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Summary 

 

Background 

Multiple Sclerosis (MS), is a chronic idiopathic demyelinating disorder of the CNS. Imaging plays a central role 

in diagnosis and monitoring. Monitoring for progression however, can be repetitive for neuroradiologists, and 

this has led to interest in automated lesion detection. Simultaneously, in the computer science field of Remote 

Sensing, Change Detection (CD), the identification of change between co-registered images at different times, 

has been disrupted by the emergence of Vision Transformers. CD offers an alternative to semantic 

segmentation leveraging the temporal information in the data. 

 

Methods 

In this retrospective study with external validation we reframe the clinical radiology task of new lesion 

identification as a CD problem. Consecutive patients who had MRI studies for MS at our institution between 

2019 and 2022 were reviewed and those with new lesion(s) were included. External data was obtained from 

the MSSEG2 challenge and OpenMS. Multiple CD models, and a novel model (NeUFormer), were trained and 

tested. Results were analysed on both paired slices and at the patient level. Expected Cost (EC) and F2 were 

independently and prospectively chosen as our primary evaluation metrics. For external data we report DICE 

and F1 to allow for comparison with existing data. For each test set 1000 bootstrapping simulations were 

performed by sampling 10 patient samples with replacement giving a non parametric estimate of the 

confidence interval. Wilcoxon statistics were calculated to test for significance. 

 

Findings 

43,440 MR images were included for analysis (21,720 pairs). The internal set comprised of 170 patients (110 

for training, 30 for tuning, 30 testing) with 120 females and 50 males, average age of 42 (range 21 – 74). 60 (40 

+ 20) patients were included for external validation.  

In the CD experiments (2D) our proposed NeuFormer model achieved the best (lowest) Expected Cost (EC) 

(p=0.0095), the best F2 and second best DICE (p<0.0001). At the patient level our NeUFormer model had the 

joint highest number of True Positive lesions, and lowest number of False negatives (p<0.002). For CD on 

external data, NeUFormer achieved the highest DICE on both datasets (p<0.0001). NeUFormer had the lowest 

or joint lowest number of False Positives on external data (p<0.0001 in all cases). 

 

Interpretation 

Reformulating new lesion identification as a CD problem allows the use of new techniques and methods of 

evaluation. We introduce a novel Siamese U-Transformer, NeUFormer, which combines concepts from U-Net, 

Siamese Networks, and vision transformers to create a model with improved small lesion detection and the 

consistently best EC. Its ability to increase detection of small lesions, balanced with relatively few false 

positives, and superior generalisability has the potential to greatly impact the field of the identification of 

radiologic progression of MS with AI. 
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Research in context 

 

Evidence before this study 

Multiple Sclerosis (MS), a chronic and idiopathic demyelinating disorder of the CNS, is diagnosed using the 

McDonald criteria based on MRI interpretation. Without a definitive MS biomarker, AI holds promise is for 

uncovering unique features indicative of MS, improving diagnostics and identifying progression. 

Research in the field typically centres on segmentation and classification, leaving a gap in evaluating temporal 

imaging changes. The MSSEG2 challenge has now enabled more research into new lesion identification in MS. 

Even so, most solutions are based on semantic segmentation architectures and rely on limited metrics for 

evaluation. The identification of small lesions also remains a challenge. 

 

Remote Sensing (RS) is the science of obtaining information about objects or areas from a distance, typically 

from aircraft or satellites. In the RS literature, Change Detection (CD) refers to the identification of significant 

alterations in co-registered images captured at different times. In this way CD offers an alternative to semantic 

segmentation leveraging the temporal information in the data. This field was dominated by convolutional 

neural networks but has recently been disrupted by transformer-based architectures. Transformers, fuelled by 

their success in NLP, are gaining popularity across all computer vision tasks due to their larger effective 

receptive field and enhanced context modelling between image pixels. Inspired by these developments, we 

incorporate some of these ideas into our NeUFormer model. 

