The most studied form of CH is clonal 
hematopoiesis of indeterminant potential (CHIP), which is defined as the presence of cancer-
associated somatic mutations in hematopoietic cells in otherwise healthy individuals. Given its 
clonal nature, it is not surprising that some forms of CHIP are myeloid premalignant conditions. 
Most recently, novel multiparameter MN prediction models including somatic mutations, 
hematologic indices, and demographic data have been developed to identify the population with 
CHIP at high risk for developing MN 10,11. Unfortunately, these risk scoring systems are limited 
to individuals with CHIP, who constitute only a small fraction of individuals at risk.  

Somatic mitochondrial DNA (mtDNA) mutations are common and have been reported 

not only in mitochondrial diseases, but also in aging and cancer 12,13. Unlike diploid nuclear 

DNA, mtDNA exists in 10s to 1000s of copies within each cell. Thus, mutations in the mtDNA 

can exist in a subset of the total cellular mtDNA, a condition termed “mitochondrial 

heteroplasmy”. As mtDNA repair machinery is limited and not as efficient as the nuclear DNA 

(nDNA) repair system, the mtDNA mutation rate is 10-17 fold higher than in nDNA 14,15. 

Heteroplasmy can therefore be used as an endogenous cell barcode allowing for lineage tracing 

and assessment of the clonal expansion of hematopoietic cells and serves as an excellent 

marker of CH 3. In participants from the UK Biobank (UKB), heteroplasmy was present in 30% of 

individuals, and consistent with CH, the frequency increased with age 2. Given their central role 

in essential cellular processes, mitochondrial alterations are key components of several 

hallmarks of cancer such as cellular energetics, proliferation, and apoptosis 16,17. Thus, it is not 

surprising that heteroplasmy may provide additional mechanisms of selective growth advantage 

of abnormal clone(s) and further shape the genomic landscape of CH and MN. We have 

recently reported that mtDNA heteroplasmy was associated with a 1.5-fold increase in all-cause 

mortality, and the presence of mtDNA mutations at highly constrained sites was associated with 

a 4-fold increase in mortality due to leukemia 2. 

 
In the current study we used two large population-based cohorts, UKB and 

Atherosclerosis Risk in Communities (ARIC) study, to examine the association between somatic 
mtDNA and nDNA mutations (mito-nuclear interaction) in clonal evolution and its impact on the 
incidence of MN. We further assessed the role of heteroplasmy as a novel predictor of MN risk 
and whether the inclusion of heteroplasmy into the latest MN prediction algorithms could 
improve risk classification.  
 
 

Results 

Demographics and molecular characteristics of the UKB and ARIC cohorts. 
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The study included a total of 441,936 participants from the UKB (N = 434,304) and ARIC 

(N = 7,632) cohorts, who had information on both CHIP and mitochondrial heteroplasmy. In the 

UKB, the mean age was 56.5 (8.1) years, 45.8% (n = 199,046) were men and 94.8% (n = 

410,313) were self-identified as White. In ARIC, the mean age was 57.9 (6.0) years, 45.2% (n = 

3,453) were men and 76.2% (n = 5,817) and 23.8% (n = 1,815) were self-identified as Whites 

and Blacks, respectively (Table 1).  

Using whole exome sequencing data (WES), we identified 37,089 CHIP mutations in the 

UKB and 435 CHIP mutations in ARIC at variant allele fraction (VAF) ³ 2%, which were present 

in 33,597 (7.7%) UKB participants and 375 (4.9%) ARIC participants. Similar to previous 

reports, the most commonly mutated genes were DNMT3A, TET2, and ASXL1 (Figure 1A, B, 

Supplementary Figure 1). Mutations in spliceosome genes (SRSF2, SF3B1 and U2AF1) were 

associated with a higher median (25th, 75th percentiles) VAF compared to other CHIP mutations 

in UKB participants (13.0% [7.9%, 24.1%] vs 7.2% [5.0%, 13.7%]; P < 0.0001) but not in ARIC 

Figure 1. Description of CHIP mutations. 

Distribution of the number of individuals carrying mutations stratified by genes in A) UKB 

and B) ARIC. Distribution of VAF stratified by gene in C) UKB and D) ARIC. Number of 

mutations per individual in E) UKB and F) ARIC. Only the DTA, DDR and classic 

spliceosome mutations are presented. VAF = variant allele fraction; DTA = DNMT3A, TET2, 

ASXL1; DDR = DNA damage response. * Denotes the P value for a comparison between 

spliceosome mutations and other CHIP mutations.  
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(10.1% [7.2%, 20.0%] vs 10.4% [4.9%, 18.2%]; P = 0.72) (Figure 1C, D). Most participants with 

CHIP had only one mutation, with multiple mutations seen in only 8.6% of UKB (n = 2,873) and 

12.0% of ARIC participants (n = 45) (Figure 1E, F). As expected, CHIP was associated with 

older age and smoking status (Table 1).  

MtDNA heteroplasmy was identified from whole genome sequencing (WGS) data using 

the MitoHPC pipeline18. We used a heteroplasmy VAF threshold of 5% (SNVs between 5% and 

95% were called as heteroplasmic) based on extensive simulations and assessment of 

empirical data to maximize sensitivity to true heteroplasmies while minimizing potential false-

positives due to low-level cross-contamination or mis-mapping of nuclear-encoded 

mitochondrial DNA (NUMTs) 18. To identify predicted deleterious mtDNA variants, we used a 

modified mitochondrial DNA local constraint (mMLC) score, which quantifies the local tolerance 

to base or amino acid substitution for each base pair in the mtDNA genome 19. The mMLC score 

ranges from 0 to 1, with higher scores indicating more constrained, and therefore, more 

deleterious SNVs. To capture the overall impact of multiple heteroplasmies in a given individual, 

we generated the mMLC score sum (mMSS) by summing all mMLC scores for that individual. 

Prior work has demonstrated that the mMSS is a stronger predictor of overall mortality than 

heteroplasmy count, suggesting that deleterious mitochondrial heteroplasmies may be causally 

linked to adverse outcomes 2. Heteroplasmy was present in 122,969 (28.3%) and 2,159 (28.3%) 

participants in the UKB and ARIC, respectively, with heteroplasmies most frequently observed 

in complex I genes and the D-loop (Figure 2A, B). Heteroplasmic variants in rRNA and tRNA 

were predicted to be more deleterious than in other mtDNA complex / regions, as reflected by 

higher mMSS scores (Figure 2C, D). Among those with heteroplasmy, 23,642 (19.2%) 

participants in UKB and 417 (19.3%) in ARIC had more than 1 heteroplasmy (Figure 2 E, F). 

Similar to CHIP, heteroplasmy was associated with older age and smoking status (Table 2). 
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Association between CHIP and heteroplasmy. 

We and others 2,20–22 have demonstrated that ~70% of heteroplasmies identified in adults 

reflect acquired mutations, and thus, likely mark the clonal expansion of hematopoietic stem 

cells (HSC). Therefore, we sought to determine whether mtDNA heteroplasmy serves as a more 

sensitive or alternative marker of CH, or whether it is also involved in biologically relevant 

processes, contributing to relative expansion of hematopoietic clones either independently or in 

combination with CHIP mutations. To address this question, we analyzed the association 

between various metrics of heteroplasmy and CHIP using multivariable logistic regression 

models adjusted for age, sex, smoking status and a history of cancer. Concurrent CHIP and 

heteroplasmy (“CHIP and heteroplasmy”) was present in approximately 2-3% of participants 

(UKB = 2.6%, ARIC = 1.7%) (Figure 3A, B). Heteroplasmy without concurrent CHIP 

(“Heteroplasmy only”) was seen in approximately 25% of participants (UKB = 25.7%, ARIC = 

Figure 2. Description of heteroplasmy. 

Distribution of the number of individuals with heteroplasmy stratified by complex/region in A) 

UKB and B) ARIC. Distribution of mMSS stratified by complex/region in C) UKB and D) ARIC. 

Number of heteroplasmies per individual in E) UKB and F) ARIC. * Denotes comparison 

between rRNA and tRNA mMSS and the mMSS occurring in other complexes/regions. 
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26.6%), and approximately 5% of individuals had CHIP only without evidence of heteroplasmy 

Figure 3. Association between CHIP and heteroplasmy. 

 

The percentage of individuals presenting with both CHIP and heteroplasmy, only with CHIP, 

or only with heteroplasmy  in A) UKB and B) ARIC. The prevalence of heteroplasmy in 

different CHIP gene subsets is shown in C) UKB and D) ARIC. The prevalence of multiple 

heteroplasmies within individuals with heteroplasmy across different CHIP gene subsets is 

shown in E) UKB and F) ARIC. The absolute number of individuals with heteroplasmy is 

indicated by the number on the left side of the bars. mMSS of different CHIP subsets in 

individuals with heteroplasmy is shown in G) UKB and H) ARIC. * Indicates the comparison 

between spliceosome mutations and other CHIP genes. In the UKB, these analyses were 

adjusted for age modeled as a restricted cubic spline, sex, smoking status and the presence 

of prevalent cancer. In ARIC, these analyses were adjusted for age modeled as a restricted 

cubic spline, sex and smoking status. For analyses including mMSS, the models were also 

adjusted for heteroplasmy count. 
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(“CHIP only”; UKB = 5.1%, ARIC = 3.2%). Notably, heteroplasmy was more common in CHIP 

participants compared to those without CHIP in both UKB (34.1% vs 27.8%; P < 0.0001) and 

ARIC (35.2% vs 27.9%; P < 0.01) (Figure 3C, D). Among participants with CHIP in UKB, 

heteroplasmy was more common in individuals with large CHIP clones (VAF ≥ 20%) (44.1% vs 

32.2%; P < 0.0001) and in those with multiple mutations (39.5% vs 33.6%; P < 0.0001). These 

results were consistent in ARIC, where heteroplasmy was more common in individuals with 

large clones (42.4% vs 33.1%; P = 0.09) and multiple mutations (48.9% vs 33.3%; P = 0.04) 

(Figure 3C, D). Among CHIP genotypes, heteroplasmy was significantly more common in 

individuals with spliceosome mutations (UKB 55.1% vs 33.6%; P < 0.0001 and ARIC 66.7% vs 

34.3%; P = 0.05) (Figure 3C, D, Supplementary Figure 2).  

