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Abstract  

In the past two decades, significant progress has been made in the development of polygenic 

scores (PGSs). One specific application of PGSs is the development and potential use of 

pharmacogenomic- scores (PGx-scores) to identify patients who can benefit from a specific 

medication or are likely to experience side effects. This systematic review comprehensively 

evaluates published PGx-score studies in psychiatry and provides insights into their potential 

clinical use and avenues for future development.  

A systematic literature search was conducted across PubMed, EMBASE, and Web of Science 

databases until 22 August 2023. This review included fifty-three primary studies, of which 

the majority (69.8%) were conducted using samples of European ancestry. We found that 

over 90% of PGx-scores in psychiatry have been developed based on psychiatric and medical 

diagnoses or trait variants, rather than pharmacogenomic variants. Among these PGx-scores, 

the polygenic score for schizophrenia (PGSSCZ) has been most extensively studied in relation 

to its impact on treatment outcomes (32 publications). Twenty (62.5%) of these studies 

suggest that individuals with higher PGSSCZ have negative outcomes from psychotropic 

treatment: poorer treatment response, higher rates of treatment resistance, more 

antipsychotic-induced side effects, or more psychiatric hospitalizations, while the remaining 

studies didn’t find significant associations. Although PGx-scores alone accounted for at best 

5.6% of the variance in treatment outcomes (in schizophrenia treatment resistance), together 

with clinical variables they explained up to 13.7% (in bipolar lithium response), suggesting 

that clinical translation might be achieved by including PGx-scores in multivariable models. 

In conclusion, our literature review found that there are still very few studies developing 

PGx-scores using pharmacogenomic variants. Research with larger and diverse populations is 

required to develop clinically relevant PGx-scores, using biology-informed and multi-

phenotypic polygenic scoring approaches, as well as by integrating clinical variables with 

these scores to facilitate their translation to psychiatric practice. 

 

Keywords: Polygenic score, Pharmacogenomics, Psychiatric disorders, Psychotropic drugs, 

treatment outcomes 
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Introduction 

Psychiatric disorders are significant contributors to the global disease burden and represent a 

major public health concern 1, highlighting the urgent need for effective prevention and 

treatment strategies 2. The 2022 World Health Organization (WHO) report estimates that 

nearly a billion people suffer from psychiatric disorders, with an associated economic loss of 

$2 trillion per year and this figure is expected to rise to $6 trillion by 2030 3-6.  

 

Pharmacological treatments including antidepressants, antipsychotics, mood stabilizers, and 

anxiolytics are commonly prescribed for people suffering from psychiatric disorders 7. 

However, the effectiveness of these medications varies between individuals, with some 

responding well while others do not show notable improvement or experience adverse effects 

7. For example, among patients with major depressive disorder (MDD), 30-40% fail to 

respond to the first-line pharmacological treatment options of selective serotonin reuptake 

inhibitors (SSRIs), and 10-45% exhibit moderate to severe treatment-related side effects 8, 9. 

Similarly, only 30% of patients with bipolar disorder (BD) show a full clinical response to 

first-line lithium monotherapy 10, and up to 25% of patients with first-episode schizophrenia 

(SCZ) are treatment-resistant to first-line antipsychotics 11. This variability in 

pharmacological treatment outcomes can be attributed to the complex interplay of genetic and 

environmental factors, including patients' clinical characteristics (e.g., severity, number, and 

duration of illness episodes), as well as sociodemographic variables 12. For example, in 

individuals with MDD, genetic factors account for 42-52% of the observed differences in 

antidepressant treatment response, while environmental factors contribute to the remainder 13, 

14. 

To date, studies employing both candidate gene investigations (pharmacogenetics) and 

genome-wide (pharmacogenomic) approaches, have successfully pinpointed genetic 
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variations associated with treatment outcomes in psychiatry, including response 15, remission 

16, resistance 17 and adverse drug reactions 18. For instance, the pharmacogenetic approach has 

uncovered genetic polymorphisms within genes encoding drug-metabolizing enzymes 

including those involved in the metabolism of various psychotropic drugs (e.g., CYP2D6 and 

CYP2C19) 19 as well as drug transporters (e.g., 5-HTTLPR), establishing their association 

with patients' responses to medications20. This evidence is now incorporated into 

commercially available pharmacogenetic testing panels, aiding drug selection and dose 

adjustments and ultimately aiming at improving medication efficacy and tolerability21, 22. 

Similarly, the pharmacogenomics approach has revealed a number of genetic polymorphisms 

located within or near pharmacologically relevant candidate genes that influence individuals' 

reaction to psychiatric medications 10. For instance, Hou et al identified four linked genetic 

variants on chromosome 21 associated with lithium response in a Genome-wide Association 

Study (GWAS) 10. It has been challenging, however, to translate these pharmacogenomic 

findings into clinical practice, mainly due to the small effect size of individual genetic 

variants on treatment outcomes, along with a limited understanding of gene function 23.  

In an effort to improve effect estimates and make pharmacogenomic findings more clinically 

relevant, researchers have recently adopted polygenic score methods combine the effect of 

multiple genetic variants across the genome and have developed pharmacogenomic scores 

(PGx-scores) 24, 25. In this systematic review, we provide a detailed account of the research 

undertaken to date, and of the performance, shortfalls, and future recommendations for the 

development of PGx-scores for the personalisation of psychiatric care.  

Methods 

This systematic review adhered to the PRISMA updated guidelines 2020 26 and was 

registered with the International Prospective Register of Systematic Reviews (PROSPERO) 
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on February 9, 2023 (ID = CRD42023395404). The review protocol was prepared before 

commencement to ensure a transparent and standardized methodology.  

Search strategy, inclusion, and exclusion criteria 

The literature search was performed across three databases including PubMed, EMBASE, 

and Web of Science databases from January 1st, 2005 to 22nd August 2023, by using search 

string: (("Polygenic score*" OR "Polygenic risk score*" OR "Risk profile score*" OR 

"Genetic risk score*" OR "Gene score*" OR "Genetic score*" OR polygenic* OR 

"Pharmacogenomic variants" OR "Pharmacogenomic testing" OR Pharmaco-omic* OR 

pharmacogeno* OR "Pharmacogenetics") AND ("Antipsychotic agents" OR antipsycho* OR 

"Antidepressive agents" Antidepress* OR "Anti-anxiety agents" OR Anti-anxiet* OR 

Valproic acid OR Valproate OR Divalproate OR Divalproex OR Carbamazepine OR 

Oxcarbazepine OR Risperidone OR Gabapentin OR Lamotrigine OR Licarbazepine OR 

Pregabalin OR Tiagabine OR Zonisamide OR Lithium)) 

 

Our search strategy included all original studies that developed PGx-score for drug-related 

phenotypes such as, drug dosage, therapeutic drug response, resistance, drug-induced side-

effects, relapse or hospitalisation in psychiatry. We included studies that reported weighted 

PGx-score for the drug-related phenotypes mentioned above, while excluding publications in 

languages other than English, conference abstracts, case reports, editorials, notes, and 

systematic reviews. NTS screened the studies for inclusion under supervision of ATA. In the 

final step, all studies were imported into Endnote version 20, a reference manager software. 