 

Added value of this study 

This study redefines the task of identifying progression on MRI brain in MS as a CD problem, borrowing 

concepts from RS. This approach allows for both pixel- and patient-level evaluation and rethinks standard 

metrics to suit specific clinical needs. This acknowledges the distinction between trivial variation in 

segmentation and clinically significant change. State-of-the-art CD models are assessed at this task, and a 

novel model, NeuFormer, is introduced. NeuFormer synergistically combines concepts from the classical U-Net 

(which was originally intended for brain segmentation), Siamese architecture adaptations specifically for CD, 

Swin-UNETR (a U-Transformer developed by MONAI to integrate the shifting window structure of the Swin 

transformer into medical imaging) and ChangeFormer which also uses attention at scale specifically for CD, 

leveraging improved spaciotemporal reasoning to create a model which is better for small lesion identification 

and with the consistently lowest EC associated with its decisions. 

 

Implications of all the available evidence 

Reframing lesion identification as CD enables an alternative to semantic segmentation leveraging the temporal 

information in the data, enhancing the model's relevance and customization for specific medical tasks. We also 

propose the flexible Expected Cost metric, as it facilitates varying action thresholds and helps to customise 

tools to stakeholder preferences. 

Siamese vision transformers show promise for CD on MRI in MS including for smaller lesions which are 

traditionally difficult for computer vision models to identify. This may be to the intrinsic spaciotemporal  

advantages of vision transformers, with positional embedding, over patch based convolutional methods. 

NeUFormer’s ability to increase detection of small lesions, balanced with relatively few false positives and 

excellent generalisability has the potential to greatly impact the field of the identification of radiologic 

progression of MS with AI. 

 

 

Main Text 

 

Introduction 

Multiple Sclerosis (MS), a chronic and idiopathic demyelinating disorder of the CNS, is diagnosed using the 

McDonald criteria based on MRI interpretation
1,2

. MS differs from many chronic diseases as its imaging 

features may precede clinical symptoms. As such, imaging plays a central role in diagnosis, tracking 

progression, and evaluating treatments
1,2

. New T2/FLAIR MS lesions are the primary biomarker for assessing 

both disease progression and medication response
3,4

. Indeed, lack of new lesions in the CNS is a key indicator 

of medication effectiveness
5
. Monitoring these lesions, however, is often monotonous and repetitive for 

neuroradiologists 
6
, and this combined with radiology's supply-demand challenges

7
 has led to increased 
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interest in methods for automating lesion detection
8
. Over the past two decades, research has heavily focused 

on computer-assisted segmentation methods 
8
, with a recent surge in AI methodologies

9
. Current research 

trends are evolving from simple identification of MS lesions on T2/FLAIR to analysing images over different 

times
8
. The MSSEG2 challenge by The Medical Image Computing and Computer Assisted Intervention Society 

(MICCAI), targeting new lesion detection, has significantly boosted interest in this research domain
3
. 

Significant issues remain in the literature with only modest performance reported for new lesion 

identification
10

 and there are well known difficulties to correctly evaluate stable cases (which outnumber 

change cases significantly)
11

. Furthermore, identification of smaller lesions remains problematic and is an 

outstanding issue
10

. The limited kernel size of convolution layers in Fully Convolutional Neural Networks 

(FCNNs)
12

 can result in sub-optimal performance in modelling long-range spatial information
13

. This can 

adversely affect the segmentation of lesions of varying sizes
12

. 

 

Remote Sensing (RS) is the science of obtaining information about objects or areas from a distance, typically 

from aircraft or satellites
14

. In the RS literature, Change Detection (CD) identifies significant alterations in co-

registered images captured at different times
15

. CD offers an alternative to semantic segmentation leveraging 

the temporal information in the data. The type of change varies by application, including alterations in man-

made structures, vegetation, and environmental shifts like polar ice cap melting or deforestation. Effective CD 

models distinguish these changes while filtering out irrelevant variations due to seasonal shifts, shadows, 

atmospheric changes, and lighting differences
14

. Current leading CD methods primarily use deep convolutional 

networks (ConvNets) for their strong feature extraction capabilities
13

. Recently, the success of Transformers in 

Natural Language Processing (NLP) has inspired their application in multiple other domains, and especially in 

computer vision tasks
14

. Attention-based models such as the original Vision Transformer
16

 and more recently 

SAM/SAM-Med
17

 and SWIN
18

 continue to improve performance on standard computer vision challenges. This 

is in part due to their larger effective receptive field than deep ConvNets, enhancing context modelling 

between image pixels
13

. Indeed, a Siamese vision transformer (ChangeFormer) has reached state of the art 

performance in CD challenges
14

.  There have been some recent medical applications of vision transformers in 

the medical imaging literature, especially in the domain of semantic segmentation
19,20

. However there are very 

few works which use these models to leverage the temporal information in these data to enhance the 

identification and classification of change over time
21,22

. For example the nnU-Net, a leading segmentation 

model often considered state of the art for MS lesion segmentation, does not use the longitudinal nature of 

the scans and treats each image individually during training and inference 
23

. 