Given the association between CHIP and heteroplasmy, we explored whether having 

multiple heteroplasmies was also associated with features of CHIP in general and, particularly, 

with high-risk CHIP. Among individuals with heteroplasmy in the UKB, those with CHIP were 

more likely to have multiple heteroplasmies compared to those without CHIP (24.1% vs 18.7%; 

P < 0.0001) (Figure 3E). CHIP clonal burden (30.7% vs 22.4%; P < 0.0001) and multiple CHIP 

mutations (30.1% vs 23.5%; P < 0.0001) were also associated with the presence of multiple 

heteroplasmies (Figure 3E). Among CHIP genotypes, multiple heteroplasmies were more 

common in CHIP with spliceosome mutations (39.1% vs 23.6%; P < 0.0001) (Figure 3E). Similar 

results, though not significant, were observed in ARIC, with limited power due to the smaller 

cohort size (Figure 3F).   

To address whether the higher prevalence of heteroplasmy in CHIP individuals was just 

a marker of CH (passenger mtDNA mutations) rather than likely functionally contributing to 

clonal expansion, we assessed the association between CHIP and mMSS adjusted for age, sex, 

smoking status, history of cancer, and heteroplasmy count. Among those with heteroplasmy, the 

presence of CHIP was associated with a significantly higher mMSS compared to no CHIP 

(Figure 3G, H, Supplementary Table 2). Moreover, higher mMSS score was observed in 

individuals with higher clonal burden (VAF ≥ 20%) and with multiple CHIP mutations (Figure 3G, 

H, Supplementary Table 2). When stratified by specific CHIP genotypes, mutations in 

spliceosome genes (SRSF2, SF3B1 and U2AF1) were associated with a higher mMSS in UKB 

and had a similar directionality in ARIC when compared to other CHIP mutations (Figure 3G, H, 

Supplementary Figure 2, Supplementary Table 2). These data suggest that the presence of 

mtDNA mutations is not merely a marker of clonal expansion but may confer an important cell 

adaptation.  

To determine if the increase in heteroplasmy prevalence in CHIP was due to a specific 

mtDNA complex / region, we assessed enrichment with measures calculated separately for 

each complex / region (Supplementary Figure 3). We observed a higher prevalence of rRNA 

mutations and a lower prevalence of D-loop mutations in participants with CHIP compared to 

participants without CHIP, and in high-risk subsets of CHIP (VAF>20%, multiple mutations, 

spliceosome mutations) (Supplementary Figure 3A, B, C, D). Because this enrichment could 

simply reflect the fact that rRNA mutations are more likely to be deleterious (i.e., heteroplasmies 

have high average mMLC), we also evaluated the mMSS by complex / region. We observed 

that, even when restricted to individuals with rRNA mutations, participants with CHIP had higher 

mMSS values compared to those without CHIP, and, among individuals with CHIP, high-risk 

subsets of CHIP (VAF>20%, multiple mutations, spliceosome mutations) had higher mMSS 

values (Supplementary Figure 3E, F, G, H). 
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Heteroplasmy and the risk of MN 

We have previously reported an association between heteroplasmy and incident and 

prevalent hematologic malignancies 2. Analogous to CHIP and MN, we sought to determine 

whether the presence of heteroplasmy in the general population was associated with an 

increased risk of MN. There were 1,191 and 160 cases of incident MN in UKB and ARIC, 

respectively. Participants with heteroplasmy had a higher risk of developing MN even after 

adjusting for age, sex, smoking status, and a history of cancer (UKB only) in the UKB (HR = 2.1; 

95% CI 1.9–2.3; P < 0.0001) and ARIC (HR = 1.7; 95% CI 1.2–2.3; P < 0.01) (Figure 4A, B). 

Among individuals with heteroplasmy, heteroplasmy count was associated with a higher risk of 

MN in the UKB (HR = 1.7; 95% CI 1.5–1.9; P < 0.0001) and ARIC (HR = 1.3; 95% CI 0.9–2.0; P 

= 0.13). Similarly, mMSS was associated with an increased risk of MN in both the UKB (HR = 

4.4; 95% CI 3.7–5.2; P < 0.0001) (Supplementary Figure 4A, B) and ARIC (HR = 2.2; 95% CI 

1.1–4.4; P = 0.02). When heteroplasmy count and mMSS were mutually adjusted in the same 

model, the heteroplasmy count (UKB [HR = 1.2; 95% CI 1.1–1.4; P < 0.01] and ARIC [HR = ; 

95% CI 0.7–1.8; P = 0.53]) and mMSS (UKB [HR = 3.7; 95% CI 3.0–4.6; P < 0.0001] and ARIC 

[HR = 2.0; 95% CI 0.9–4.3; P = 0.08]) were independently associated with MN, indicating that 

heteroplasmy is not only a marker for clonal expansion but ostensibly deleterious mtDNA 

mutations are causally associated with MN. This claim is further supported when analyzing 

heteroplasmy by complex / region, where D-loop heteroplasmy count, which is largely driven by 

Figure 4. Risk of MN incidence based on CHIP and heteroplasmy status.  

 

Kaplan-Meier curves and hazard ratios from the adjusted Cox proportional hazards models 

comparing the risk of MN development between individuals with heteroplasmy and those 

without heteroplasmy in A) UKB and B) ARIC, and those with heteroplasmy only, those with 

CHIP only and those with both CHIP and heteroplasmy in C) UKB and D) ARIC. In the UKB, 

these analyses were adjusted for age modeled as a restricted cubic spline, sex, smoking 

status and the presence of prevalent cancer. In ARIC, these analyses were adjusted for age 

modeled as a restricted cubic spline, sex and smoking status. 
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benign heteroplasmies, showed no association, but D-loop mMSS was significantly associated, 

with similar effect sizes to the other complexes / regions (Supplementary Figure 5A, B). In the 

UKB, the associations were independent of race, smoking status and prior cancers. 

(Supplementary Table 3). Among smokers, the association between heteroplasmy count (HR = 

1.2; 95% CI 1.0–1.5; P = 0.07), mMSS (HR = 3.2; 95% CI 2.3–4.5; P < 0.0001) and MN 

remained significant after adjusting for the pack-years.   

We further explored the potential interaction between CHIP and heteroplasmy in the 

development of MN by evaluating the associations in individuals with either factor alone and 

with both CHIP and heteroplasmy. Compared to individuals without either CHIP or 

heteroplasmy, those with either one alone had an elevated risk of MN (For CHIP, UKB HR = 

5.3; 95% CI 4.5–6.3; P < 0.0001; ARIC HR = 1.3; 95% CI 0.5–3.2; P = 0.55; for heteroplasmy, 

UKB HR = 1.7; 95% CI 1.5–2.0; P < 0.0001; ARIC HR = 1.5; 95% CI 1.1–2.1; P = 0.02) (Figure 

4C, D). Notably, participants with both CHIP and heteroplasmy (UKB [HR = 12.1; 95% CI 10.4–

14.2; P < 0.0001]; ARIC [HR = 4.9; 95% CI 2.5–9.4; P < 0.0001]) had a significantly higher risk 

of MN compared to the expected combined (multiplicative) effect assuming independence of 

these factors (P for interaction = 0.02 in the UKB; P for interaction = 0.12 in ARIC). This finding 

demonstrated a synergistic effect between CHIP and heteroplasmy, potentially amplifying the 

risk of MN incidence. In the UKB, the association remained significant after adjusting for race, 

smoking status, and prior cancers (Supplementary Table 3). Finally, we observed that 

heteroplamsy was an independent predictor of MN risk regardless of the CHIP risk categories 

when adjusted for the number mutations and clonal burden in UKB (HR = 1.9; 95% CI 1.5–2.3; 

P < 0.0001) and in ARIC (HR = 3.9; 95% CI 1.3–11.8; P = 0.02). 

    

Myeloid malignancy risk score including mitochondrial heteroplasmy in the UK Biobank. 

A novel clonal hematopoiesis risk score (CHRS) was recently developed in the UKB to 

better assess the risk of progression to MN among individuals with CHIP11. The CHRS is 

calculated using 8 components, including age ≥65 years, presence of cytopenia, red cell 

distribution width (RDW) ≥15, mean corpuscular volume (MCV) ≥100, presence of high-risk 

mutation, a single DNMT3A mutation, number of mutations, and VAF ≥20%, and categorized as 

low-, intermediate-, and high-risk based on 10-year cumulative incidence 11. Of the UKB 

participants with CHIP, 30,542 (90.9%), 2,821 (8.4%), and 234 (0.7%) participants were 

classified as CHRS low-, intermediate-, and high-risk, respectively, and there were 457 incident 

cases of MN during a median (IQR) follow-up of 13.7 (12.9, 14.4) years. Compared to those in 

the low-risk category, intermediate- (HR 10.6; 95% CI 8.6–13.0; P < 0.0001) and high-risk (HR = 

99.1; 95% CI 76.6–128.3; P < 0.0001) categories had a higher risk of MN, after adjusting for 

sex, smoking status, and a history of cancer (Figure 5). The results were similar when the 

analysis was restricted to self-reported Whites, unrelated individuals, and never smokers 

(Supplementary Table 3). In addition, when we performed analysis by subtypes of MN, higher 

CHRS category was associated with a higher risk of developing all subtypes of MN, including 

acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPN), and myelodysplastic 

syndrome (MDS) (Supplementary Figure 6).  
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Compared to those in the low-risk CHRS category, participants in the intermediate- and 

high-risk categories were, on average, more likely to have a higher heteroplasmy count and 

mMSS (Supplementary Table 4, Supplementary Figure 7). We further evaluated whether 

heteroplasmy was associated with MN independent of CHRS. Both heteroplasmy count (HR 

1.4; 95% CI 1.3–1.6; P < 0.0001) and mMSS (HR 2.1; 95% CI 1.7–2.5; P < 0.0001) were 

associated with incident MN, after adjusting for CHRS category, sex, smoking, and a history of 

cancer. When heteroplasmy count and mMSS were mutually adjusted for in the same 

regression model, the associations were attenuated (HR 1.3; 95% CI 1.1–1.4; P = 0.001 for 

heteroplasmy count and HR 1.5; 95% CI 1.1– 2.0; P = 0.007 for mMSS) but retained their 

significance, suggesting that heteroplasmy is not only a biomarker, but deleterious variants are 

also causally associated with MN.   