Duplicate entries were removed, and the selection of studies was carried out based on the 

predetermined inclusion and exclusion criteria. Supplementary file 1 provides details of the 

systematic search strategies and results in each database. 
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Insert Supplementary file 1 here. 

Data extraction and synthesis  

NTS extracted data using a customised data extraction excel sheet format, under supervision 

of ATA. This excel sheet included information on the authors' characteristics, details of the 

drug outcomes, characteristics of the study cohort (such as base, target, and validation 

cohorts), number of variants included in the polygenic score (PGS), polygenic scoring 

methods, and association effect estimates. The "target cohorts" describe the cohorts where the 

PGS was developed and tested, while "discovery cohorts" refers to the cohorts utilized to 

create GWAS summary statistics. "Validation cohorts" are independent cohorts where the 

PGSs were validated. "Variance explained" measures the proportion of phenotype variance 

the PGS can account for in a predictive model assuming linear effects. Coefficient of effect 

estimates, standard error, and sample size were used to calculate odd ratios if not reported in 

the studies. The results were organized thematically based on the psychiatric disorders that 

were studied, as well as the specific phenotypes investigated, including treatment response, 

treatment resistance, and drug-induced side effects.  

 

Insert Supplementary file 2 here. 

Quality assessment 

The quality of included studies was assessed using a quality assessment form adapted from 

previously validated and published sources 27, 28. The assessment criteria covered various 

aspects of the study design, such as the rationale and methods of PGS, power calculation, 

inclusion and exclusion criteria, basic characteristics of the study population, availability of 

validation cohort, type of analysis, correction for multiple testing, and consideration of 

confounders in the analysis. The quality assessment was conducted by NTS under 

supervision of ATA.  
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Results 

Our initial search identified a total of 4,889 studies that were potentially relevant to the 

research topic. After removing 1,586 duplicated publications, 3,303 articles remained for the 

title and abstract screening. Subsequently, 3,175 studies were excluded during the initial title 

and abstract screening phase, leaving 127 articles for full text review. Finally, 53 studies met 

the predetermined inclusion criteria and were included in the final synthesis. Figure 1 

presents the flowchart of the step-by-step process of study selection with reasons for 

exclusion. 
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Figure 1. PRISMA flow diagram showing the steps of screening studies included in this systematic review.  

Abbreviations: PGS = Polygenic score; PGx =Pharmacogenomics 
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Quality assessment 

Nearly three-quarters (39/53) of studies described the rationale for the selected polygenic 

scoring methods, while about 20% (10/53) of studies performed a power calculation. All 

studies reported the inclusion and exclusion criteria for participants' selection. Only fourteen 

studies used external cohorts to validate their findings. Correction for multiple testing was 

performed in 83.2% (44/53) of studies. Detailed results of the quality assessment are 

provided in a supplementary file 1.  

Most studies 37 (69.8%) were conducted on samples comprising individuals of European 

ancestry. Eleven studies (20.8%) included participants from other ancestries, such as African, 

African American and/or East Asian. Three studies targeted only Latin American participants 

and another two studies were conducted specifically on samples of East Asian ancestry. 

However, there was no study solely centered on samples of African ancestry. A combined 

analysis of both the target and discovery samples showed that 14,893,321 (90%) of 

participants had European descent, with an increased trend over the years 2013-2023, both in 

the target (Figure 2A) and discovery cohorts (Figure 2B). 
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Figure 2. The ancestry characteristics of samples in the A) target and B) discovery cohort for 

studies from 2013 – 2023 

 

The sample sizes across the studies varied widely, ranging from 44 participants 29 to 12,863 

participants 30 with a median sample size of 863 in the target cohorts. Three major psychiatric 

conditions namely SCZ, depression and BD were the focus of included studies. In the case of 

SCZ, nearly 80% (21/27) of studies investigated the association between PGS and response to 

second-generation antipsychotics (clozapine, risperidone, lurasidone, olanzapine, 

aripiprazole, quetiapine, ziprasidone, and perphenazine). About half of SCZ studies (13/27) 
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exclusively analysed clozapine treatment outcome. Nearly three-quarters of the included 

studies involving patients MDD (14/19) considered the relationship between PGS and SSRIs 

such as citalopram or escitalopram. Six out of seven included studies developed PGx-scores 

and examined their associations with lithium treatment response in patients with BD. 

 

The association of pharmacogenomic scores with treatment outcomes 

Involving patients with psychiatric disorders, researchers have developed several PGx-scores 

and investigated their associations with key treatment outcomes: treatment response, 

treatment resistance, treatment-related side effects, and hospitalization rates. Table 1 provides 

a summary of the findings extracted from each of the articles included in this systematic 

review (Table 1). 
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Table 1. Summary of findings on the association between PGx-score and treatment outcomes. 

Author Target cohort characteristics, pharmacogenomic- scores and treatment outcomes Associations of polygenic scores with treatment 

outcomes 

Cohort  N Polygenic score for Pharmacological treatment outcomes Effect estimates [OR/RR (95% CI)] R2(%)  

Medication  outcome 

Guo et al., 

(2023)  

CAPOC and CAPEC 3686 SCZ Second 

generation 

antipsychotics 

Response Correlation between PGSSCZ and 

treatment response = -0.05[-0.09, -

0.01] 

0.51  

Kappel et al., 

(2023)  

CLOZUK  3133 SCZ Clozapine Clozapine 

dosage  

PGSSCZ positively correlated with 

increased clozapine dose; 

12.21[4.81,19.62] 

0.32 

Santoro et al., 

(2018)  

CAISM 60 SCZ Risperidone Response  Higher PGSSCZ associated with 

reduced depressive symptoms.  

0.19 

Talarico et al., 

(2022)  

PROESQ  174 SCZ Second 

generation 

antipsychotics 

TRS  Top three PGSSCZ deciles versus 

bottom three PGSSCZ deciles: 2.42 

[1.35, 3.49]  

 

~2.00 

Zhang et al., 

(2019)  

ZHH-FE  77 SCZ Risperidone or 

olanzapine 

Response PGSSCZ associated with having 

worse 12-week symptom scores, 

OR=1.43 

3.24 

Gasse et al., 

(2019)  

DCRS  593 SCZ Clozapine TRS TRS associated with one SD 

increase in PGSSCZ, HR=1.11 [95% 

CI; 1.00 – 1.24]. 