 

Emerging research demonstrates that “task set-up” or “problem formulation” can have significant impact on 

the result of medical AI experiments
24

. In this study we reframe the clinical radiology issue of new MS lesion 

classification on MRI as a CD problem inspired by the RS literature. Here we consider only new or enlarging 

lesions (as defined by the MAGNIMS criteria
25

) as relevant change. This enables us to consider different 

evaluation metrics that consider the cost of decisions made by the models rather than just segmentation 

performance (e.g. DICE score) or lesion identification (e.g. accuracy or F1 score), which are important, but not 

task specific
26

. The “Expected Cost” (EC) allows individually chosen weights for the error rates (such that 

missing a lesion can be penalized more) and can be made prevalence-independent. We can evaluate 

performance on both co-registered slices and the whole 3D stack allowing for scrutiny at both the pixel and 

patient level. We also describe a novel model for New lesion identification, a Siamese U-Transformer, 

abbreviated as NeUFormer. 

 

Methods 

 

Study design and data sources 

 

This retrospective study with external validation was designed according to both RSNA and ESR published 

principles 
27,28

 with patient expert involvement 
29

. The EC was independently and  prospectively chosen as a 

suitable primary evaluation metric
26

. The manuscript was prepared using the CLAIM checklist 
30

. We received 

full IRB approval and the requirement for prospective consent was waived. This research constitutes Level 5A 

evidence (Data quality and AI model development with external testing) as it represents one retrospective 

study with internal and external data used for final reporting 
31

. Subsections of this cohort have been 

published previously but under different experimental conditions with different research questions. The 

external cohort is publicly available and has been previously described 
3
. All internal data are available from 

the authors upon reasonable request and the code to recreate these experiments is available on github. 
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Consecutive patients who had at least two MRI brain studies for MS at our institution between January 2019 

and December 2022 were reviewed (Figure 1). Those with a new lesion on follow up imaging were included in 

this study. Images were acquired on a 1.5 T system (SIEMENS MAGNETOM Avanto syngo MR B19, SIEMENS, 

Munich, Germany). Imaging sequences included a three-dimensional T2 fluid-attenuated inversion-recovery 

(FLAIR) sequence using the following parameters: acquired voxel size, 1.1 x 1.1 x 1.1 mm; TR 6000 ms; TE 413 

ms; TI 2030ms; acquisition time 6 mins 44 s; orientation, sagittal.  We used all publicly available data from 

MSSEG-2
3
 and OpenMS

32
 to externally validate our findings. 

 

Ground truth labelling 

 

A baseline automated segmentation of MS lesions was generated using DeepMedic 
33

. These baseline 

segmentations were then manually corrected by one of two certified radiologists in their first year post board 

examination using ITK Snap V3.8.0 
34

. Cases with progression were initially identified from the radiologic 

report, and confirmed at a dedicated research re-read. Radiologic progression (new or enlarging lesions) was 

defined according to the MAGNIMS consensus guidelines
25

. Specifically for new lesions the largest linear 

measurement for lesion definition had to be 3 mm or more in at least one plane. In the case of enlarging 

lesions, subtractions of co-registered intensity normalized images were used to confirm that the lesion had 

unequivocally enlarged. Cases with progression were first segmented and manually corrected as above and 

then additionally verified by a third radiologist who is a subspecialist neuroradiologist with over 10 years post 

fellowship experience.  

 

Image processing 

 

The raw MRI sequences acquired from the scanner were in DICOM format which were anonymized by 

removing any identifiable information pertaining to the patient or the practitioner. The anonymized DICOM 

slices were then converted to the NifTI format using the dcm2niix utility (v1.0.20220720). The produced 

images were then rigidly registered to the first T1 sequence using the FMRIB’s Linear Registration Tool (FLIRT). 