Having established that heteroplasmy is a predictor of MN independent of CHRS, we 

updated the CHRS model (CHRS-M) to incorporate the presence of heteroplasmy and mMSS, 

using the algorithm as outlined in the original CHRS manuscript (round the effect estimate to the 

nearest 0.5 and add 1) 11 (Table 3, Supplementary Figure 8). To account for the two additional 

Figure 5. Cumulative incidence and hazard ratios (95% confidence intervals) of MN by 

CHRS category.  

 

Kaplan-Meier curves and hazard ratios from the adjusted Cox proportional hazards models 

comparing the risk of MN development by CHRS category. The analysis was adjusted for 

age modeled as a restricted cubic spline, sex, smoking status and the presence of prevalent 

cancer. Abbreviations: CI, confidence interval; and HR, hazard ratio. Green line indicates 

low-risk, blue line indicates intermediate-risk, and red line indicates high-risk groups. 
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heteroplasmy parameters in the score (presence of heteroplasmy and mMSS), we added 2 to 

the score cutoffs used by the CHRS to classify risk groups; low (9.5–12.5; n = 29,147), 

intermediate (13–15; n = 4,089), and high (15.5–18.5; n = 361) (Figure 6A). The cumulative 

incidence of MN at 10 years was 0.4%, 3.1%, and 30.7% in each risk group, respectively 

(Figure 6B, C). Compared to the low-risk group, the intermediate- and high-risk groups had an 

increased risk of incident MN (HR 7.2; 95% CI 5.8–9.0; P < 0.0001; and HR 87.1; 95% CI 68.8–

110.6; P < 0.0001, respectively) after adjusting for sex, smoking status, and a history of cancer. 

Compared to the CHRS, CHRS-M resulted in reclassification of 1,395 individuals (4.6%, 22 

cases) from low to intermediate risk and 127 (4.5%, 31 cases) from intermediate to high risk, 

resulting in a 34.4% increase of incident cases identified as high-risk individuals (n = 90 using 

CHRS vs. n = 121 using CHRS-M). Including parameters for heteroplasmy in the prediction 

model significantly improved the discrimination assessed by net reclassification index (NRI 8.7; 

95% CI 5.4–11.7; NRI in cases 13.1; 95% CI 9.9–16.2; NRI in controls -4.4; 95% CI -4.6–-4.2), 

indicating that adding heteroplasmy information to the existing CHRS score improves the 

sensitivity of identifying those who develop MN, and particularly those are at a high risk, with a 

small decrease in specificity.  

 

 

Figure 6. Risk of MN development by CHRS-M categories.  

 

(A) A Sankey diagram of the reclassification of CHRS to CHRS-M. (B) Kaplan-Meier curves 

for the risk of MN development by CHRS-M category. The dotted lines indicate the 

cumulative incidence of individuals who remain in the same risk category. The solid lines 

indicate the cumulative individuals who are recategorized from low to intermediate (green) 

risk and from intermediate to high (dark blue) risk categories using the CHRS-M. (C) Kaplan-

Meier curves for the risk of MN development in the CHRS low-risk group with the same data 

as (B) on an enlarged y axis. Abbreviations: CHRS, clonal hematopoiesis risk score; and 

CHRS-M, clonal hematopoiesis risk score with mitochondrial heteroplasmy. 
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The role of heteroplasmy on myeloid malignancy in individuals without CHIP. 

We further evaluated the association between heteroplasmy and MN in individuals 

without CHIP in the UKB (n = 400,707). Among individuals without CHIP, there were 734 

incident cases of MN during a median (IQR) follow-up of 13.8 (13.1, 14.5) years. Both the 

number of heteroplasmies and mMSS were associated with a higher risk of MN (HR = 1.5; 95% 

CI 1.4–1.6; P < 0.0001 for a 1-unit increase in heteroplasmy count and HR = 3.1; 95% CI 2.5–

3.8; P < 0.0001 for a 1-unit increase in mMSS) when adjusted for age, sex, smoking status, and 

a history of cancer. The associations were attenuated when we assessed the independent 

associations of heteroplasmy count (HR = 1.2; 95% CI 1.1–1.4; P < 0.01) and mMSS (HR = 2.3; 

95% CI 1.7–3.1; P < 0.0001) with MN by mutually adjusting for each other. Heteroplasmy count 

(HR = 1.2; 95% CI 1.1–1.4; P < 0.01) and mMSS (HR = 2.2; 95% CI 1.6–3.0; P < 0.0001) were 

independent risk factors of MN even after further adjusting for blood profiles that are potential 

biomarkers of MN, including RDW, MCV, and presence of cytopenia, suggesting that mtDNA 

heteroplasmy is a novel predictor of MN risk also in people without CHIP.  

   

Discussion 

The role of somatic nuclear DNA mutation, and CHIP in particular, has been increasingly 

recognized as a key risk factor for developing MN. Much less is known about the role of somatic 

mutations in the mitochondrial genome, with recent work identifying a strong association 

between mitochondrial heteroplamsy and hematological cancers 2, and the interaction between 

nuclear and mitochondrial mutations 23. In this study, we found a significant enrichment of 

participants harboring both CHIP variants and mitochondrial heteroplasmy, with compelling 

evidence that this enrichment differs based on the specific natures of the nuclear and 

mitochondrial mutations. We further found that mitochondrial heteroplasmy can significantly 

improve a CHIP-based risk score for the development of MN and may help identify those at risk 

in non-CHIP individuals, in whom no current risk scores are currently available.  

The high prevalence of heteroplasmy (approximately 30% in both UKB and ARIC), and 

the observation that the majority of heteroplasmies (70%) measured in peripheral blood are 

somatic, suggest that they can serve as markers of clonal expansion 2,20–22. This observation is 

corroborated by the higher prevalence of heteroplasmy in individuals with CHIP, particularly with 

VAF ≥20%, compared to those without CHIP. Somatic mitochondrial mutations have also been 

demonstrated to play an important role in tumorigenesis by increasing the level of reactive 

oxygen species (ROS) and reducing apoptosis 24–26. Moreover, certain tumors have been found 

to significantly favor the selection of deleterious mitochondrial mutations 24,27. Consistent with 

these results, we found that heteroplasmic variants predicted to be more deleterious were 

enriched in individuals with high-risk CHIP, particularly in individuals with significantly expanded 

clones (VAF ≥20%), with more than one mutation, and with mutations in spliceosome machinery 
7,11,28–30. These associations remained significant even after adjusting for the number of 

heteroplasmies, supporting the claim that the functional nature of the mitochondrial mutations is 

important, and does not simply represent passenger mutations due to CHIP. 

 An important aim of our study was to determine whether the presence of heteroplasmy 

was merely a surrogate marker for CH or whether it played a causal role in the development of 

MN. By incorporating both heteroplasmy presence (count) and a predicted burden metric 

(mMSS) in the same regression model, and demonstrating that both remain significant 
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predictors, we provide strong statistical evidence for a causal role of deleterious mtDNA 

variation in MN pathogenesis. This causal role is further corroborated by our finding that there is 

a statistically significant synergistic (non-multiplicative) effect of heteroplasmy and CHIP on the 

risk of MN. Thus, beyond simply serving as a marker of clonal hematopoiesis, the specific 

functional consequence of the heteroplasmy itself likely plays a role in tumorgenesis, potentially 

including oxidative damage to oncogenes or tumor suppressor genes and leading to abnormal 

hematopoiesis 31. Indeed, heteroplasmy has been found to be an adverse prognostic factor in 

patients diagnosed with MN 32–34.    

From a clinical perspective, the ability to identify high-risk MN individuals early is key to 

improving outcomes. Incorporating heteroplasmy information into a state-of-the-art CHIP-based 

prediction model significantly improved the sensitivity of identifying individuals at risk of 

developing MN, with little loss of specificity. Specifically, integrating the presence (heteroplasmy 

yes/no) and predicted deleterious effect of heteroplasmic variants, the updated model was able 

to detect 34.4% more incident cases among individuals classified as high-risk (10-year risk ≥ 

10%) of developing MN. This is a remarkable improvement to the current score system, without 

the need for recalibrating or retraining the algorithm. Clinically, this finding suggests that 

heteroplasmy information can refine the existing risk stratification and identify high-risk 

individuals (10-year risk ≥10%) who have been inappropriately classified as intermediate risk 

(CHRS 10-year risk of 2-10%), and who may benefit from close surveillance. Moreover, 

mitochondrial DNA sequencing and detection of heteroplasmy can be feasibly implemented in 

currently used molecular tests to facilitate the identification of this high-risk population. 

While CHIP has great clinical utility, particularly when combined with heteroplasmy, the 

risk of MN is particularly not well understood among individuals without evidence of CHIP. Our 

study demonstrates that having any mitochondrial heteroplasmy was associated with a higher 

risk of MN, even after accounting for known risk factors in individuals without CHIP. Notably, 

higher mMSS was a more robust predictor for MN than just the number of heteroplasmies, 

further suggesting that mutation in mtDNA may be an independent causal mechanism for MN. 

However, MN is a rare disease, with a crude incidence rate of 14 cases per 100,000 person-

years in the general population 35, making it particularly difficult to precisely estimate its risk and 

study novel biomarkers. Consequently, a risk stratification model applicable to the general 

population is currently unavailable. Further studies are needed to better understand the 

underlying mechanisms linking mtDNA variation to MN incidence and to develop a universal risk 

model for MN to identify high risk population regardless of CHIP status.   

The current manuscript has several limitations. First, as there are differences between 

UKB and ARIC and between each cohort and the population from which they were sampled. 

Nonetheless, the similarity of the results between the two cohorts only strengthens the validity of 

our observations. Secondly, the use of WES to detect CHIP has inherent limitations related to 

the relatively shallow sequencing depth, which can lead to an increase in false negatives. In 

addition, the UKB is mostly of self-reported White individuals and the subgroup analysis of non-

White individuals was based on a small number of events (34 events out of 23,991 individuals). 

Thus, the findings of the interaction between heteroplasmy and CHIP, as well as the CHRS-M 

need to be validated in more diverse populations. Despite these limitations, our findings suggest 

that heteroplasmy, in addition to being a marker of clonal expansion, may be a causal biomarker 

of MN development, with clinical utility in the general population.  