NR 

Okhuijsen-

Pfeifer et al., 

(2022)  

CLOZIN  684 SCZ Clozapine  Response  Highest PGSSCZ tertile vs lowest 

tertile: 1.94 [1.33–2.81]  

1.85 

Lin et al., 

(2023)  

GROUP and 

CLOZIN  

2505 

and 

687 

SCZ First and second-

generation 

antipsychotics 

Likelihood of 

clozapine 

prescription  

Higher PGSSCZ with lower group of 

individuals taking clozapine: RR, 

3.24[2.76,3.81] 

2.59 

Werner et al., 

(2020)  

TOP 321 SCZ First and second-

generation 

antipsychotics 

TRS Higher PGSSCZ vs lower: 1.5 [1.13–

1.96] 

1.70 
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Pardinas et 

al., (2022)  

Cardiff COGS and 

STRATA-G 

817 SCZ Clozapine  TRS  Higher PGSSCZ vs lower PGSSCZ: 

1.22 [1.05-1.41]  

2.03 

Pain et al., 

(2022)  

STAR*D, GSRD, 

GENDEP, DAST, 

PGRN-AMPS, 

GENPOD, PFZ, 

Mayo, GSK, GODS, 

Miaoli, Taipei, Japan  

5117 SCZ, MDD, BD 

and educational 

attainment 

SSRIs Response  Higher PGSSCZ with lower: 

0.97[0.96,0.98] 

 

Higher PGS for educational 

attainment with lower: 

1.02[1.01,1.03] 

~0.10 

International 

Consortium on 

Lithium, G., et 

al., (2018)  

ConLi+Gen  2586 SCZ Lithium Response First PGSSCZ decile group vs tenth 

PGSSCZ decile for favorable 

response: 3.46 [1.42-8.41]  

0.80 

Facal et al., 

(2022)  

GEHRS  1241 SCZ  Clozapine Hospitalisation Higher PGSSCZ with lower PGSSCZ: 

1.48, 95% CI [1.10-1.97] 

2.70 

Ward et al., 

(2018)  

PGRN-AMPS and 

GENDEP  

1065 MDD and 

neuroticism 

SSRIs Response and 

remission 

Higher PGS for neuroticism group 

vs lower group: 1.02, [1.01,1.03]; 

Higher PGSMDD vs lower:  0.98, 

[0.97,0.99]  

NR 

Amare et al., 

(2021)  

ConLi+Gen  2586 MDD Lithium Response First PGSMDD decile group vs tenth 

PGSMDD decile group for favourable 

response: 1.54 [1.18–2.01]   

0.70 – 0.91 

Gendep 

Invesigators et 

al (2013)  

GENDEP, STAR*D 

and MARS  

2256 MDD SSRIs Response and 

remission 

NR 0.50-1.20 

Schubert et al., 

(2021)  

ConLi+Gen  2283 SCZ, MDD and BD Lithium Response Higher decile group vs lower decile 

group for poorer response: 2.54 

[1.91 - 3.08] 

1.85 

Mayen-Lobo et 

al., (2021)  

NINN  44 SCZ, MDD and BD Clozapine  Clozapine 

metabolic ratio 

PGSBD was associated with the 

Clozapine metabolic ratio  

0.21 

Coombes et 

al., (2021)  

ConLi+Gen 2510 SCZ, MDD and 

ADHD 

Lithium Response Higher and lower PGSADHD group 

for poor response: 0.86 [0.77,0.95] 

0.18 

Blackman et 

al., (2022)  

Healthy volunteers 71  Cognitive ability First generation 

antipsychotics 

Cognitive 

symptom 

Medication-related performance 

changes in category fluency 

positively associated with PGScog. 

 

0.27  
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Yoshida et al., 

(2023)  

CATIE and CAMH  151 

and 

138 

SCZ and T1D Second 

generation 

antipsychotics 

AIWG Higher PGS for T1D compared 

with lower: 4.67[1.66,13.12]; 

Higher PGSSCZ compared with 

lower: 2.04[1.14,3.66] 

~0.06 

O’Connell et 

al., (2023)  

TDM 1733 SCZ, TRS and BMI  Clozapine  TRS NR 5.62 by the 

shared 

variants of 

TRS and 

BMI 

Millischer et 

al., (2022)  

SWEBIC 2357 BMI and BUN Lithium CLLi Positive association between 

PGSBMI with CLLi and negative 

association between PGS for BUN 

with CLLi  

~0.54 

Amare et al., 

(2019)  

STAR*D and ISPC  865 CAD and Obesity SSRIs  Response Fourth PGS for CAD quartile: first 

in ISPC: 0.71, [0.52-0.96]; 

Fourth PGS for obesity quartile: 

first in ISPC: 0.53, [0.32-0.88]  

CAD = 1.30 

Obesity = 

0.80 

Men et al., 

(2023)  

STOP-PD II  205  Antidepressant 

response and 

Alzheimer’s 

disease 

Sertraline and 

Olanzapine   

Remission and 

relapse  

PGS for antidepressants symptom 

improvement with remission status:  

1.95[1.20,3.17]; PGS for 

Alzheimer’s disease with relapse: 

0.38[0.18,0.80]. 

NR 

Campos et al., 

(2022)  

AGDS 12,8

63 

Chronic pain and 

MDD 

SSRIs  Response Higher PGSPain group vs lower: 0.95 

[0.92, 0.98]  

NR 

Zwicker et al., 

(2018)  

GENDEP 755 CRP Escitalopram and 

Nortriptyline 

Response  Higher PGS for CRP with lower: 

2.91, [1.29, 6.49] 

NR 

Amare, et al., 

(2018)  

PGRN-AMPS and 

ISPC 

1394 Personality traits SSRIs Response and 

symptom 

remission 

Higher PGs for openness vs lower: 

1.58, [1.10-2.90] 

1.50 

Marshe et al., 

(2021)  

IRL-GRAY  355 MDD, Alzheimer's 

disease and 

cardioembolic 

disease 

Venlafaxine Late-life 

treatment 

response 

Higher PGS for cardioembolic 

stroke with non-remission vs lower: 

0.63 [0.48, 0.83]  

0.46 
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Hommers et 

al., (2021)  

RPUHW 804 QT intervals  First and second-

generation 

antipsychotics 

QT 

prolongation) 

Higher PGS for QT interval vs 

lower: 1.19 [1.02, 1.44] 

NR 

 

Amare et al., 

(2023)  

ConLi+Gen 2367 Lithium 

responsiveness 

Lithium Response Tenth Li+RPGS decile vs first 

Li+RPGS decile for favourable 

response:  

3.47 [2.22-5.47] 

1.90 for 

categorical 

and 2.60 for 

continuous 

outcomes  

Guo et al., 

(2018)  

Registered patients 

with MDD, BP and 

MDE 

127  Scopolamine 

response 

Ketamine and 

scopolamine 

Ketamine 

response 

Higher PGS for scopolamine 

response vs lower: 2.89 [1.13, 4.32] 

6.00% 

Meijs et al., 

(2022)  

ZNA and iSPOT-D  1123 Antidepressants 

response 

SSRIs  Response Higher PGS for antidepressants 

response vs lower: OR (1.18)  

2.91  

Muntane et al., 

(2023)  

PAFIP 381 SCZ and BMI  First and second-

generation 

antipsychotics 

AIWG Higher PGS for BMI and SCZ vs 

lower: OR (1.33) 

0.02 

Morgenroth et 

al., (2023)  

CLOZIN  102 SCZ and OCD Clozapine Clozapine-

induced OCD  

NSA NA 

Segura et al., 

(2022)  

CIBERSAM  231  SCZ, BD, 

depression and T2D 

First and second-

generation 

antipsychotics 

Antipsychotic-

induced 

metabolic 

dysregulation 

PGS for TC, TG, LDL were 

significantly associated with 

corresponding metabolic 

parameters.  