Rigid body registration was applied with 6 degrees of freedom, no angular search and spline interpolation, rest 

of the properties were set to their default values. After registration, the FSL Brain Extraction Tool (BET) was 

applied with a fractional intensity threshold of 0.4 to the first T1 of all patients. This mask was then applied to 

the remaining scans for each patient respectively. Bias Field correction using the FSL FAST utility was not 

performed after no contrast improvement was empirically observed. Since the MRI scans in our dataset were 

acquired from the same Scanner, the need for standardisation was diminished.  

 

Patients with more than two FLAIR images were chosen. Each extracted slice is cropped to the largest brain 

cross-section while maintaining the image aspect ratio. The cropped slice is then intensity normalised and 

rescaled to 256x256. A Contrast Limited Histogram Equalization is applied to the cropped slices to enhance the 

tissue contrast. Slices with no brain volume are discarded. The lesion masks follow a similar pre-processing 

pipeline except for the Histogram Equalization step. In addition, partial lesions which are too small to be 

considered progression are removed before the final labels are produced. This is because lesions less than 

3mm are not considered to represent progression in the MAGNIMS criteria 
25

 and is standard across similar 

tasks 
3,11

. The image slices and the difference maps are generated to conform to the usual data structures in 

CD challenges. Data were partitioned at the patient level into training, validation/tuning and test sets in a ratio 

of approximately 65:17.5:17.5. 

 

Model development and training 

 

A novel Siamese U-Transformer (NeUFormer, NeU) was developed (Figure 2). The network is inspired by the 

“Swin UNETR
12

” semantic segmentation model, and modified to create a Siamese architecture via additional 

skip connections at each subsampling scale, with a classification head for change detection. The aim here is to 

enhance the more abstract and less localized information from the later-stage encoded data with spatial 

details which are learned in the network's earlier layers. Uniquely for NeUFormer, these skip connections also 

integrate information from different resolutions. Through this we aim to create a model with improved 

spaciotemporal awareness, primed for superior change detection. 

 

The input to the network is two 256x256 images and the output is a change map. Each arm consists of a “Swin 

UNETR” encoder (separated into two streams of equal structure with shared weights as in a traditional 
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Siamese network) and decoder. The encoder has 4 stages with 2 transformer blocks at each stage. A modified 

2D version of the Swin UNETR 3D shifting window self-attention mechanism is employed, allowing for feature 

extraction at five different resolutions (Figure 2). For the decoder, NeUFormer also has a U-Shaped FCNN 

design, with the encoded feature representations used by the decoder at each resolution via skip connections. 

Extending this concept, the feature representations are concatenated together before and after the encoding 

part of the architecture via additional “Siamese” skip connections
35

. This is done for each arm and at each 

resolution, with the goal of producing precise class predictions. We leverage synergy of the Swin transformer’s 

shifting windows giving hierarchical attention at different scales
18

, the U-Net’s proven ability at biomedical 

imaging semantic segmentation
36

, and the discriminative power of the Siamese architecture for change 

detection
35

.  

 

For comparison, baseline models included a fully connected Bitemporal U-Net (BUN) (that concatenates bi-

temporal images and passes to a ConvNet to detect changes), two different Siamese U-Nets (which extracts 

multi-level features of bi-temporal images from a Siamese ConvNet and either concatenates (SUC) them or 

finds their difference (SUD))
35

, a bitemporal vision transformer (VIT) (which uses a transformer encoder-

decoder network to enhance the context-information of ConvNet features via semantic tokens followed by 

feature differencing to obtain the change map) 
13

, Swin UNeTR (UTR)(which replaces the encoder of a vision 

transformer with a U-Net) 
12

 and ChangeFormer (CFR) (which utilises a transformer encoder with Multi-Layer 

Perception decoder in a Siamese network architecture to efficiently render multi-scale long-range details 

required for accurate CD) 
14

. All models were implemented in PyTorch and trained from scratch (without 

pretraining) using an NVIDIA GeForce GTX 1080 GPU. Data augmentation was performed with random flip, 

random re-scale, random crop and Gaussian blur. Models were trained using a combined weighted Cross-

Entropy and DICE loss using AdamW optimizer and a batch size of 8. Due to biased classes (only a small % of 

image was made up by the target (change) class) images with change were used for training along with a 

matched number of stable controls in a ratio of 1:1. 