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


  17 

 

   

 

Methods 

Study population 

The UK Biobank (UKB) is a large population-based prospective study of ~500,000 

participants between the ages of 40 to 69 years across the United Kingdom recruited from 2006 

to 2010 36. The UKB has extensive information on participant’s genetic and phenotypic data, 

including demographics and lifestyle factors. The data is linked to the death registry, cancer 

registry, hospital admissions, and primary care visit data.  

For the current study, 434,404 participants who had both WGS, which was used for 

calling mitochondrial DNA heteroplasmy, and WES, which was used for CHIP variant calling, 

and passed the variant-level and sample-level QC for both and met inclusion / exclusion criteria 

were analyzed (details below; Supplementary Figure 9). More specifically, there were 490,355 

participants with WGS, where mtDNA heteroplasmy was evaluated using MitoHPC 18 

(https://github.com/dpuiu/MitoHPC). We excluded samples (n = 3,776) if they met one of the 

following criteria: suspicious of having 1) potential mitochondrial contamination (a contamination 

level ≥3% from Haplocheck 37), 2) 2 or more variants belonging to a different mitochondrial 

haplogroup, 3) 2 or more variants matching to the same NUMT, or 4) low minimum base 

coverage (<100) or low mean base coverage (<500). In addition, because the presence of 

NUMTs can influence the false positive mtDNA heteroplasmy calls at low mtDNA-CN 38, we 

removed 12,001 participants with mtDNA-CN ≤40. We additionally removed 704 participants 

with a heteroplasmy count above 5 because we found that samples with a heteroplasmic count 

above 5 are not distinguishable from contaminated samples 2. Some samples met multiple 

exclusion criteria, which resulted in 13,921 participants being excluded. After exclusion, there 

were 476,434 participants with heteroplasmy information. For WES, 466,042 participants had 

both CHIP calls from GATK Mutect2 39 and U2AF1 calls. No additional participants were 

excluded for having a high number of INDELs or CHIP variants. Of the 450,916 participants who 

passed QC for heteroplsmy and CHIP, we excluded 463 participants with a history of MN (n = 

310) or a potential MPN (n = 182). We further excluded 16,149 participants who did not have 

information on tobacco smoking status (n = 2,211) or have missing values for any one of the 

following measurements that are used for calculating the clonal hematopoiesis risk score 

(CHRS; n = 14,077): hemoglobin, platelet count, neutrophil count, red blood cell distribution 

width (RDW), or mean corpuscular volume (MCV). A detailed description of QC steps for 

heteroplasmy and CHIP, and the exclusion for heteroplasmy count and potential MPN are 

provided below. The final sample for analysis included 434,404 individuals (199,046 men and 

235,258 women). The current study was approved by the Johns Hopkins Medicine Institutional 

Review Boards.    

The Atherosclerosis Risk in Communities (ARIC) study is a community-based, 

prospective cohort study focusing on the risk factors for cardiovascular disease, that recruited 

15,792 individuals between the ages of 45 and 64 from 4 communities in the US (Forsyth 

County, NC; Jackson, MS; Minneapolis suburbs, MN; and Washington County, MD) from 1987 

to 1989 40. Of those, 12,776 had WGS available, on which MitoHPC was run (Supplementary 

Figure 10). After excluding participants that failed heteroplasmy QC and those that did not have 

visit information (n = 69), we retained 12,707 individuals with heteroplasmy information. We 

further excluded individuals with those that did not have WES data from the same visit (n = 

4,340), that did not have information on incident myeloid neoplasms (n = 709), that were likely 

prevalent MPNs (n = 0), that had an excessive number (≥4) of CHIP indels (n = 3) and that had 
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10 or more CHIP mutations (n = 1) and did not have information on smoking status (n = 22). 

The final sample for analysis included 7,632 individuals (3,453 men and 4,179 women). All 

participants included in this study provided appropriate informed consent. The ARIC study 

protocol was approved by the Johns Hopkins Medicine Institutional Review Board (IRB), which 

serves as the single site IRB.    

 

Heteroplasmy and mitochondrial DNA copy number analysis in the UK Biobank  

Samples for DNA were collected on the baseline visit and DNA was extracted from buffy 

coat using the Maxwell® 16 Instrument (Promega) and the Maxwell® 16 Blood DNA Purification 

Kit (Promega – AS1010X). WGS CRAM files from the UKB were processed on the DNA Nexus 

server. For heteroplasmy identification, we used the MitoHPC pipeline (version 20230418; all 

default settings with default random down-sampling to use at most 222K reads) 18, implementing 

GATK Mutect2 for variant identification 39,41. We defined a heteroplasmic SNVs at a variant 

allele frequency of 5%, meaning that variant alleles at a frequency of 5-95% within an individual 

are defined as heteroplasmic. Alleles less than 5% or greater than 95% are counted as 

homoplasmic. To test the robustness of this cutoff, we repeated the main analyses with VAF 

cutoffs at 3% and 10%. The results were consistent across different cutoffs (Supplementary 

Figure 11). MitoHPC pipeline incorporates haplogrep (https://github.com/seppinho/haplogrep-

cmd/v2.4.0) 42 to identify haplogroups and Haplocheck (https://github.com/genepi/haplocheck) 37 

to detect in-sample contamination by detecting two different mitochondrial haplotypes in each 

sample. For mitochondrial DNA copy number (mtDNA-CN) calculation, we used SAMtools 43 

embedded in MitoHPC to generate read count and coverage information, using the command 

‘samtools idxstats’. A detailed documentation on how to run MitoHPC on DNA Nexus server is 

available: https://github.com/ArkingLab/MitoHPC/blob/main/docs/DNAnexus_CLOUD.md.  

All 490,355 WGS samples processed using MitoHPC variant calling were successfully 

completed 18. The mean nuclear genomic coverage for WGS samples in the UKB was 98x and 

the mean mtDNA coverage was 965x.  

 

Heteroplasmy and mitochondrial DNA copy number analysis in ARIC 

We analyzed WGS data from the Atherosclerosis Risk in Communities (ARIC) study (n = 

12,776). DNA samples were collected for each participant across multiple clinic visits (V1, V2, 

V3, V4, MRI and V5) and DNA for WGS were isolated from buffy coat using the Gentra 

Puregene Blood Kit (Qiagen). WGS calls were from the Trans-Omics for Precision Medicine 

(TOPMed; https://topmed.nhlbi.nih.gov/methods) program are from freeze 8 (30.6%; n = 3,915) 

and from the Centers for Common Disease Genomics (CCDG; 

https://www.genome.gov/27563570) initiative (69.4%; n = 8,861). There were 11 individuals who 

were sequenced in both TOPMed and CCDG, and we randomly selected one of the two. 

TOPMed studies provide WGS data at ∼30x genomic coverage using Illumina next-generation 

sequencing technology, which must pass specific quality control metrics before being released 

for use by the scientific community. The median mtDNA coverage was 1898x.   

 

Heteroplasmy filtering for variants 
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MitoHPC provides various variant annotations to evaluate variant quality, allowing us to 

remove low quality variants prior to analysis. We excluded variants with read depth <300 and 

those flagged as base quality, mapping quality, strand bias, slippage, weak evidence, position, 

clustered, fragment length, and haplotype flags in the FILTER column of the VCF. We further 

excluded heteroplasmic variants at poly-C homopolymer regions on the mitochondrial 

chromosome (the list is provided as HP.bed.gz in https://github.com/dpuiu/MitoHPC). INDELs 

are also excluded because they are often found in homopolymer regions, where it is challenging 

to accurately call heteroplasmies 18.  

 

Mitochondrial local constraint (MLC) score 

The mitochondrial local constraint (MLC) score is a metric reflecting local tolerance to 

substitutions of base or amino acid. It is calculated for every possible mtDNA single nucleotide 

variant (SNV) by applying a sliding window method 19. In brief, starting from position m.1, within 

a window of 30 bases, the observed:expected (oe) ratio of substitutions and its 90% confidence 

interval (CI) was calculated in gnomAD 38. The window start position is then moved by 1 bp, and 

this process is iterated until the full length of mtDNA is covered (i.e., a start position of 

m.16569). For positions in protein genes, calculations are restricted to missense variants, or 

substitutions in amino acids, while for all other positions, all base substitutions are used. The 

mean of oe ratio 90% CI upper bound fraction (OEUF) is calculated for each position using all 

overlapping windows, and then percentile ranked to achieve a positional score between 0 and 1, 

where 1 is most constrained and 0 is least constrained. An MLC score is obtained for every 

mtDNA SNV as follows: non-coding, RNA, and missense variants are assigned their positional 

score; and non-missense variants in protein genes are assigned scores based on the OEUF 

value of the variant class, with synonymous, stop gain, and start/stop lost being assigned scores 

of 0.0, 1.0, and 0.70, respectively. Variants with higher scores are predicted to be more 

deleterious. To account for heteroplasmic variants that also present as homoplasmic in the 

population, we refined the MLC score to account for the frequency of homoplasy in the UKB 

population by calculating modified MLC (mMLC) as MLC/(1 + log10(number of individuals with 

homoplasmy in the UKB + 1)). mMLC for both UKB and ARIC was calculated using the 

individuals with a given homoplasmic variant in the UKB. To capture the functional impact of 

multiple heteroplasmies, we calculated an mMLC score sum (mMSS) by summing all mMLC 

scores within a given individual.  

 

CHIP variant calling 

WES CRAM files were aligned to hg38 and hg19 in the UKB and ARIC, respectively. 

Variant calling was performed using Genome Analysis Toolkit (GATK) v.4.2.2. Mutect2 39,44. 

Mutect2 was run in ‘tumor-only’ mode using non-default parameters: gatk Mutect2 ... --panel-of-

normals ${ref_pon} --germline-resource ${ref_germ}. Raw variants called by Mutect2 were 

filtered out with FilterMutectCalls using the estimated prior probability of a reading orientation 

artifact generated by LearnReadOrientationModel. 

 

U2AF1 calling in UKB (hg38) 
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Considering the known duplication of U2AF1 in hg38, we called these variants using a 

previously described pileup approach (https://github.com/weinstockj/pileup_region) 45. Briefly, 

reads containing U2AF1 pathogenic variants and the total number of reads at the given locus 

were counted at both the U2AF1 and U2AF1L5 loci. The alternative depth and total depth were 

considered as the average between the two loci. VAF was calculated as the alternative depth 

divided by total depth and then multiplied by 100. 