~1.20 – 4.30 

 Lu et al., 

(2022)  

CAPOC  2040 Myocardial 

Infarction 

Second 

generation 

antipsychotics   

QTc 

prolongation  

Higher PGS for QTc prolongation 

was associated with increased 

antipsychotic induced QTc interval 

prolongation 

~0.01 

Kowalec et al., 

(2021)  

SNPD 4936 SCZ, MDD and BD Clozapine  TRS NSA NA 

Lacaze et al., 

(2020)  

Registered patients 109 Myocarditis  Clozapine Clozapine 

induced 

myocarditis 

NR ROC = 66% 

Maciukiewicz 

et al., (2019)  

CAMH 201 BMI and obesity First and second-

generation 

antipsychotics 

ADRs (Weight 

gain) 

NSA NA 
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Cearns et al., 

(2022)  

ConLi+Gen  1034 SCZ and MDD Lithium Response Not specified 12.10 and 

13.7  

Li et al., 

(2018)  

Registered patients  302 SCZ Lurasidone Response    PGSSCZ was associated with the 

exacerbation of positive symptoms 

of SCZ.  

ROC 79.20% 

Wimberley et 

al., (2017)  

DPR 862 SCZ Clozapine TRS NSA NA 

Martin & 

Mowry, (2016)  

MGS  612 SCZ Clozapine TRS NSA NA 

Hettige et al., 

(2016)  

CAMH 83 SCZ Second 

generation 

antipsychotics 

Response NSA NA 

Nøhr et al., 

(2022)  

Seven clinical trials  1364 MDD, BD, SCZ Vortioxetine Response NSA NA 

Fanelli et al., 

(2022)  

 

Brescia, GSRD, 

Münster, STAR*D, 

Tartu  

3637 SCZ, BD, MDD 

and neuroticism  

SSRIs  Non-response Higher PGSMDD vs lower: 1.10 

[1.02–1.19] (Nominally) 

 

0.24 

Same cohorts  3184   Non-remission Higher PGSMDD vs lower: 1.14 

[1.04–1.24] (Nominally) 

 

0.57 

Taylor et al., 

(2021)  

Bethlem Royal 

Hospital  

240 MDD Mix of 

antidepressants 

Treatment 

resistance 

NSA NA 

Fanelli et al., 

(2021)  

GSRD 1148 SCZ, BD, MDD 

and neuroticism 

SSRIs  Treatment non-

response 

Higher PGSSCZ vs the lower: 

2.23: [1.21–4.10]  

1.60 

Wigmore et al., 

(2020)  

GS: SFHS 3452  SCZ, MDD, and 

BD 

Mixed 

antidepressants 

Treatment 

resistance 

PGSMDD = 1.01; PGSSCZ = 1.01; 

PGSBD = 1.01 (Nominally) 

< 0.01 

Li et al., 

(2020)  

SUSTAIN-2 and 

TRANSFORM-3  

527  SCZ, MDD and BD Esketamine  Response  NSA NA 

Garcia-

Gonzalez et 

al., (2017)  

GENDEP, STAR*D, 

GENPOD, GODS, 

GSK, Pfizer, 

Muenster  

3746 SCZ and MDD SSRIs Response  NSA NA 

Tansey et al., 

(2014)  

NEWMEDS & 

STAR*D 

2897 BD SSRIs Response  NSA NA 
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Abbreviations: PGx-score = Pharmacogenomic polygenic score; PGS = Polygenic score; SCZ = Schizophrenia; MDD = Major Depressive 

Disorders; MDE = Major Depressive Episode; BD = Bipolar Disorders; ADHD = Attention Deficit Hyperactivity Disorders; OCD = 

Obsessive-Compulsive Disorders; PGSSCZ = PGS for SCZ; PGSMDD = PGS for MDD; PGSBD = PGS for BD; CAPOC = Chinese Antipsychotics 

Pharmacogenomics Consortium; CAPEC = Chinese Antipsychotics Pharmacogenetics Consortium; CLOZUK = Genome-wide genotype 

information for SCZ cases from the UK; CAISM = Centro de Atenção Integral a Saúde Mental; PROESQ = Schizophrenia Program at the 

Universidade Federal de São Paulo; ZHH-FE = Zucker Hillside Hospital First Episode schizophrenia trial; DCRS = Danish Civil Registration 

System; CLOZIN = Clozapine International; GROUP = Genetic Risk and Outcome of Psychosis; TOP = Thematically Organized Psychosis; 

Cardiff COGS = Cardiff Cognition in Schizophrenia; STRATA-G = Genetics Workstream of the Schizophrenia Treatment Resistance and 

Therapeutic Advances; GSRD = Group for the Study of Resistant Depression; GENDEP = Genome Based Therapeutic Drugs for Depression; 

DAST = Depression and Sequence of Treatment; PGRN-AMPS = Pharmacogenomics Research Network Antidepressant Medication 

Pharmacogenomic Study; GENPOD = Genetics and clinical Predictors of treatment response in depression; GODS = Geneva Outpatient 

Depression Study; CAMH = Centre for Addiction and Mental Health; PAFIP = Cantabria program for early interventions in psychosis; STOP-

PD II = Study of pharmacotherapy of psychotic depression II; GEHRS = Galician electronic health records system; ConLi+Gen = International 

Consortium of Lithium Genetics; MARS = Munich Antidepressants Response Signature; CATIE = Clinical Antipsychotic Trails of Interventions 

Effectiveness; TDM = Therapeutic drug monitoring; NINN = National Institute of Neurology and Neurosurgery Manuel Velasco Suárez; DPR = 

Danish population-based registers; SWEBIC = Swedish bipolar cohort; MGS = Molecular Genetics of Schizophrenia; STAR*D = Sequenced 

Treatment Alternatives to Relieve Depression; AGDS = Australian Genetics of Depression Study; IRL-GREY = Incomplete Response in Late 

Life Depression; Getting to Remission; RPUHW = Registered patients at the University Hospital of Würzburg; IQ = Intelligent Quotient; BUN 

