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Abstract 

Purpose: Individual-level simulation models often require sampling times to events, however 
efficient parametric distributions for many processes may often not exist. For example, time to 
death from life tables cannot be accurately sampled from existing parametric distributions. We 
propose an efficient nonparametric method to sample times to events that does not require any 
parametric assumption on the hazards. Methods: We developed a nonparametric sampling 
(NPS) approach that simultaneously draws multiple time-to-event samples from a categorical 
distribution. This approach can be applied to univariate and multivariate processes. We discretize 
the entire period into equal-length time intervals and then derived the interval-specific 
probabilities. The times to events can then be used directly in individual-level simulation models. 
We compared the accuracy of our approach in sampling time-to-events from common parametric 
distributions, including exponential, gamma, and Gompertz. In addition, we evaluated the 
method’s performance in sampling age to death from US life tables and sampling times to events 
from parametric baseline hazards with time-dependent covariates. Results: The NPS method 
estimated similar expected times to events from 1 million draws for the three parametric 
distributions, 100,000 draws for the homogenous cohort, 200,000 draws from the heterogeneous 
cohort, and 1 million draws for the parametric distributions with time-varying covariates, all in 
less than a second. Conclusion: Our method produces accurate and computationally efficient 
samples for time-to-events from hazards without requiring parametric assumptions. 



Introduction 

Discrete-event simulation (DES) models simulate processes as discrete sequences of events that 
occur over time.1 These models rely on sampling the time of different events. For example, if 
events have a constant rate or hazard of occurrence, the time of their occurrence can be sampled 
from an exponential distribution. In DES models, time-to-event data following a nonconstant 
hazard could be sampled from parametric distributions.2 However, some events cannot be easily 
described by parametric distributions. For example, life tables, or events following hazards that 
are a function of time-varying covariates, such as smoking histories or tumor size, do not always 
follow standard parametric distributions. An alternative is to use a nonhomogeneous Poisson 
point process (NHPPP), which assumes that the rate of events follows a Poisson process that can 
vary over time.3 There are different implementations of algorithms for sampling from NHPPP, 
which require either numerical integration or rejection sampling.4 

In this brief report, we propose a nonparametric sampling (NSP) implementation of NHPPP that 
is both generalizable and computationally efficient. The method assumes that time to event is 
drawn from a nonparametric categorical distribution. We illustrate the NPS method using 5 
examples highlighting its accuracy, flexibility and computational efficiency. Additionally, we 
provide an open-source implementation in R and Python to facilitate wider adoption. 

Constructing the categorical distribution 

The steps to implement the NPS method are described in Box 1 and shown in Figure 1. In 
summary, the approach involves six steps: First, obtaining the discrete-time hazard cumulative 
distribution function, 𝐹!. This can be obtained from nonparametric estimation methods, such as 
the life table, actuarial or Kaplan-Meier methods.5 Second, obtaining the interval-specific sample 
probability, which is the probability mass function, 𝑝!, derived from 𝐹!. Third, sampling the 
times to events employing a categorical distribution, using the interval-specific probabilities, and 
defining each time interval as a category. And lastly, approximating time to event in continuous 
time. If 𝐹! is not readily available, it can be derived from either the discrete- time cumulative 
hazard, 𝐻!, (e.g., obtained from a Nelson-Aalen estimator6), or the interval-specific discrete-time 
hazard, ℎ! (e.g., obtained from a life table or actuarial estimation method). If instead, the 
cumulative hazard is available in continuous time, 𝐻!, then ℎ! can be derived within a time 
interval Δ𝑡 from 𝐻(𝑡 + Δ𝑡) − 𝐻(𝑡). Below we provide further details on these steps. 

Let 𝑡 ∈ 𝑇 be the time-to-event following a piecewise constant hazard ℎ! within a time interval 
𝛥𝑡, where 𝑇 is a random variable, 𝑡 = 0,… , 𝑍, and 𝑍 is the last time interval by which the event 
can occur. Thus, the cumulative hazard function at time 𝑡, 𝐻!, is obtained from 

𝐻! =3ℎ"

!

"#$

  (1) 

The cumulative distribution function (CDF) of 𝑇 at time 𝑡, 𝐹!, is 

𝐹! = 1 − exp(−𝐻!).  (2) 



If the hazard is given in a different scale from the one the analyst is interested in, it can be 
transformed to the desired scale by multiplying the hazard ℎ! by 𝛥𝑡, where 𝛥𝑡 represents the 
ratio of the given scale to the desired scale.5 For example, if the hazards are on a yearly scale and 
we want to sample monthly time-to-event data, we use, 𝛥𝑡 = %

%&
, and when the samples are in 

years, we use 𝛥𝑡 = 1. This scale transformation assumes that the hazard is constant within the 
interval. 