 

CHIP variant filtering 

Variants were annotated using ANNOVAR 46 and filtered based on: 1) the presence in a 

gene part of a custom CHIP panel (Supplementary Table 1); 2) a previously published whitelist 
45; 3) Mutect2 FILTER of PASS, weak_evidence, or germline; 4) depth ≥20; 5) alternate allele 

count ≥3 in the case of SNVs; 6) alternate allele count ≥5 in the case of MNVs; 7) ALT F1R2 ≥1; 

8) ALT F2R1 ≥1; 9) VAF ≥2% in the case of SNVs; 10) VAF ≥10% in the case of indels; 11) 

exclusion of synonymous SNVs; 12) the maximum allele frequency across non-cancer 

populations (non_cancer_AF_popmax) under 0.001 in the gnomAD exome collection v2.1.1 47; 

or 13) recurrent germline variants considered as such based on their presence in 3 or more 

individuals and having a binomial test p-value ≥0.01 in ≥80% of those individuals. Variants 

occurring on genes located on the X chromosome in males had their VAF divided by 2. For 

ARIC WES, given the higher noise, an alternate allele count ≥5 was used for SNVs. The higher 

noise seen in ARIC was reflected through the higher number of SNVs seen in the VCF per 

individual compared to UKB. 

On a sample level, we excluded individuals with more than 3 mutations, all of which are 

represented by MNVs, individuals with more than 9 CHIP variants, or individuals with suspected 

of having potential MPNs, as described in Supplementary Figures 9 and 10. 

Large CHIP clones were defined as those having a VAF ≥20%. Small CHIP clones were 

defined as having a VAF ≥2% and <20%. Potential MPNs were defined as individuals with 

known pathogenic variants in JAK2, CALR, or MPL, and had a hematocrit over 48% or a platelet 

count over 450x103/µL. If either of these laboratory parameters were missing, the individual was 

excluded. Of note, although CALR was not included in the CHIP panel, it was assessed 

because CALR is a recurrently mutated gene in MPN. The same filtering steps were applied for 

identifying CALR mutation. However, the presence of CALR mutation was not used to define 

CHIP in the downstream analysis.  

 

Definition of MN  

In the UK Biobank, myeloid neoplasm (MN) and its subtypes were defined using ICD-9 

and ICD-10 codes from the cancer registry linked to the UK Biobank (Supplementary Table 5) 
11. More specifically, MN was defined as the presence of acute myeloid leukemia (AML), chronic 

myeloproliferative disease / myeloproliferative neoplasms (MPN), myelodysplastic syndrome 

(MDS), or chronic and other myelogenous leukemia.  

In ARIC, hematological malignancy (HM) cases were ascertained through 12/31/2015 

via linkage with cancer registries in the four states where the ARIC participants were recruited, 

and supplemented with medical records, routinely collected hospital discharge summaries, and 
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death certificates 48. MDS before 2001 and MPN before 2011, both characterized by clonal 

expansion, were considered to be pre-leukemia; today, these are considered to be leukemia. 

These pre-leukemias were not captured by cancer registries before those dates. Thus, we used 

2 strategies to identify MDS and MPN: 1) identified cases using ICD codes from routinely 

collected hospital discharge summaries, 2) identified cases using ICD codes from CMS claims 

data (Supplementary Table 6). Participants with an ICD code consistent with MDS, MPN, or 

other such state prior to or concurrent with the blood sample used to call CHIP from WES were 

excluded. Complete blood cell counts are measured as part of the ARIC protocol but were not 

available for all participants at their WES visit. For the participants with an eligible MDS or MPN 

ICD code, we reviewed their complete blood cell counts (if available) that were measured in the 

same blood sample used to call CHIP. We excluded as cases any participant with blood count 

anomalies suggestive of an undiagnosed HM. Using the histology codes from the cancer 

registries and ICD codes from the hospital discharge summaries and claims data, we classified 

the cases as myeloid- or lymphoid-derived cases. Three experts in hematologic malignancies 

and epidemiology (L.P.G, M.R., S.P.) adjudicated all of these cases. 

 

Statistical analysis 

Categorical data was represented as absolute count (percent). Frequencies of two 

categorical variables were analyzed using Fisher’s exact test. Continuous variables are 

presented as mean (SD) for variables with Gaussian distribution or median (25th, 75th 

percentiles) for variables with non-Gaussian distribution. Normality of the distribution was 

assessed using skewness, kurtosis and histogram visualization. Differences between two 

groups with non-Gaussian distribution were assessed using the Mann-Whitney-Wilcoxon rank 

sum test. Differences between two groups for variables with Gaussian distribution were 

assessed using Student’s t-test. We used multivariable logistic regression models to evaluate 

the associations between CHIP and a binary variable for heteroplasmy. For the association 

between CHIP and mMSS, we used multivariable linear regression models. If the dependent 

variable was right skewed, we added 1 and log-transformed it. For UKB, these analyses were 

adjusted for age modeled as a restricted cubic spline (with 4 degrees of freedom), sex, tobacco 

smoking status (never or ever), and a history of cancer. For ARIC, the analyses were adjusted 

for age modeled as a restricted cubic spline (with 4 degrees of freedom), sex, and cigarette 

smoking status (never or ever). History of cancer was not included as a covariate in ARIC as the 

follow-up duration since the WGS / WES visit was only available for those who did not have 

cancer prior to or at the WGS / WES visit. 

For survival analysis, we used time from DNA collection to the development of MN, 

death, or end of follow-up (administrative censoring on December 22, 2022 in the UKB, and 

December 31, 2015 in ARIC), whichever occurred first. Cumulative incidence of MN was 

presented as Kaplan-Meier curves. Hazard ratios and corresponding 95% confidence intervals 

were estimated using a multivariable Cox proportional hazards model, adjusting for age 

(restricted cubic splines with 4 degrees of freedom), sex, tobacco smoking (never or ever), and 

a history of cancer. In ARIC, as the analysis was restricted to individuals without a history of 

cancer, adjustment was made for age at the time of DNA collection (restricted cubic splines with 

4 degrees of freedom), sex, and cigarette smoking status (never or ever) at the time of DNA 

collection.  
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We performed several sensitivity analyses to demonstrate the robustness of findings. 

Due to the limited number of events in ARIC, sensitivity analyses were only performed in UKB. 

To address the potential differences in the association between mMSS and health outcomes by 

race/ethnicity 2, we performed an analysis restricted to self-reported White (N = 410,313) and 

non-White (N = 23,991) individuals, separately. As the UKB includes related individuals, we 

repeated the analysis restricted to genetically unrelated individuals (N = 362,132; defined as 

variable “used.in.pca.calculation” as provided by the UKB). In addition, because adjusting for 

smoking status simply as a binary variable may be subject to residual confounding 49, we further 

adjusted for pack-years of smoking in an analysis using former or current smokers (N = 

131,562). We additionally performed an analysis restricted to never smokers (N = 238,086). 

Furthermore, we evaluated the association of heteroplasmy, CHIP, and subtypes of MN (AML, 

MDS, and MPN), separately. Finally, we repeated the analysis after excluding participants with 

a history of cancer (N = 403,732). For this analysis, adjustment was made for age (restricted 

cubic splines with 4 degrees of freedom), sex, and smoking (never or ever). 

 

Development of a prediction model incorporating mitochondrial heteroplasmy  

After determining that mitochondrial heteroplasmy is a predictor for MN, we evaluated 

whether information on heteroplasmy can improve the prediction of MN using an existing 

prediction model for MN in individuals with CHIP, the Clonal Hematopoiesis Risk Score (CHRS) 
11. To build upon the CHRS model for CHIP-positive individuals, we first generated the CHRS 

and CHRS categories by assigning the scores for 8 components (age ≥65 years, presence of 

cytopenia, red cell distribution width (RDW) ≥15, mean corpuscular volume (MCV) ≥100, 

presence of high-risk mutation, single DNMT3A mutation, number of mutations, and VAF ≥20%) 

from the original CHRS 11. We then added various metrics for heteroplasmy (heteroplasmy 

count, presence of heteroplasmy, mMSS, heteroplasmy count and mMSS, and presence of 

heteroplasmy and mMSS) separately to a Cox proportional hazards model with the 8 

components of CHRS, sex, smoking (never or ever), and a history of cancer, and tested for 

model fit using log-likelihood and Akaike information criterion (AIC). We selected the most 

parsimonious model with the best model fit, which included the presence of heteroplasmy (Y/N) 

and mMSS as a continuous variable. We developed a score, CHRS-M, by assigning scores for 

the presence of heteroplasmy and mMSS by rounding the corresponding coefficients from the 

final model to the nearest 0.5 and adding 1. The coefficient for presence of heteroplasmy was 

0.32 and individuals with any heteroplasmy were assigned a score of 1.5. To apply the scoring 

algorithm to a linear association of mMSS with MN, we estimated the levels of mMSS that 

correspond to log(HR) of 0.25, 0.75, and 1.25, so that bins of mMSS will be assigned a score of 

1, 1.5, 2, and 2.5, respectively (Supplementary Figure 12). The estimated mMSS values were 

0.51, 1.52, and 2.54, and thus were divided into 4 categories: <0.51, 0.51–1.52, 1.52–2.54, 

≥2.54. However, there was only 1 individual in the ≥2.54 category and, therefore, was collapsed 

into 3 groups (<0.51, 0.51–1.52, ≥1.52) for final scores. We defined low-, intermediate-, and 

high-risk categories of CHRS-M by adding 2 to the cut-offs of CHRS; low (≤11.5), intermediate 

(12–14), and high (≥14.5). We evaluated the 10-year cumulative incidence of MN by CHRS-M 

category using Fine-Gray method to account for competing risk due to death 50. We also 

performed Cox proportional hazards models to compare the risk of MN between CHRS-M 

categories. We evaluated the change in sensitivity and specificity compared to CHRS by using 
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net reclassification index (NRI; R package nricens) (https://cran.r-

project.org/web/packages/nricens/index.html). 