= Blood Urea Nitrogen; CLLi = Total body lithium clearance; proxyDNAm =  Proxy DNA methylation; PGSPain = Polygenic score for pain; 

PGScog = Polygenic score for cognitive ability; Li+RPGS = PGS for lithium responsiveness; CRP = C-reactive protein; TRS = Treatment 

resistant Schizophrenia; SNPD = Swedish National Prescribed Drug Register; BMI = Body Mass Index; HDL= High-density lipoprotein; 

LDL= Low-density lipoprotein; TG= Triglyceride; TC= Total cholesterol; T1D = Type 1 Diabetes; T2D = Type 2 Diabetes; CAD = Coronary 

Artery Diseases; SSRIs = Selective Serotonin Reuptake Inhibitors; GSK = Glaxo Smith Kline; PFZ = Pfizer; ISPC = International SSRI 

Pharmacogenomics Consortium; ZNA = Ziekenhuis Netwerk Antwerpen; iSPOT-D = International Study to Predict Optimized Treatment in 

Depression; GS-SFHS = Generation Scotland: the Scottish Family Health Study; SUSTAIN-2 = Long-term Safety and Efficacy Study of 

Intranasal Esketamine in Treatment-resistant Depression; TRANSFORM = Safety and Tolerability of Intranasal Esketamine Plus Oral 

Antidepressant in Elderly Participants with Treatment-resistant Depression; NEWMEDS = New Medications in Depression and Schizophrenia; 

HR = Hazard Ratio; SD= Standard Deviation; NSA = No significant association; NR = Not reported; NA = Not applicable; CI = Confidence 

Interval 
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Of all PGx-scores, the polygenic loading for schizophrenia (PGSSCZ) has been most 

extensively studied (32 publications) in relation to its influence on treatment outcomes. 

Several studies (20 studies) revealed that individuals with higher genetic loading for SCZ had 

a poorer treatment outcome to psychiatric medications 31-50, while the remaining studies 

didn’t find significant associations. For example, in patients with SCZ, a negative correlation 

(r = -0.05[95%CI: -0.09 – -0.01]) was found between PGSSCZ and response to second 

generation antipsychotics (olanzapine, aripiprazole, risperidone, quetiapine, haloperidol, 

ziprasidone, perphenazine) following six weeks treatment 34. Kappel et al.(2023) observed a 

positive correlation (β=12.21; 95%CI: 4.81 – 19.62) between PGSSCZ and high clozapine 

dosing (>600 mg/day) suggesting that individuals with a higher PGSSCZ may require 

increased doses of clozapine to achieve effective treatment response 33. In patients treated 

with risperidone, those who had a higher PGSSCZ reported more depressive symptoms 45, and 

worsened positive and negative psychotic symptoms 46. A higher PGSSCZ was associated with 

a poor response to olanzapine or risperidone OR=1.43[95%CI:1.19 – 1.67] 43 and an increase 

of one standard deviation in PGSSCZ was associated with an approximately 11% increase in 

the risk of developing treatment-resistant schizophrenia (TRS) (OR = 1.11[95%CI: 1.00 – 

1.24]) 44. Patients with a higher polygenic load for SCZ were 1.22 times [95%CI: 1.05 – 1.41; 

R2 = 2.03%] more likely to be resistant to clozapine 36, had 1.50 times [95%CI: 1.13 – 1.96; 

R2 = 1.70%] higher odds to experience resistance to other antipsychotics 42 and were more 

likely to develop antipsychotic-induced weight gain (AIWG) 48, 49.  

 

In decile-based comparisons, patients in the top three PGSSCZ deciles had a 2.42 [95%CI: 1.35 

– 3.49; R2 ~2.00%] times higher odds of poor response to various antipsychotic medications 

(olanzapine, risperidone, quetiapine, and clozapine) 35 and the odds of treatment resistance 

for those in the 8th PGSSCZ decile was 6.50 times [95%CI: 1.47 – 28.80] higher than for 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 6, 2024. ; https://doi.org/10.1101/2024.04.05.24305376doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.05.24305376


18 
 

patients in the 1st decile 35. Patients with a higher PGSSCZ had 1.48 times [95%CI: 1.10 - 1.97; 

R2 = 2.70%] higher odds of psychiatric hospitalizations and were hospitalized longer 39. 

Interestingly, in a study by Okhuijsen-Pfeifer et al (2022), patients treated with clozapine 

who were in the highest PGSSCZ tertile group were 1.94-fold more likely to experience low 

(i.e., more favourable) symptom severity [95%CI: 1.33 – 2.81; R2 = 1.85%], compared to 

those in the lowest PGSSCZ tertile group 38.  

Similar to the above findings, studies involving patients with MDD and BD have also 

unveiled the association of a higher PGSSCZ with poorer response to either antidepressants in 

MDD (OR = 0.97 [95%CI: 0.96 - 0.98; R2 ~0.01%]) 37 or lithium treatment in BD (OR = 0.29 

[95%CI: 0.12 – 0.70; R2 = 0.80]) 47.  

Aside from the PGSSCZ, several other polygenic scores have also been investigated for their 

potential to predict treatment outcomes in patients with psychiatric disorders. These include 

polygenic scores for cognitive function, cardiometabolic traits, MDD, BD, ADHD, autism 

spectrum disorders (ASD), anxiety, alcohol use disorders, personality traits, and educational 

attainment. In patients with SCZ, a higher genetic loading for general cognitive ability was 

associated with better cognitive function following antipsychotic treatment 51. SCZ patients 

carrying a greater genetic load for higher body mass index (BMI) were at a higher risk of 

being resistant to clozapine treatment 31. Moreover, the polygenic loading for BD (PGSBD) 

was found to be significantly associated with clozapine metabolic ratio 29, a measure of how 

clozapine is metabolized within the body, which may impact treatment response or adverse 

effects. In patients with first episode psychosis, higher genetic loadings for HDL, LDL, and 

total cholesterol predicted antipsychotic-induced metabolic disturbance 52. 