We derive the probability of an event happening within the 𝑡-th interval [𝑡, 𝑡 + 𝛥𝑡) by the 
difference in the CDF in Equation 2 as 

𝑝! = 𝐹!'(! − 𝐹!  (3) 

To conduct a non-parametric sampling (NPS) of the time interval at which the event can occur, 
we define 𝑋 as the time interval at which the event can occur and assume it follows a categorical 
distribution where each time interval is considered a category. Thus, 

𝑋 ∼ Cat[𝑝$, 𝑝%, … , 𝑝)], 

with a probability mass function 𝑓(𝑋 = 𝑥|𝐩) = 𝑝!, where 𝐩 = (𝑝$, 𝑝%, … , 𝑝)), 𝑝! ≥ 0 is the 
probability of the event occurring at the 𝑡-th time interval [𝑡, 𝑡 + 𝛥𝑡) and ∑ 𝑝!)

!#$ = 1. Most 
statistical software provide built-in functions to sample from a categorical distribution. For 
example, in R is the sample function, and in Python is the numpy.random.choice function. 

Multivariate categorical distribution 

We expand the previous approach to sample values for multiple random variables simultaneously 
by defining a multivariate categorical distribution as 

𝐗 = [𝑋%, 𝑋&, … , 𝑋*] ∼ Cat*[𝐩%, 𝐩&, … , 𝐩*], 

where 𝑋+ = 𝑥+ is the 𝑘-th random variable with a vector of probabilities 𝑝+ of having the events 
in each of the time intervals defined as 

𝐩+ = H𝑝$+ , 𝑝%+ , … , 𝑝)+I 

Common statistical software has no built-in functions to sample from a multivariate categorical 
distribution. However, we provide the code of the multivariate categorical distribution in R and 
Python in the Supplementary material. 

Approximating continuous time-to-event 

An approximation error occurs when approximating continuous time-to-event by using a 
discrete-time approach.7–9 Since the NPS samples for the exact time categories that were initially 
defined while dividing the time interval, the method does not contemplate the possibility of 
events happening in between any two categories. This generates a systematic bias, which could 
be reduced by adding a random variable 𝑌 ∼ 𝑈[0, 𝛥𝑡] to 𝑋, assuming that the time to event 
within each 𝛥𝑡 interval is equally likely to occur within the interval, which is consistent with a 
piecewise constant hazard model. Thus, the random variable of the time to event with the 



correction, is 𝑋, = 𝑋 + 𝑌. The steps to sample time to event using an NPS are shown in Box 1 
and illustrated in Figure 1. Adding a random uniform value to each time to event sampled from 
the categorical NPS method and calculating the expected value across all the samples is 
equivalent to adding a 𝛥𝑡/2 value to the expected time to event, which is a half-cycle correction 
(HCC) often used in discrete-time cohort state transition models10. If there is interest only in the 
expected value of the time to events, analysts could add a 𝛥𝑡/2 value to the expected value of the 
time to event obtained from the categorical NPS method without correction. 

Accounting for covariates 

Hazards could be a function of either of time-independent covariates, such as sex, race, or birth 
cohort, or time-dependent covariates, such as smoking histories, exposure to environmental risk 
factors or tumor size. In this section, we demonstrate the use the NPS method to sample times to 
events from hazards as functions of time-independent and time-dependent covariates. 

Time-independent covariates 

Let the 𝑖-th individual time to an event 𝑇- follow a time-dependent hazard, ℎ-(𝑡) = 𝑓-(𝑥-; 𝛽), 
over a time interval [0, 𝑍], as a function of a time-independent covariate, 𝑥-, that can take any 
functional form and vary between individuals, and a set of coefficients 𝛽. We assume a 
proportional hazards approach of the effect of the covariates on the hazard to demonstrate how to 
sample time to events the NPS method. That is, ℎ-(𝑡) = 𝑓(𝑥-; 𝛽) = ℎ$(𝑡)𝑒"!., where ℎ$(𝑡) is 
the time-dependent baseline hazard, 𝑥- is the covariate for the 𝑖-th individual and 𝛽 is the log-
hazard ratio of the proportional effect of the covariate 𝑥- on ℎ$(𝑡). 

Time-dependent covariates 

We now consider that the covariate can vary over time 𝑥-(𝑡) and can take any functional form, 
which results in a time-varying hazard ℎ-(𝑡) = 𝑓-(𝑥-(𝑡); 𝛽), over a time interval [0, 𝑍]. The time-
dependent covariate could be the same across all individuals (e.g., all experiencing the same 
mean tumor growth over time) or vary by individuals (e.g., everyone having their own smoking 
history). To use the NPS method to sample from hazards with time-varying covariates, we 
generate or pre-specify the time-dependent covariate and compute the corresponding hazard. For 
example, Figure 2 shows a time-dependent Weibull hazard. We use the multivariate categorical 
distribution to sample time to events for multiple individuals with different covariate paths. 

Examples 

Below, we provide 5 examples to illustrate the implementation of the NPS method for different 
processes. The R code for these examples and the function of the multivariate categorical 
distribution is provided in a GitHub repository (https://github.com/DARTH-
git/NPS_time_to_event). 