In individuals without CHIP, we estimated the HRs for the association between 

parameters of heteroplasmy and MN using a Cox proportional hazards model adjusting for age 

(restricted cubic splines with 4 degrees of freedom), sex, smoking (never or ever), and a history 

of cancer. We first included heteroplasmy count and mMSS in separate models, and to evaluate 

whether they are independently associated with MN, we then included heteroplasmy count and 

mMSS in the same model. Finally, we additionally adjusted for other potential biomarkers of 

MN, including RDW, MCV, and presence of cytopenia.   

 

Data Availability: 

UK Biobank data is available through application to the UK Biobank (Application Number 

17731).  

ARIC WGS is available through dbGap accesstion number phs001211. Due to 

restrictions based on privacy regulations and informed consent of the participants, data cannot 

be made freely available in a public repository. Research data requests can be submitted to 

steering committee, which will be promptly reviewed for confidentiality or intellectual property 

restrictions and will not unreasonably be refused.     

 

Code Availability 

 Code for data cleaning and analysis is available on our github repository: 

https://github.com/ArkingLab. Documentation on MitoHPC pipeline for DNA Nexus server is 

available in https://github.com/ArkingLab/MitoHPC/blob/main/docs/DNAnexus_CLOUD.md. 

Documentation on extracting Mitochondrial and NUMT reads from Google Cloud is available in 

https://github.com/ArkingLab/MitoHPC/blob/main/docs/GOOGLE_CLOUD.md.   
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Table 1. Participant characteristics by presence of CHIP in each cohort. 

 UK Biobank ARIC 

 CHIP (-) CHIP (+) P CHIP (-) CHIP (+) P 

Number 400,707 33,597  7,257 375  
Age, years   56.3 (8.1) 58.9 (7.6) <0.0001 57.8 (6.0) 59.6 (6.1) <0.0001 
Men, %  45.9 44.8 <0.0001 45.1 48.8 0.17 
Race, %    <0.0001   <0.01 
 White  94.7 95.8 <0.0001 76.5 70.1 <0.01 
 Black  1.6 1.3  23.5 29.9  
 Asian  2.2 1.8  0 0  
 Other  1.5 1.2  0 0  
Ever smoker, % 59.5 62.4 <0.0001 60.5 61.6 0.70 
Anemia, %  4.2 4.5 <0.01 9.3 12.5 0.06 
Thrombocytopenia, %  2.2 2.5 <0.001 2.1 4.9 0.01 
Neutropenia, %  1.0 1.2 0.01 3.1 1.9 0.63 
Cytopenia, %  7.0 7.6 <0.0001 11.1 13.7 0.30 
MCV, fL  91.1 (4.6) 91.3 (4.6) <0.0001 89.8 (5.1) 89.6 (5.5) 0.54 
RDW, %  13.5 (1.0) 13.6 (1.1) <0.0001 NA NA NA 
History of cancer, % 6.9 8.8 <0.0001 0 0 NA 
Heteroplasmy, % 27.8 34.1 <0.0001 27.9 35.2 <0.01 

Continuous variables are displayed as either mean (SD) or median (25th and 75th percentiles). Participant characteristics for both 

cohorts were based on the time of DNA collection. In ARIC, only participants without a cancer diagnosis at the time of blood 

collection were included in the analysis. Because of missing blood parameters, in ARIC, we were able to evaluate anemia in 6,473 

(84.8%) participants; thrombocytopenia in 5,161 (67.6%) participants; neutropenia in 3372 (44.2%) participants and cytopenia in 

3,344 (43.8%) participants. Abbreviations: ARIC, Atherosclerosis Risk in Communities study; CHIP, clonal hematopoiesis of 

indeterminant potential; MCV, mean corpuscular volume; mMSS, mitochondrial local constraint (MLC) score sum; NA, not available; 

and RDW, red cell distribution width.  
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Table 2. Participant characteristics by the presence of heteroplasmy in each cohort. 

 UK Biobank ARIC 

 Heteroplasmy 
(-) 

Heteroplasmy P 
Heteroplasmy 

(-) 
Heteroplasmy 

(+) 
P 

Number 311,335 122,969  5,473 2,159  
Age, years   56.2 (8.1) 57.2 (8.0) <0.0001 57.7 (6.0) 58.3 (6.1) <0.001 
Men, %  45.7 46.3 <0.001 44.6 46.9 0.07 
Race, %    <0.0001   0.27 
 White  94.6 95.3  76.6 75.4  
 Black  1.6 1.4  23.4 24.6  
 Asian  2.3 2.0  0 0  
 Other  1.5 1.4  0 0  
Ever smoker, % 59.3 60.8 <0.0001 59.5 63.1 <0.01 
Anemia, %  4.2 4.3 0.43 9.5 9.3 0.89 
Thrombocytopenia, %  2.1 2.3 <0.001 2.1 2.6 0.35 
Neutropenia, %  1.0 1.0 0.57 2.6 4.0 0.04 
Cytopenia, %  7.0 7.2 0.07 10.6 12.8 0.08 
MCV, fL  91.1 (4.5) 91.2 (4.6) <0.0001 89.7 (5.1) 89.9 (4.9) 0.28 
RDW, %  13.5 (1.0) 13.5 (1.0) <0.0001 NA NA NA 
History of cancer, % 6.8 7.6 <0.0001 0 0 NA 
CHIP (+), % 7.1 9.3 <0.0001 4.4 6.1 <0.01 

Continuous variables are displayed as either mean (SD) or median (25th and 75th percentiles). Participant characteristics for both 

cohorts were based on the time of DNA collection. In ARIC, only participants without a cancer diagnosis at the time of blood 

collection were included in the analysis. Because of missing blood parameters, in ARIC, we were able to evaluate anemia in 6,473 

(84.8%) participants; thrombocytopenia in 5,161 (67.6%) participants; neutropenia in 3372 (44.2%) participants and cytopenia in 

3,344 (43.8%) participants. Abbreviations: ARIC, Atherosclerosis Risk in Communities study; CHIP, clonal hematopoiesis of 

indeterminant potential; MCV, mean corpuscular volume; mMSS, mitochondrial local constraint (MLC) score sum; NA, not available; 

and RDW, red cell distribution width. 
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Table 3. Values assigned to component variables of the CHRS modified for heteroplasmy 11.   

Variables 0.5 1 1.5 2 2.5 

Age (years)  <65 ≥65   

Cytopenia  CHIP CCUS   

RDW   <15   ≥15 

MCV   <100   ≥100 

High-risk 
mutation 

 Absent   Present 

Single 
DNMT3A 

Present Absent    

Number of 

mutations 

 1  ≥2  

VAF   <20%  ≥20%  

Heteroplasmy  Absent Present   

mMSS  < 0.59 0.59 – 1.78  ≥1.78  

Abbreviations: CCUS, clonal cytopenia of undetermined significance; CHIP, clonal 

hematopoiesis of indeterminant potential; MCV, mean corpuscular volume; mMSS, 

mitochondrial local constraint (MLC) score sum; RDW, red cell distribution width; and VAF, 

variant allele fraction.   
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Supplementary Table 1. Genes included in the CHIP panel. 

ASXL1 EP300 MPL SETD2 ZBTB33 

ASXL2 ETNK1 NF1 SETDB1 ZNF318 

BCOR ETV6 NPM1 SF3B1 ZRSR2 

BCORL1 EZH2 NRAS SMC1A  

BRAF FLT3 NXF1 SMC3  

BRCC3 GATA2 PDS5B SRCAP  

CBL GNAS PHF6 SRSF2  

CBLB GNB1 PHIP STAG2  

CEBPA IDH1 PPM1D SUZ12  

CREBBP IDH2 PRPF40B TET2  

CSF3R IKZF1 PRPF8 TP53  

CTCF JAK2 PTPN11 U2AF1  

CUX1 KDM6A RAD21 U2AF2  

DNMT3A KIT RUNX1 WT1  

EED KRAS SETBP1 YLPM1  
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Supplementary Table 2. Distribution of mMSS in different CHIP subsets. 

Variable 
 UKB  ARIC  

 
Median mMSS 

(Q1, Q3) 
P 

Median mMSS 
(Q1, Q3) 

P 

CHIP 
No CHIP 0.020 (0.000, 0.157) <0.0001 0.033 (0.000, 0.191) <0.0001 

CHIP 0.052 (0.006, 0.293)  0.074 (0.009, 0.502)  

Clone size 
2% ≤ VAF < 20 0.040 (0.005, 0.248) <0.0001 0.056 (0.008, 0.436) 0.37 

VAF ≥ 20% 0.128 (0.014, 0.545)  0.103 (0.010, 0.587)  

Number of 
mutations 

Single 0.046 (0.005, 0.275) <0.0001 0.067 (0.007, 0.506) 0.60 

Multiple 0.123 (0.013, 0.541)  0.162 (0.012, 0.444)  

Spliceosome 
mutations 

Other CHIP 0.048 (0.005, 0.282) <0.0001 0.080 (0.010, 0.471) 0.98 

Spliceosome 0.228 (0.016, 0.689)  0.039 (0.005, 0.910)  

Abbreviations: ARIC, Atherosclerosis Risk in Communities study; CHIP, clonal hematopoiesis of indeterminant potential; mMSS, 

mitochondrial local constraint (MLC) score sum; Q1, 25th percentile; Q3, 75th percentile; UKB, UK Biobank; and VAF, variant allele 

fraction. 
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Supplementary Table 3. Sensitivity analyses for the associations of heteroplasmy, CHIP, and MN. 