 

Analysis 

 

For the change detection task we completed problem fingerprints for our research questions
26

. Due to the 

unequal severity of class confusions (with false negatives rated as more important) and an existence based 

penalization of special outliers the EC (Multi-Class) and F2 score (Per-Class) were chosen prospectively and 

independently as the primary evaluation metrics for our study
26,37

. EC is a measure of accuracy that can 

incorporate different disease prevalence and account for differences in impact between false positives and 

false negative predictions. The closer to 0 the better the expected cost; while scores of >1 are possible, the 

indicate a futile model. Following a stakeholder focus group a cost matrix of [[0.0, 10.0], [1.0, 0.0]] was used to 

calculate the EC 
29

. This penalises FNs 10 times higher than FPs. We also report the precision, recall, F0.5, F1 

and DICE scores to allow for comparison with other studies. For the DICE, a score of 1.0 was recorded both 

where a model correctly predicted the positive change map or a blank change mask as many cases have “no 

change”. We also evaluate on small lesions (those with segmentation masks with only connected components 

less than 100 pixels) separately as this is a consistently a problem in the literature. The 100 pixel connected 

component limit was chosen as this is the limit at which segmentation models have been shown to deteriorate 

for 256x256 images
17

. For each test set 1000 bootstrapping simulations were created by sampling 10 patient 

samples with replacement giving a non parametric estimate of the confidence interval. Wilcoxon statistics 

were calculated to test for significance. To minimise hypothesis testing only the best and second best model 

were compared for primary evaluation metrics (EC, F2, F1, DICE). 

 

We also evaluate our models on external data (MSSEG-2
3
 and OpenMS

32
) to test their generalisability and 

potential clinical applicability. For both cases only the training data could be accessed, and it was then 

processed according to the same pipeline as the internal data. The mix of cases that are positive and negative 

for progression in the external data allows us to report accuracy, sensitivity and specificity at the patient level 

(3D). Total True Positive, True Negative and False Positive lesions are reported for all datasets. 

 

Role of the funding source 

 

The funding source for this study had no role in the experimental design of the study, data collection, data 

analysis, data interpretation, or writing of this report. 
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Results 

In total 43,440 MR images were included for analysis (21,720 pairs including train, tuning, test and external 

data). The internal set comprised of 170 patients (110 used only for training, 30 for tuning and 30 testing) and 

the external set comprised of 60 patients for external validation (40 from MSSEG2 and 20 from OpenMS) 

(Figure 1). There were 120 females and 50 males in the internal data with and average age of 42 (range 21 – 

74). Demographics are summarised in Table 1. Due to the nature of the condition, the target (change) class 

was underrepresented in the images with the target class representing only 0.0001% of the total pixels (see 

Table 2). 

 

For the two primary evaluation metrics, NeuFormer achieved the best (lowest) EC of 0.467 (p=0.0095) and had 

the highest F2 score 0.329 (Figure 3). NeuFormer also achieved the lowest EC and F2 for small lesions (lesions 

with connected components less than 100 pixels). Results of the CD experiments are summarised in Table 3A 

for all lesions and Table 3B for small lesions only. Additionally Figure 4 shows the qualitative difference in 

output for the different models. For patient level evaluation, NeUFormer had the joint highest number of True 

Positive lesions (p=0.0011) and lowest number of False negatives (p<0.0001) (Table 4). 

 

For external validation we focus on the widely used metrics of DICE and F1 to allow for comparison. Two 

external datasets MSSEG2 and OpenMS were analysed. MSSEG2 has both progression and stable cases 

allowing for analysis of progression identification at the patient level. NeUFormer consistently performed well 

across both datasets, achieving the highest DICE on both (p<0.0001), the second highest F1 for OpenMS, and 

third highest F1 for MSSEG2 (Table 5 A and B). For patient level evaluation on external data the highest 

progression accuracy was achieved by UTR for the MSSEG2 dataset but the model had 723 False Positives 

(compared to 22 by the best performing model NeUFormer) with a specificity of 0.0 for progression Table 6. 