 

Studies of PGx-scores for patients with MDD also explored the impact of the polygenic 

scores for personality traits and physical illnesses on treatment outcomes. In a study by the 
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Genome-Based Therapeutic Drugs for Depression (GENDEP) investigators, the polygenic 

loading for MDD (PGSMDD) was significantly associated with response and remission to 

SSRIs and TCAs treatment in patients with MDD, although the direction of association was 

not reported 53. A study that assessed the relationship between PGS for various personality 

traits and response to SSRIs (citalopram, escitalopram, fluvoxamine) 54 found that a higher 

genetic loading for openness personality trait was associated with a better SSRIs treatment 

response after 8-week of treatment OR=1.58 [95%CI, 1.10-2.90] while the PGS for 

neuroticism was negatively associated with SSRIs treatment response 54. Genetic loading for 

cardiometabolic disease has also shown associations with response to antidepressant 

treatment: Marshe et al (2021) used a PGS for cardioembolic stroke to predict response to 

venlafaxine, an antidepressant of the serotonin-norepinephrine reuptake inhibitors (SNRI) 

class, after 12-week treatment. They found that a one standard deviation increase in PGS for 

cardioembolic stroke was associated with a decreased probability of remission (OR = 

0.63[95%CI:0.48 to 0.83]) or worsened disease symptoms (Montgomery-Asberg Depression 

Rating Scale (MADRS), β = -5.51[95%CI: -9.45 to -1.57]) 55. In a different study, individuals 

with the highest PGSs for coronary artery disease (4th quartile) had 0.53 times ([95%CI, 0.35 

– 0.81]) less likelihood of experiencing favourable response to SSRIs (citalopram, 

escitalopram, fluvoxamine) compared to those in the 1st quartile 56. Similarly, those with 

higher genetic loading for obesity (4th quartile) had a 0.53 times ([95%CI, 0.32 – 0.88]) lower 

likelihood of achieving a positive response to SSRIs treatment 56. In individuals with MDD 

(n=5218) treated with SSRIs (citalopram, escitalopram) or a TCA (nortriptyline), the PGS for 

educational attainment was positively associated with SSRI response 37. In a cohort of 

patients with psychotic depression treated with sertraline and olanzapine for 36 weeks, those 

who had a higher polygenic loading for Alzheimer’s disease had a decreased likelihood of 

relapse (OR = 0.38; [95%CI: 0.18 – 0.80]) during the study period 57. Higher PGS for chronic 
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pain was negatively associated with treatment response to SSRIs, tetracyclic antidepressants 

(mirtazapine), and SNRIs (desvenlafaxine) (OR= 0.95[95%CI: [0.92 – 0.98]) 30, while a 

higher PGS for C-reactive protein was associated with a better response to escitalopram (OR 

= 2.92[95%CI: 1.30 – 6.49]), but worse response to nortriptyline 58.  

 

In patients with BD, those with a low PGSMDD (first decile) were 1.54 times [95%CI: 1.18 – 

2.01; R2 = 0.91%] more likely to respond favourably to lithium than those who had high 

depression genetic loading (10th decile) 59. Similarly, a higher PGS for ADHD was associated 

with unfavourable lithium response (OR = 0.86[95%CI: 0.77 - 0.95], R2 = 0.18) 60. Further 

studies using the same dataset have shown that a combined analysis of the PGSs of multiple 

phenotypes and PGS with patients’ clinical data can improve the predictive capacity of 

polygenic models. For example, a meta-analysis of the association results of the PGSSCZ and 

PGSMDD provided improved response prediction compared to single disorder PGS 41. By 

applying machine learning methods, the PGSSCZ and PGSMDD were combined with clinical data 

which resulted in an explained variance of 13.7% in lithium treatment response 40. In a recent 

study, lithium clearance, an essential parameter for maintaining therapeutic levels of lithium 

and adjusting dosage, was positively associated with the PGSs for BMI and estimated 

glomerular filtration rate (eGFR), while it was negatively associated with the PGSs blood urea 

nitrogen (BUN) 61. 

In contrast to the above studies in which PGx-scores were developed based on diseases or 

related phenotype variants, a few recent studies used pharmacogenomic variants to calculate 

PGx-scores, directly indexing treatment outcome phenotypes. For instance, in cohort of 

patients with TRS, a PGx-score for clozapine resistance predicted 4.96% of the rate of TRS 

variation 31. In patients with psychotic depression treated with sertraline and olanzapine, 

those with a higher genetic loading for antidepressant remission and response had 1.95 times 
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[95%CI: 1.20 – 3.17] higher odds of reaching remission after 36 weeks 57. In similar context, 

PGS for response to SSRIs (escitalopram, sertraline, venlafaxine) predicted antidepressant 

treatment response in patients with MDD 62. A study by Guo et al. (2018) utilized variants 

ranked by their strength of association with ketamine response, a glutamate-modulating 

antidepressant used in patients with Treatment-Resistant Depression (TRD), to predict 

scopolamine treatment response in patients with either MDD or BD who had a current major 

depressive episode 63. Findings indicated that patients with higher genetic loadings for 

ketamine response had better responses to scopolamine, an emerging antidepressant with 

effects on acetylcholine (Ach) neurotransmission 63. A polygenic score developed for lithium 

treatment response (Li+RPGS) within ConLi+Gen was evaluated in a hold-out subsample and a 

smaller independent replication cohort. This analysis revealed that individuals in the highest 

Li+RPGS decile were 3.47 times [95%CI: 2.22 – 5.47, R2 = 2.60] more responsive to lithium 

compared to those in the lowest PGS decile, and a linear relationship was observed across the 

various deciles 64. Figure 3 summarized the relationship between different PGx-scores of 

different traits and pharmacotherapeutic outcomes. 
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Figure 3. Figure showing the relationship between different PGx-scores of different traits and 

pharmacotherapeutic outcomes in psychiatry.  

Legend: Green line represents the positive associations of PGx-scores with treatment 

outcomes; Gray line indicates negative associations between PGx-scores and treatment 

outcomes. A wider (thick) line lines represent a stronger association. 
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Discussion 

Pharmacogenomic scores (PGx-scores) are emerging as novel tools for predicting treatment 

outcomes in psychiatry such as response, remission, resistance, side effects, or hospitalization 

rates. While the bench-to-bedside translation of PGx-scores has not yet been achieved, a 

growing body of evidence indicates their potential clinical use for treatment personalisation. In 

this systematic review, we describe the landscape of 53 PGx-score studies in clinical 

psychiatry. These PGx-scores have been developed either from genetic variants associated with 

psychiatric or medical diagnoses (the majority of studies); or from pharmacogenomic variants 

associated with treatment outcome phenotypes (a few recent studies). Individual PGx-scores 

alone do not explain enough variance in clinically relevant outcomes and their combination 

with clinical data and/or other biological markers is required for effective translation.  