 Restricted to self-
reported White 

individuals, 
HR (95% CI) 

Restricted to self-
reported non-

White individuals 
HR (95% CI) 

Restricted to 
genetically 
unrelated 

individuals,  
HR (95% CI) 

Restricted to 
never smokers, 

HR (95% CI) 

Restricted to 
individuals 

without prevalent 
cancer, HR (95% 

CI) 

Number of 
participants 

410,313 23,991 362,132 238,086 403,732 

Heteroplasmy vs. CHIP  
None Reference Reference Reference Reference Reference 
Heteroplasmy 
only   

1.7 (1.5, 2.0) 1.7 (0.8, 3.7) 1.8 (1.5, 2.1) 1.6 (1.3, 2.0) 1.7 (1.5, 2.0) 

CHIP only 5.4 (5.6, 6.5) 2.4 (0.7, 8.3) 5.7 (4.7, 6.8) 4.9 (3.8, 6.3) 5.6 (4.7, 6.6) 
Both 
heteroplasmy and 
CHIP 

12.3 (1.1, 14.4) 6.4 (2.1, 19.3) 12.6 (10.6, 14.9) 13.0 (10.3, 16.4) 12.6 (10.6, 14.8) 

Heteroplasmy metrics 
Heteroplasmy 
count 

1.3 (1.2, 1.4) 1.4 (0.9, 2.4) 1.3 (1.2, 1.5) 1.3 (1.1, 1.5) 1.2 (1.1, 1.4) 

mMSS  2.6 (2.1, 3.2) 4.9 (1.5, 16.5) 2.7 (2.1, 3.3) 2.9 (2.1, 4.0) 2.9 (2.3, 3.6) 

CHRS category** 
Number of 
participants 

32,066 1,531 27,998 17,122 
 

30,654 

Low Reference Reference Reference Reference Reference 
Intermediate 9.9 (8.0, 12.3) 7.7 (1.7, 34.6) 10.5 (8.3, 13.2) 10.5 (7.7, 14.3) 10.4 (8.4, 13.0) 
High 81.7 (62.4, 107.0) 173.4 (20.5, 1470) 87.0 (65.2, 115.9) 106.7 (70.6, 161.3) 90.6 (68.4, 120.0) 

*Heteroplasmy count and mMSS were included in the same model. **Analyses restricted to individuals who have CHIP.  

All models are adjusted for age (restricted cubic splines with 4 degrees of freedom), sex, smoking (ever or never), and a history of 

cancer. Because age is a component of CHRS, age was not further adjusted for in the association between CHRS and MN.  

Abbreviations: CHIP, clonal hematopoiesis of indeterminant potential; CHRS, clonal hematopoiesis risk score; MN, myeloid 

neoplasms; and mMSS, mitochondrial local constraint (MLC) score sum. 
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Supplementary Table 4. Participant characteristics stratified by CHRS category in the UK 

Biobank. 

 Low Intermediate High P 

Number  30,542 2,821 234  

Age, years   58.6 (7.6) 61.7 (7.1) 64.6 (4.7) <0.001 

Men, %  44.0 51.7 71.4 <0.001 

Race, %     <0.001 

 White  95.6 93.5 98.3  

 Black  1.2 2.0 0.9  

 Asian  1.7 2.4 0.9  

 Other  1.2 1.4 0  

Ever smoker, %  62.0 65.6 75.6 <0.001 

CHRS components     

 Age ≥65 years, % 25.2 49.3 63.2 <0.001 

 CCUS, % 5.2 29.9 58.1 <0.001 

 RDW ≥15, % 2.6 36.9 76.5 <0.001 

 MCV ≥100, % 1.2 13.9 37.2 <0.001 

 High-risk mutation, 
% 

2.3 33.3 85.9 <0.001 

 Single DNMT3A, % 32.9 6.0 1.3 <0.001 

 Number of 

mutations ≥2, % 

5.3 38.6 66.7 <0.001 

 VAF ≥20% 12.1 47.9 87.6 <0.001 

Heteroplasmy 

count 

0 (0 – 1) 0 (0 – 1) 

 

1 (0 – 2) 

 

<0.001 

mMSS 0 (0 – 0.00) 0 (0 – 0.07) 0.02 (0 – 0.60) <0.001 

Continuous variables are displayed as either mean (SD) or median (25th and 75th percentiles). 

Abbreviations: CCUS, clonal cytopenia of undetermined significance; CHRS, clonal 

hematopoiesis risk score; MCV, mean corpuscular volume; mMSS, mitochondrial local constrain 

(MLC) score sum; RDW, red cell distribution width; and VAF, variant allele fraction. 
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Supplementary Table 5. ICD-9 and ICD-10 codes used for the definition of MN and its 

subtypes in the UK Biobank.  

 ICD-9 ICD-10 

Acute myeloid leukemia 205.0, 205.2, 205.3, 206.0, 
206.2, 206.9, 207.0, 207.2, 
208.0, 208.2 

C92.0, C92.3, C92.4, C92.5, 
C92.6, C93.0, C93.9, C94.0, 
C94.2, C94.3, C94.4, C95.0 

Chronic myeloproliferative 
disease / myeloproliferative 
neoplasms 

238.4, 238.7 D45, D47.1, D47.3, D47.4, 
C94.6 

Myelodysplastic syndrome  D46.X 

Chronic and other 
myelogenous leukemia 

205.1, 205.8, 205.9, 206.1, 
206.8, 207.8, 208.1, 208.8, 
208.9 

D47.5, C92.2, C92.7, C92.9, 
C93.1, C93.2, C93.7, C94.1, 
C94.7, C95.1, C95.2, C95.7, 
C95.9 

 

Supplementary Table 6. ICD-O-3, ICD-9/10 codes used for the definition of MN and its 

subtypes in ARIC.  

 ICD-9 ICD-10 (ICD-O-3) 

Acute myeloid leukemia  C42.1 (9861, 9866, 9867, 
9871, 9872, 9873, 9891, 
9895, 9896, 9931) 

Myeloproliferative 
Neoplasm 

238.4, 238.71 C42.0 (9962); C42.1 (9950, 
9960, 9962) 

Mast Cell Neoplasm 238.5 C42.1 (9741) 

Myelodysplastic Syndrome 238.72, 238.73, 238.75 C42.1 (9980, 9982, 9983, 
9986, 9987, 9989, 9999), 
D46.9 

Chronic Myeloid Leukemia  C42.1 (9863, 9875) 
 

Myelodysplastic Syndrome 
Myeloproliferative 
Neoplasm Overlap 

 C42.1 (9945, 9975) 
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Supplementary figure legends 

Supplementary Figure 1. Representation of the first 15 most frequently mutated genes in (A) 

UKB and (B) ARIC. 

Supplementary Figure 2. Exploratory plot showing the association between different CHIP 

mutations, heteroplasmy prevalence, and median mMSS. In the UKB (A), the mutated genes 

are limited to those present in more than 10 individuals. In ARIC (B), the mutated genes are 

limited to those present in (A), present in more than three individuals, and present in at least 

one individual with the selected gene and exhibiting heteroplasmy. 

Supplementary Figure 3. The prevalence of mtDNA complex/region mutations within 

individuals with heteroplasmy across different CHIP subsets: A) CHIP vs No CHIP. B) 

VAF≥20% vs 2%≤VAF<20%. C) Multiple mutations vs Single mutation. D) Spliceosome 

mutations vs Other CHIP. The denominator was represented by the total individuals with 

heteroplasmy from the respective CHIP subset. The mMSS by complex/region among 

individuals with heteroplasmy across different CHIP subsets: E) CHIP vs No CHIP. F) VAF≥20% 

vs 2%≤VAF<20%. G) Multiple mutations vs Single mutation. H) Spliceosome mutations vs Other 

CHIP. 

Supplementary Figure 4. Hazard ratios (95% confidence intervals) for the association between 

heteroplasmy and incident MN. The adjusted hazard ratios for heteroplasmy count (as 

categorical and continuous variables) and mMSS in all participants in the UKB (A) and in 

participants with heteroplasmy (B). Hazard ratios (95% confidence intervals) were estimated 

using Cox proportional hazards models adjusting for age modeled as a restricted cubic spline, 

sex, smoking status, and the presence of prevalent cancer. Abbreviations: CI, confidence 

interval; HR, hazard ratio; and mMSS, modified mitochondrial local constraint (MLC) sum.  

Supplementary Figure 5. Hazard ratios (95% confidence intervals) for the association between 

heteroplasmy and incident MN by mtDNA complex / region. The adjusted hazard ratios for 

heteroplasmy count (A) and mMSS (B) by complex / region in the UKB. Hazard ratios (95% 

confidence intervals) were estimated using Cox proportional hazards models adjusting for age 

modeled as a restricted cubic spline, sex, smoking status, and the presence of prevalent 

cancer. Abbreviations: CI, confidence interval; HR, hazard ratio; and mMSS, modified 

mitochondrial local constraint (MLC) sum.  

Supplementary Figure 6. Hazard ratios (95% confidence intervals) for the associations of 

CHRS and CHRS-M categories with subtypes of MN. The analysis was restricted to UKB 

participants with CHIP. Hazard ratios (95% confidence intervals) were estimated using Cox 

proportional hazards models with the low-risk group as the reference category. All models are 

adjusted for age modeled as a restricted cubic spline, sex, smoking status, and the presence of 

prevalent cancer. Abbreviations: AML, acute myeloid leukemia; CI, confidence interval; CHRS, 

clonal hematopoiesis risk score; CHRS-M, clonal hematopoiesis risk score with mitochondrial 

heteroplasmy; HR, hazard ratio; MDS, Myelodysplastic syndrome; MN, myeloid neoplasms; and 

MPN, myeloproliferative neoplasms.  

Supplementary Figure 7. Distribution of heteroplasmy count and mMSS by CHRS category in 

the UKB. (A) Proportions of heteroplasmy count (0, 1, 2, 3, and 4+) within each CHRS category. 

(B) Boxplots and scatterplots of the distribution of mMSS by CHRS category. The vertical lines 

within the box indicate the 25th (Q1), 50th, and 75th (Q3) percentiles of the distribution. The 
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horizontal lines indicate the Q1 – 1.5 x (Q3 – Q1) and Q1 + 1.5 x (Q3 – Q1). Values outside the 

range of the horizontal lines (outliers) are displayed as dots. Abbreviations: CHRS, clonal 

hematopoiesis risk score; and mMSS, modified mitochondrial local constraint (MLC) score sum.      

Supplementary Figure 8. Distribution and components of CHRS-M in UKB. (A) Histogram of 

the distribution of CHRS-M. The number of participants corresponding to each CHRS-M score is 

displayed above the bars. (B) Hazard ratios (95% confidence intervals) for each component of 

CHRS-M and incident MN estimated from a multivariable Cox proportional hazards model 

including all components of CHRS-M, sex, smoking status, and the presence of prevalent 

cancer. Abbreviations: CI, confidence interval; CCUS, clonal cytopenia of undetermined 

significance; CHRS-M, clonal hematopoiesis risk score with mitochondrial heteroplasmy; HR, 

hazard ratio; MCV, mean corpuscular volume; mMSS, mitochondrial local constrain (MLC) 

score sum; and RDW, red cell distribution width; and VAF, variant allele fraction.  

Supplementary Figure 9. Flowchart of UKB participants. 