 

Discussion 

In this study we reformulate the problem of diagnosis progression on MRI brain in MS into a CD problem 

inspired by the RS literature. This allows us to evaluate model performance at both the pixel and patient level, 

and rethink the existing evaluation methods, choosing metrics relevant to the specific problem space. In this 

way, we can consider which model has the lowest clinical cost associated with its decisions rather than just an 

evaluation of its segmentation performance. This acknowledges the distinction between trivial variation in 

segmentation and clinically significant change. We evaluate state of the art CD models and we introduce a 

novel model, NeuFormer, which synergistically combines concepts from the classical U-Net, Siamese 

architectures, and Vision Transformers with Shifting windows to create a model with the consistently lowest 

EC associated with its decisions. In particular, it also has the lowest cost and highest recall and F2 performance 

when examining small lesions, and demonstrates robust generalisability to external data. Its ability to increase 

detection of small lesions, balanced with relatively few false positives, has the potential to greatly impact the 

field of the identification of radiologic progression of MS with AI. Our two primary evaluation metrics were 

expected cost and F2 score. These metrics emphasise the importance of minimising False Negatives as in our 

use case this could mean missing an opportunity to change or initiate a treatment. We also consider F1 and 

DICE, especially for the external data, as these metrics are more commonly used in the literature related to the 

those datasets.  

 

In our internal dataset, NeuFormer performs best in terms of EC and F2, for both all lesions and small lesions 

only. Its F1, F0.5 and precision all showed a relative increase in performance for small lesions showing that in 

addition to its ability for find small lesions (high recall), it also had relatively fewer false positives (better 

precision). The generalisability of NeUFormer is clear from its performance on OpenMS and on MSSEG2 

achieving the best DICE score for both datasets. It has only the third best F1 on MSSEG2 (after UTR and BUN) 

and second best on OpenMS (after SUD). This shows good performance across the datasets, not dropping out 

of the top 3 despite the heterogenous data. UTR achieved the best F1 on MSSEG2, however it predicted 

change on every slice, rendering it useless clinically. When we consider the results at a patient level, our model 

had both the highest number of TPs and the lowest FPs on internal data. For MSSEG-2 NeUFormer again had 

the lowest number of False positives, and the third highest TPs (after UTR and SUD). However again due to 

UTRs high number of FPs (723) it is not usable functionally as a clinical decision model. The other models with 
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comparable performance SUC and SUD also had higher FPs (88 and 192 respectively). This was also borne out 

in the second external dataset OpenMS where again our model had the fewest FPs. 

 

We believe our models performance and generalisability are in part due to the intrinsic advantages of vision 

transformers in terms of spaciotemporal awareness, especially when synergistically combined with a U-Net 

inspired encoder module tried and tested in the medical image domain. Then our novel model design which 

combines the sensitive UTR encoder with the intrinsically discriminative Siamese architecture provides a 

balance of consistently identifying clinically relevant changes without excessive FPs. Trivial changes in semantic 

segmentations are often attributable to differences in inter- and intra- user variability, the CD paradigm allows 

us to focus on these relevant changes when evaluating the models. In this context the importance of the 

NeUFormer’s discriminative ability becomes clear, allowing the identification of progression at the patient 

level without overburdening a decision system with FPs. 

 

Our study has several limitations. The retrospective study design limits the level of evidence. Furthermore, as 

our internal experiments only involved those patients with progression, there is a selection bias. While this is a 

common issue in clinical radiology research
38

 it remains a clear limitation. Another key issue was the class 

imbalance. The target class is very underrepresented in the problem of change detection in MS. Indeed in our 

datasets only 0.0001% of the pixels were in the target class. For this reason it is necessary to oversample the 

patients with change in the training process. Even with our oversampling method, we still need to use a Cross 

Entropy loss weighted 1000:1 in favour of the change class to get the model to make any predictions of 

change.  Since the models are agnostic to the nature of the input images, the slice wise approach provides 

samples of both cases with and without change. A patient-level control approach will only add to an already 

imbalanced dataset, making the problem of under representation of the target class worse. We then include 

stable patients in the evaluation to ensure the model works across different groups. 

 

Our sample size was modest, but 170 pairs with change for training compares favourably to MSSEG2 (the 

largest existing dataset) which comprised only 100 pairs of patients in total, of whom half were stable. Images 

were resized to 256x256 and primarily assessed in 2D. While there is loss of the 3D information, our model 

does integrate the temporal information intrinsic to the interpretation task. Due to positional embedding the 

transformer based methods can interrogate the whole slice rather than subsections. The alternative models 

are mostly patch based and thus do not take the whole 3D volume en-bloc. In this way a trade-off is necessary 

at one level of abstraction or another. The demographic information for internal and external data does not 

contain information on ethnicity, meaning subgroup analysis was not possible. While the internal data was 

acquired at one institution on one MRI scanner, the external data was heterogenous with different nations, 

hospitals, protocols, scanners and even a mix of 1.5 and 3 Tesla magnets. 