First, we found that over 90% of PGx-scores have been developed based on genetic variants of 

psychiatric or medical diagnoses (e.g., SCZ, MDD, BD, ADHD, coronary artery disease 

(CAD)) or phenotypes related to diagnoses (e.g., cognitive function, personality traits, 

educational attainment, CRP level, BMI). Among these, the PGSSCZ has been most extensively 

studied and has consistently shown association with pharmacotherapeutic outcomes across 

drug classes including antipsychotics, antidepressants and lithium, explaining as much as 3.2% 

of interindividual variability in some treatment outcomes 43. The consistent association of the 

PGSSCZ and treatment outcomes may be attributed to two factors. First, SCZ has a strong 

genetic basis with a heritability estimate of 80-85% 65 and it is possible that PGSSCZ captures a 

substantial amount of the phenotypic variance of the disorder. Previous studies have shown a 

direct correlation between a higher phenotypic heritability and a better predictive power of 

PGS 66. Second, SCZ GWASs are well powered, including cases and controls of diverse 

ancestral background 67, 68, leading to more accurate PGSs 69. The size of GWAS discovery 

samples has been associated with a better accuracy and predictive power of PGSs 69. For 
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example, the Psychiatric Genomics Consortium (PGC in 2009) found that common genetic 

variants explained only 3% of the total variance in risk to SCZ, in a sample of 3322 individuals 

with SCZ and 3587 controls of European ancestry70. In a follow up study (in 2014) with 

expanded sample size and diversity (36,989 cases, 113,075 controls, multiple cohorts of East 

Asian ancestral background), the variance explained by PGSSCZ substantially increased to 

around 18% 71, 72.  

It is important to highlight that in most of the reviewed studies, high PGSSCZ was associated 

with poor treatment response 32-34, 37, 38, 40, 41, 43, 45-47, more treatment resistance 31, 35, 36, 42, 44, more 

antipsychotics-induced side effects 48-50 or more psychiatric hospitalizations 39. A notable 

exception was a positive association with lower symptom burden in SCZ patient treated with 

clozapine 38. A possible explanation is that a high PGSSCZ loadings may index individuals with 

a higher neurodevelopmental contribution to mental disorder aetiology. Neurodevelopmental 

hypotheses are well established in SCZ, for instance the excessive synaptic pruning linked to 

complement system genotype 73. Psychosis prodrome and onset 74, 75 and TRS 76 has been linked 

to reduced brain volume and connectivity. These ‘hard wired’ brain characteristics may be 

more difficult to influence therapeutically through first-line (e.g., non-clozapine) 

pharmacological strategies 76.  

The review also identified polygenic associations between cardiometabolic disorders 55, 56, 

personality traits 54, and treatment outcomes. A higher PGSs for CAD, obesity, and neurotic 

personality were associated with poor response to antidepressants 54, 56 while a positive 

association was found with the PGS for openness personality 54. This is possibly due to 

shared biological mechanisms, for example, a genetic overlap between major psychiatric 

disorders and cardiometabolic diseases 77-80, neuroticism 81, or openness personality traits 82 

and also associated multimorbidity across these disorders 83 that might impact patients 

treatment outcomes. Personality traits have an impact on medication adherence, with 
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neuroticism linked to non-adherence and openness to compliance 84. These findings indicated 

that disease related PGS may help us to understand underlying pathology and identify drug 

targets, however, there may be limitations in their utility for pharmacogenomic testing due to 

challenges of interpretation. 

Second, from our review, it is clear that there is a major research gap regarding PGx-scores 

developed from pharmacogenomic variants 31, 57, 62-64. The lack of these studies is associated 

with the limited availability of well powered GWAS summary statistics on treatment outcomes 

(target sample) and challenges to collect genetic and clinical data from patients of a specific 

diagnoses, treated with similar medications (discovery sample). Currently, large scale GWASs 

leverage biobank datasets, where there is limited phenotyping on medication, missing 

standardised data on treatment outcomes.  

Although the current cohort sizes for PGx-score development are much smaller than those of 

large scale diagnosis-based GWASs, promising initiatives are underway to achieve deeper 

phenotyping for medications such as lithium 85, clozapine 36, 86, and antidepressants 37. For 

instance, ConLi+Gen cohort, which aimed to study the genetics of lithium treatment response 

in individuals with BD, currently has a sample size of 2367 patients of European ancestry and 

220 patients of Asian ancestry with current effort underway for a larger more diverse cohort 

and more detailed phenotyping 85. By expanding current efforts, there may be opportunities to 

develop pharmacogenomic PGx-scores with improved accuracy for clinical use.  

The third finding from this review is that PGx-score alone fall short of explaining adequate 

variance in treatment outcomes for clinical translation. Notably, the highest reported explained 

variance solely attributed to PGx-score, by leveraging genetic variants of TRS and BMI, was 

5.6% in resistance to clozapine. To address this shortfall, the combination of PGx-scores with 

clinical data could potentially enhance clinical use. For instance, a study modelled PGSSCZ + 
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PGSMDD with patients' clinical characteristics using machine learning, was able to explain 

13.7% of the variance in lithium treatment responses 40. A further example is a multimodal 

model combining PGS with socio-demographic, clinical, biomarkers and structural imaging to 

predict rehospitalization risk showed a negative predictive value of 81.57% compared with a 

PGS-only model (54.83%) 87. Similarly, a study that modelled polygenic scores of SCZ, MDD, 

and BD, along with proxy DNA methylation data and clinical symptom variables showed good 

regression performance for prediction of response to multiple antipsychotic drugs (ROC = 0.87 

[95% CI: 0.87-0.88] 34. In patients with type 2 diabetes, combining PGS with clinical data such 

as smoking status, BMI, blood lipid levels, blood pressure, and the use of anti-hypertensive 

and lipid-lowering medications, substantially improved the accuracy in classifying individuals 

into low-, moderate-, and high-risk categories for cardiovascular events to 83%, whereas 

accuracy was 58% with PGSs alone (29 optimized univariable PGS) 88. It is evident from these 

studies that PGx-score can be clinically useful if prediction models are refined based on a 

combination of PGx-scores and clinical data. 

Limitations 

Some of the limitations of the present systematic review should be highlighted. First, the study 

participants of the studies were predominantly drawn from European populations that limits 

the ability to apply study’s conclusion to non-European populations and raising concerns about 

the generalizability of the findings to more diverse populations. Second, the inconsistent 

reporting of the polygenic model parameters across studies makes it challenging to compare 

the efficacy and obscure the true picture of PGx-score in predicting psycho-

pharmacotherapeutic outcomes. Third, a significant portion of the included studies lack 

sufficient statistical power to draw conclusive results to the broader populations. Finally, the 

lack of a standard definition of pharmaceutical outcomes, differences in participants 
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characteristics, and the use of multiple medications across the different studies makes it 

difficult to compare findings and to perform meta-analysis. 

Where associations between PGx-scores and treatment outcomes were established, effect size 

estimates (beta, odds ratios, hazard ratios) and measures of explained variance (R2) varied 

widely in studies included in our systematic review. For instance, the R2 of PGx-score models 

for predicting resistance to clozapine treatment with PGSSCZ in TRS individuals ranged from 

2.03% 36 to 5.62% 31. Similarly, the reported odds ratios for clozapine response ranged from 

1.94 [95%CI: 1.33 – 2.81] 38 to 6.50 [95%CI: 1.47 – 28.80] 35. These inconsistent findings can 

partly be explained by phenotypic heterogeneity, evident in diverse definitions and 

measurement of treatment outcomes and by differences in the sample size of these studies. As 

an example, the definition of TRS and TRD varies widely across studies 36, 44, 56, 89-92. Achieving 

uniformity in phenotype characterization, and harmonizing assessments across studies would 

help to improve the reliability of PGx-score for treatment outcomes.  