Supplementary Figure 10. Flowchart of ARIC participants.  

Supplementary Figure 11. Comparison of hazard ratios (95% confidence intervals) for the 

associations of heteroplasmy, CHIP, and incident MN by different VAF cut-offs for 

heteroplasmy. Hazard ratios (95% confidence intervals) were estimated using Cox proportional 

hazards models adjusting for age modeled as a restricted cubic spline, sex, smoking status, and 

the presence of prevalent cancer in UKB. (A) Hazard ratios of incident MN by presence of 

heteroplasmy only, CHIP only, or both heteroplasmy and CHIP, compared to absence of 

heteroplasmy and CHIP. (B) Hazard ratios of incident MN by CHRS category compared to 

participants without CHIP. (C) Hazard ratios of incident MN for heteroplasmy count and mMSS 

in participants with CHIP. (D) Hazard ratios of incident MN for heteroplasmy count and mMSS in 

participants without CHIP. For (C) and (D), heteroplasmy count and mMSS were included in the 

same model. Abbreviations: CHIP, clonal hematopoiesis of indeterminant potential; CI, 

confidence interval; HR, hazard ratio; mMSS, mitochondrial local constraint (MLC) score sum; 

and VAF, variant allele fraction. 

Supplementary Figure 12. Linear association between mMSS and incident MN used to 

generate CHRS-M.  Purple line and band indicate the log(hazard ratio) and 95% confidence 

interval from a Cox proportional hazards model for incident MN, adjusting for the presence of 

heteroplasmy, age modeled as a restricted cubic spline, sex, smoking status and the presence 

of prevalent cancer. The x-axis indicates mMSS, and the y-axis indicates the log(hazard ratio). 

Blue horizontal lines indicate log(hazard ratio) = 0.25, 0.75, and 1.25. Red vertical lines indicate 

mMSS = 0.51, 1.52, and 2.54 which correspond to log(hazard ratio) = 0.25, 0.75, and 1.25, 

respectively. Abbreviations: log(HR), natural log of hazard ratio; mMSS, modified mitochondrial 

local constraint (MLC) score sum; and MN, myeloid neoplasm.  

 

 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


0% 25% 50% 75% 100%
VAF

U2AF1

SF3B1

SRSF2

TP53

PPM1D

ASXL1

TET2

DNMT3A

D

F

B ARICUKB

C

A

E

Spliceosome

DTA

DDR

Spliceosome

DTA

DDR

p = 0.72*

Spliceosome

DTA

DDR

0 3000 6000 9000
Number of individuals

U2AF1

SF3B1

SRSF2

TP53

PPM1D

ASXL1

TET2

DNMT3A

Spliceosome

DTA

DDR

0% 25% 50% 75% 100%
VAF

U2AF1

SF3B1

SRSF2

TP53

PPM1D

ASXL1

TET2

DNMT3A

p < 0.0001*

0 10000 20000 30000
Number of individuals

≥4

3

2

1

N
u

m
b

e
r 

o
f 

m
u

ta
ti
o

n
s

0 30 60 90
Number of individuals

U2AF1

SF3B1

SRSF2

TP53

PPM1D

ASXL1

TET2

DNMT3A

0 100 200 300
Number of individuals

≥4

3

2

1
N

u
m

b
e

r 
o

f 
m

u
ta

ti
o

n
s

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


D

F

B ARICUKB

C

A

E
C

o
m

p
le

x
R

e
g

io
n

C
o

m
p

le
x

R
e

g
io

n

0 10000 20000 30000 40000
Number of individuals

tRNA

rRNA

D−loop

V

IV

III

I

C
o

m
p

le
x

R
e

g
io

n

C
o

m
p

le
x

R
e

g
io

n

0.0 0.5 1.0 1.5 2.0
mMSS

tRNA

rRNA

D−loop

V

IV

III

I

p < 0.0001*

0 25000 50000 75000 100000
Number of individuals

5

4

3

2

1

N
u

m
b

e
r 

o
f 

h
e

te
ro

p
la

s
m

ie
s

0 500 1000 1500
Number of individuals

5

4

3

2

1

N
u

m
b

e
r 

o
f 

h
e

te
ro

p
la

s
m

ie
s

0.0 0.5 1.0 1.5 2.0
mMSS

tRNA

rRNA

D−loop

V

IV

III

I

p < 0.0001*

0 200 400 600
Number of individuals

tRNA

rRNA

D−loop

V

IV

III

I

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


DTA

Spliceosome

DDR

p = 0.05*

p < 0.01

p = 0.09

p = 0.04

132

2027

96

36

110

22

0% 10% 20% 30% 40% 50% 60% 70%
Heteroplasmy prevalence

CHIP
No CHIP

VAF≥20%
2%≤VAF<20%

Multiple mutations
Single mutation

0

5

3U2AF1
SF3B1
SRSF2

0

2TP53
PPM1D

43

38

8ASXL1
TET2

DNMT3A

A UKB

25.7%

2.6%

5.1%
Heteroplasmy only CHIP only

CHIP and heteroplasmy

B ARIC

C D

G H

E F

26.6%

1.7%

3.2%
Heteroplasmy only CHIP only

CHIP and heteroplasmy

11445

111524

9131

2314

10311

1134

0% 10% 20% 30% 40% 50% 60%
Heteroplasmy prevalence

CHIP
No CHIP

VAF≥20%
2%≤VAF<20%

Multiple mutations
Single mutation

183

130

62U2AF1
SF3B1
SRSF2

255

232TP53
PPM1D

3963

2434

761ASXL1
TET2

DNMT3A
DTA

Spliceosome

DDR

p < 0.0001

p < 0.0001*

p < 0.0001

p < 0.0001

2759

20883

2049

710

2418

341

0% 10% 20% 30% 40%
Prevalence of multiple heteroplasmies

CHIP
No CHIP

VAF≥20%
2%≤VAF<20%

Multiple mutations
Single mutation

78

47

21U2AF1
SF3B1
SRSF2

72

66TP53
PPM1D

982

626

228ASXL1
TET2

DNMT3A
DTA

Spliceosome

DDR

p < 0.0001

p < 0.0001

p < 0.0001

p < 0.0001*

DDR

DTA

Spliceosome

0.0 0.5 1.0 1.5 2.0
mMSS

CHIP
No CHIP

VAF≥20%
2%≤VAF<20%

Multiple mutations
Single mutation

TP53
PPM1D

U2AF1
SF3B1
SRSF2

ASXL1
TET2

DNMT3A

p < 0.0001*

p < 0.0001

p < 0.0001

p < 0.0001

DTA

Spliceosome

DDR

p = 0.13*

p = 0.41

p = 0.12

p = 0.62
29

388

17

12

23

6

0% 10% 20% 30% 40%
Prevalence of multiple heteroplasmies

CHIP
No CHIP

VAF≥20%
2%≤VAF<20%

Multiple mutations
Single mutation

0

2

1U2AF1
SF3B1
SRSF2

0

0

TP53
PPM1D

10

10

3ASXL1
TET2

DNMT3A

U2AF1
SF3B1
SRSF2

DDR

DTA

Spliceosome

mMSS
0.0 0.5 1.0 1.5 2.0

CHIP
No CHIP

VAF≥20%
2%≤VAF<20%

Multiple mutations
Single mutation

TP53
PPM1D

ASXL1
TET2

DNMT3A

p = 0.98*

p < 0.0001

p = 0.37

p = 0.60

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


B ARICA UKB

DC

HR = 2.1 (95% CI 1.9 - 2.3)

No heteroplasmy

Heteroplasmy

HR = ref (95% CI ref - ref)

Number at risk

0 5 10 15
Years

311335 306430 297213 28100

122969 120557 116206 10754−−
0 5 10 15

Years

S
tr

a
ta

0.0%

0.1%

0.2%

0.3%

0.4%

C
u

m
u

la
ti
v
e

 i
n

c
id

e
n

c
e

C
u

m
u

la
ti
v
e

 i
n

c
id

e
n

c
e

Number at risk

CHIP and heteroplasmy HR = 12.1 (95% CI 10.4 - 14.2)

HR = 5.3 (95% CI 4.5 - 6.3)CHIP only

Heteroplasmy only HR = 1.7 (95% CI 1.5 - 2.0)

Neither HR = ref (95% CI ref - ref)

0 5 10 15
Years

289183 284781 276484 26254

111524 109493 105808 9806

22152 21649 20729 1846

11445 11064 10398 948−−
−−

0 5 10 15
Years

S
tr

a
ta

0.0%

0.5%

1.0%

1.5%

2.0%

Number at risk

HR = 1.7 (95% CI 1.2 - 2.3)

No heteroplasmy

Heteroplasmy

HR = ref (95% CI ref - ref)

C
u

m
u

la
ti
v
e

 i
n

c
id

e
n

c
e

0 5 10 15 20 25
Years

5473 5224 4854 4352 3732 898

2159 2043 1876 1664 1378 337−−
0 5 10 15 20 25

Years

S
tr

a
ta

0%

1%

2%

3%

4%

Number at risk

CHIP and heteroplasmy HR = 4.9 (95% CI 2.5 - 9.4)

HR = 1.3 (95% CI 0.5 - 3.2)CHIP only

Heteroplasmy only HR = 1.5 (95% CI 1.1 - 2.1)

Neither HR = ref (95% CI ref - ref)

C
u

m
u

la
ti
v
e

 i
n

c
id

e
n

c
e

0 5 10 15 20 25
Years

5230 5000 4649 4186 3593 873

2027 1919 1767 1573 1310 323

243 224 205 166 139 25

132 124 109 91 68 14−−
−−

0 5 10 15 20 25
Years

S
tr

a
ta

0.0%

2.5%

5.0%

7.5%

10.0%

12.5%

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


0%

20%

40%

60%

0 5 10 15
Time since study enrollment (years)

C
um

ul
at

iv
e 

in
ci

de
nc

e
Low−risk: Reference

Intermediate−risk: HR 10.5 (95% CI 8.6−12.9)

High−risk: HR 106.9 (95% CI 82.5−138.5)

30542 29952 28725 2585

2821 2602 2311 198

234 159 91 11−−
−

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/


A B C

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 8, 2024. ; https://doi.org/10.1101/2024.04.07.24305454doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.07.24305454
http://creativecommons.org/licenses/by-nc-nd/4.0/