 

Prospective evaluation would be necessary before our model could be implemented into clinical practise. The 

robust external validation results show that the method holds promise but practical implementation remains a 

challenge. Due to ethical considerations and patient preference an autonomous change detection model it is 

not currently feasible or desirable
29

. Therefore we propose that NeUFormer could be used to screen for 

studies likely to contain significant change and be used to triage radiologist workflow. As the output of the 

model is a binary change map (Figure 4), an intuitive explanation is given to the interpreting physician. 

Furthermore scalability and computational performance is less of an acute issue than in use cases such as 

stroke as the proposed use case refers mainly to outpatient imaging. Our approach holds further potential 

clinical utility outside of MS, in fields where monitoring for change is crucial, such as oncologic imaging, 

treatment response evaluation, and screening programs. 

 

In summary, reformulating new lesion identification as a CD problem allows the use of new techniques and 

methods of evaluation. We expect this format to be used to drive new innovations in AI in MS imaging, and 

that the experimental design can be easily applied to other diseases and modalities. Our novel NeUFormer 

model combines concepts from U-Net, Siamese Networks, and vision transformers to create a model with the 

consistently lowest cost associated with its decisions, including for smaller lesions and has the potential to 

screen for progression of MS on MRI brain. 
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Figures 

 

 
 

Figure 1:  

Title: Patient Flowchart  

Legend: Flowchart of patients included in our study 

 

 

 
 

Figure 2:  

Title: Model Diagram NeUFormer 

Legend: Diagrammatic representation of the NeUFormer model. (Navy cuboid = Bottleneck Feature/Head, 

Light Blue cuboid = Hidden Feature, Navy arrow = Deconvolution, broken line = concatenation.) 
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Patients imaged at least twice

809

with 2 x 3D FLAIR Protocol

170

with radiological progression

110 for Training

30 for Validation/Tuning 

30 for Testing

60

(40 - 12 stable, 28 with Change MSSEG2)

(20 – 20 with Change OpenMS)  

for External Validation 
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Figure 3:  

Title: Quantitative Results 2D 

Legend: Comparison of the performance metrics for all models on the internal data (2D). Bitemporal U-Net 

(BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision Transformer (VIT), 

ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
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A 

B 

C 

Figure 4: 

Title: Qualitative Results 

Legend: Qualitative comparison of different CD methods on the internal data (A), MSSEG2 (B) and OpenMS (C). 

Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 

Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
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Tables 

 

Table 1 Patient Demographics 
Total Participants Average Age  Age Range 

170    

 42.3 Minimum 21 

  Maximum 74 

Gender Gender Count Change Instances  

Male 50 212  

Female 120   

MRI Studies Range MRI Studies Total MRI Studies MRI Studies Average 

Min 2 496  

Max 5  2.9 

 
 
 
Table 2 Prevalence of the change class (progression) in the internal test and external data  
 

Test Set 
Lesions 

Patients Images 
(256x256) 

Number positive 
images 

Number Positive 
Pixels (%) 

Lesion dimension 
(pixels): 

Mean, StD (range) 
Internal 30 6081 437 43823 

(0.000109%) 
164.71, 

111.42 (14 - 407) 
 

MSSEG2 28 
(of 40) 

7361 629 53408 (0.00011%) 53.95, 
52.44, (6 - 360) 
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Table 3A CD Results internal data, all lesions 
 
Model Expected Cost DICE Precision Recall F0.5 F1 F2 

BUN 0.546 0.932* 0.451 0.494 0.459 0.472* 0.485 

SUC 0.507 0.886 0.244 0.624 0.277 0.350 0.476 

SUD 0.638 0.848 0.161 0.559 0.187 0.249 0.374 

VIT 0.551 0.873 0.161 0.693 0.190 0.261 0.417 

CFR 0.531 0.887 0.353 0.535 0.379 0.426 0.485 

UTR 0.478 0.851 0.262 0.644 0.297 0.372 0.498 

NeU-C 0.467* 0.915 0.302 0.632 0.337 0.409 0.519* 

 
Red is best, blue second best and bold third best 
Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 
Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
*denotes statistical significance 
 