Variation in sample size can also affect the size of individual study effect estimates and their 

statistical significance. Studies with small target or discovery samples, have limited statistical 

power to detect significant associations. Choi et al have demonstrated that in a discovery cohort 

of 100,000 samples, 200 to 500 samples in the target cohort are requisite to achieve 80% power 

for predicting traits across a spectrum of heritability estimates (h2:0.11 – 0.23) in polygenic 

models 93. Smaller sample sizes lead to larger sampling variance on individual marker effects 

and error accumulates across multiple markers such that the sample of variation on polygenic 

scores can be considerable. Recruiting a sufficiently large and well-characterized sample of 

uniformly treated individuals is a common challenge in PGx-score studies 69, 94.  
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Future directions in PGx-score research 

While PGx-scores hold promise for predicting treatment outcomes, they currently account for 

only a small proportion of the variance in treatment outcomes. This systematic review 

highlights the lack of well-defined phenotypes and small samples sizes that limit our ability to 

adequately quantify the genetic complexity associated with medication response. In this 

context, the following future directions may improve the predictive capacity of PGx-score and 

move us closer to their clinical utilization in psychiatry.  

Biologically informed PGx-scores: Previous PGx-score studies have been developed based 

on conventional polygenic modelling approaches, where the effect of genetic variants across 

the entire genome are aggregated, without taking into account the biological significance of 

these variants on the phenotype of interest 72, 95. A biology-informed polygenic score (B-PGS) 

model was introduced very recently as a novel approach to improve both the predictive 

capability and biological meaning of polygenic scores, while also reducing sequencing costs 

96, 97. For example, in a study to predict psychosis, a pathway specific PGS that was restricted 

to genomic locations within “nervous system development” and “regulation of neuron 

differentiation”, explained a variance of 6.9% in the risk of psychosis, outperforming the 

conventional PGS where genome-wide SCZ variants accounted for only 3.7% 98. B-PGS 

potentially increase the polygenic signal to noise ratio by excluding variants with little 

association to pharmacogenomic outcomes and also enhance the clinical interpretability of 

polygenic models by focussing on specific molecular pathways 99. There is emerging 

evidence elsewhere in medicine that B-PGS may be useful for identification of new drug 

targets, for instance in inflammatory bowel disease 100.  

Multi-trait PGx-score: By leveraging the genetic correlation between multiple phenotypes, 

the multi-trait PGS approach aggregates genetic information across traits with the aim to 
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improve the prediction power of PGx-scores 101-103. For example, in patients with BD, the 

polygenic scores of SCZ or MDD explained 0.80% 47 and 0.91% 59 of the variance in lithium 

response, respectively. Interestingly, combining the polygenic scores of SCZ and MDD, 

resulted in a better model, with an explained variance of 1.85% in lithium treatment response 

41, indicating that multi-trait PGS outperform single trait PGS. 

Combining multimodal data and machine learning optimization: Researchers have begun 

to combine PGS with other data modalities, for example clinical and imaging data to improve 

model accuracy 40, 104. Machine learning methods are progressively being adopted for the 

analysis of multimodal or complex data comprising PGx-scores, socio-demographic, 

behavioural and clinical data 105, 106. This approach, exemplified in a few studies included in our 

review 34, 40, holds promising results for clinical translation. Nevertheless, replication of these 

complex studies is lacking and interpretation of machine learning algorithms could be difficult 

for clinicians, potentially limiting their acceptance 107, 108. To overcome this barrier, it is 

important for data scientists and clinicians to collaborate at an early stage of model 

development to ensure that these models are not only clinically useful but also calibrated and 

valid for local conditions and easily understandable for end users 109-111.  

Validation of polygenic models: Given the complexity of pharmacogenetic models, current 

sampling issues and the associated risks of false discovery and poor generalizability across 

different populations, external replication and validation of these models is critical for future 

implementation 25, 112-114. Only 26.4% of studies included in this systematic review employed 

external validation 31, 33, 34, 36, 37, 43, 45, 46, 55, 56, 59, 62, 64, 115.  

Multi-ancestry PGx-score: Nearly 90% of samples in the target and discovery cohorts of 

studies included in our systematic review were European descent. Genetic variations and their 

effect on treatment outcomes can vary significantly among different populations. Given the 
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complex pattern of linkage disequilibrium (short genetic regions) and the significant difference 

in the frequency of genetic variants between populations, PGx-score constructed from one 

ancestral cohort may have lower prediction in another cohort 112, 116, 117. For instance in 

cardiovascular medicine, a Brazilian specific warfarin PGx-score used in a warfarin dosing 

algorithm was more accurate in Brazil, than the one developed in European population 118. 

Conversely, polygenic models that incorporate information from ancestrally diverse 

populations, improve prediction performance particularly in underrepresented non-European 

populations 119-123. Diverse sampling is required to develop and validate more generalizable and 

transferable PGx-scores across diverse populations72, 117. These limitations hamper the 

translation of research findings into clinical practice and raise health disparity concerns. Thus, 

improving diversity in pharmacogenomic research is essential steps in creating polygenic 

models with broader application. 

Clinical implications of PGx-score: While it is clear that further development is required to 

improve accuracy of PGx-score and alone they have low clinical utility, findings are advancing 

our knowledge of pharmacogenomics toward better personalisation of treatment For instance, 

the genetic loading for SCZ demonstrates some capability to stratify individuals based on 

lithium treatment response in BD 40, 41, 47 and clozapine dosage in individuals with TRS 33. 

Drawing parallels from other disciplines, such as cardiovascular medicine, PGS for coronary 

artery disease been used to reclassify patients from intermediate into high-risk categories 

translating into stronger statin use recommendations 124, 125. Similarly, genome-wide PGS in 

cardiovascular research have identified individuals with a four-fold increased risk, prompting 

recommendations for aggressive cholesterol-lowering therapy 126. Such evidence indicates that 

the polygenic scores have the potential to stratify patients, predict treatment outcomes and 

informed therapeutics decision making based on the genetic variation of population variation 

among different ancestral populations (Figure 4).  
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Figure 4: The potential use of PGx-score in precision psychiatry 

Abbreviations: DNA = Deoxyribonucleic acid 

Conclusions 

In summary, this systematic review highlights that larger and more diverse target sample 

sizes, focussed on well-defined and standardised pharmacogenomic outcomes, with robust 

replication are required to optimise the development of PGx-scores. Currently the variance 

explained by these models is too small for effective clinical translation. However, new 

techniques, such as B-PGS and the use of multivariate modelling combining multiple traits 

PGS with clinical data look promising to the increase accuracy. Large scale consortia focused 

on pharmacogenomics are required to improve sample size and diversity.  
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