 
 
Table 3B CD Results internal data, all lesions 
 
Model Expected Cost DICE Precision Recall F0.5 F1 F2 

BUN 0.666 0.940* 0.181 0.363 0.201 0.241* 0.302 

SUC 0.621 0.894 0.081 0.475 0.097 0.139 0.241 

SUD 0.670 0.855 0.049 0.503 0.060 0.089 0.176 

VIT 0.663 0.881 0.048 0.519 0.059 0.088 0.176 

CFR 0.665 0.893 0.118 0.386 0.137 0.181 0.265 

UTR 0.527 0.858 0.114 0.549 0.135 0.189 0.311 

NeU-C 0.516* 0.922 0.125 0.552 0.148 0.205 0.329* 

 
Red is best, blue second best and bold third best 
Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 
Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
*denotes statistical significance 
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Table 4 Patient level results internal data 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Red is best, blue second best and bold third best 
Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 
Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
*denotes statistical significance 
 
 
  

Model TP FP FN Precision Recall F0.5 F1 F2 

BUN 46 75 48 0.380 0.489 0.398 0.428* 0.463 

SUC 60 493 36 0.108 0.625 0.130 0.185 0.320 

SUD 60 1241 38 0.046 0.612 0.057 0.086 0.177 

VIT 56 520 41 0.097 0.577 0.117 0.166 0.290 

CFR 65 485 32 0.118 0.670 0.141 0.201 0.346 

UTR 67 1058 31 0.060 0.684 0.073 0.110 0.221 

NeU 67 195 30 0.256 0.691 0.293 0.373 0.515* 
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Table 5A External CD Results (MSSEG-2) 
 
Model Expected Cost DICE Precision Recall F0.5 F1 F2 

BUN 0.527 0.932 0.711 0.486 0.650 0.577 0.518 

SUC 0.413 0.928 0.520 0.624 0.538 0.567 0.600 

SUD 0.375* 0.914 0.452 0.678 0.485 0.543 0.617 

VIT 0.499 0.924 0.408 0.554 0.431 0.470 0.517 

CFR 0.615 0.928 0.810 0.391 0.667 0.527 0.436 

UTR 0.388 0.871 0.532 0.649 0.552 0.585* 0.622* 

NeU 0.549 0.941* 0.747 0.461 0.665 0.570 0.500 

 
 
Red is best, blue second best and bold third best 
Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 
Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
*denotes statistical significance 
 
Table 5B External CD Results (OpenMS) 
 

Model Expected Cost DICE Precision Recall F0.5 F1 F2 

BUN 1.893 0.626 0.756 0.313 0.778 0.442 0.341 

SUC 0.878 0.599 0.554 0.391 0.654 0.458 0.481 

SUD 0.794  0.591 0.536 0.409 0.636 0.464* 0.494* 

VIT 0.886 0.582 0.385 0.420 0.398 0.402 0.406 

CFR 0.826 0.590 0.694 0.275 0.666 0.394 0.341 

UTR 0.939 0.560 0.522 0.401 0.615 0.454 0.480 

NeU 0.786* 0.632* 0.659 0.353 0.665 0.459 0.370 

 
 
Red is best, blue second best and bold third best 
Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 
Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
*denotes statistical significance 
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Table 6 Patient level results MSSEG-2 
 
Model TP FP FN Precision  

Progression 

Recall  

Progression 

Specificity 

Progression 

Accuracy  

Progression 

BUN 44 39 93 0.451 0.793 0.500 0.821 

SUC 56 88 84 0.491 0.771 0.667 0.964 

SUD 56 192 81 0.481 0.839 0.417 0.929 

VIT 40 79 93 0.462 0.727 0.750 0.857 

CFR 43 66 96 0.440 0.688 0.833 0.786 

UTR 74 723 71 0.500 1.000 0.000 1.000 

NeU-C 48 22 92 0.481 0.743 0.750 0.929 

 
 
Red is best, blue second best and bold third best 
Bitemporal U-Net (BUN), Siamese U-Net with Concatenation (SUC), with Difference (SUD), bitemporal Vision 
Transformer (VIT), ChangeFormer (CFR), Swin UNeTR (UTR), NeUformer (NeU). 
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