Example 1: Time to event from parametric hazards 

We used the NPS method for drawing times to events from various commonly used parametric 
distributions, such as exponential, gamma, and log-normal. We derived the piece-wise constant 



hazard, ℎ!, as described in step 1 in Figure 1 and Box 1 and applied Equation 2 and Equation 3. 
We sampled 10,000 times to event, computed the mean across all samples, and repeated this 
1,000 times to compute the overall mean across all simulations. We then compared the expected 
time to event obtained from our method, with and without the approximation to continuous-time 
interval, to the analytic expected time from the parametric distributions. While the expected 
times to event coming from the exponential, gamma, and log-normal distributions, using the NPS 
method and accounting for continuous time, were 10, 39.98, and 33.49, their analytical values 
were 10, 40, and 33.49, respectively. We also computed the mean execution time, and their 95% 
interquantile range (IQR, see Table 1), from 100 iterations using a computer with 2.3GHz Quad-
Core Intel Core i7 with 32GB memory. The mean execution time for the exponential, gamma 
and log-normal distributions were 0.49, 0.61 and 0.54 milliseconds, respectively. 

Example 2: Sampling age to death from a homogeneous cohort 

We sampled the age to death for 100,000 individuals in a hypothetical cohort from the US 
population in 2015.11 We estimated the life expectancy by taking the average across the 100,000 
samples with the continuous-time approximation. The probability mass function (PMF) for the 
age to death obtained from the NPS methods closely follows the PMF from the life table 
(Figure 3). The estimated life expectancy from the NPS method is 78.53 years, which is close to 
the life expectancy obtained from the life tables of 78.37 years. The mean execution time, 
repeating the sampling process 100 times is 5.15 milliseconds (Table 1). 

Example 3: Drawing age to death from a heterogeneous cohort 

We used the multivariate categorical distribution to simultaneously sample ages to death for 
100,000 males and females from sex-specific life tables for the U.S. population in 2015, with the 
continuous-time approximation defined above. The sex-specific PMF from the NPS method and 
the exact PMF from life tables are shown in Figure 4. The NPS method estimated a life 
expectancy of 76.22 and 80.93 years for males and females, respectively. The life expectancy 
obtained from the life tables was 75.93 and 80.76 years for males and females, respectively. The 
mean execution time, repeating the sampling process 100 times is 255.30 milliseconds (Table 1). 

Example 4: Drawing time to event from hazards with time-dependent covariates 

We used a proportional hazard setup with a time-dependent covariate that increases linearly over 
time, 𝑥-(𝑡) = 𝛼$ + 𝛼%𝑡, obtaining ℎ-(𝑡) = ℎ$(𝑡)𝑒("!(!).) = ℎ$(𝑡)𝑒1(2"'2#!).3. We compared the 
accuracy of the method in sampling time-to-events from parametric exponential (rate = 0.1) and 
Gompertz (shape = 0.1, scale = 0.001) baseline hazards, considering a linear time-varying 
covariate (𝛼$ = 0, and 𝛼% = 1) with a log-hazard ratio (𝛽 = 1.02) against those obtained using 
direct sampling (DS) from the inverse cumulative density functions obtained analytically.12,13 

The NPS method produced similar expected time to events for the two distributions compared to 
the DS method, from 1 million draws: exponential (8.61 NPS vs. 8.52 DS), Gompertz (35.98 
NPS vs. 35.48 DS), and Weibull (8.79 NPS vs. 8.02, DS). Their mean execution time in 
milliseconds, repeating the sampling process 100 times, is 38.28, 51.92, and 48.44, respectively. 



Example 5: Drawing time to event from hazards with time-dependent covariates following 
random paths 

We specify a time-varying covariate 𝑥-(𝑡) = 𝛼$ + 𝛼%𝑦-(𝑡) assuming 𝑦-(𝑡) follows a Gaussian 
random walking process 𝑦-(𝑡) = 𝑦-(𝑡 − 1) + 𝜖-, where 𝜖- ∼ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇 = 0, 𝜎 = 0.5) and 
generated 1,000 random paths over 100 years (Figure 5). We assume a Weibull baseline hazard, 
ℎ$(𝑡) = 𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝑠ℎ𝑎𝑝𝑒 = 1.3, 𝑠𝑐𝑎𝑙𝑒 = 30.1), obtaining ℎ-(𝑡) = ℎ$(𝑡)𝑒("!(!).) =
ℎ$(𝑡)𝑒

412"'2#5!(!)3.6. We used the multivariate categorical distribution to sample times to events 
from the individual-level Gaussian random walk processes and estimated an expected time to 
event of 27.88 years. Repeating the sampling process 100 times, the average sampling time was 
4.27 milliseconds. 

Discussion 

We developed a nonparametric approach method to sampling times to events with high 
computation efficiency. The NPS method uses a categorical distribution, which discretizes the 
hazard of events over a fixed and finite time period, assuming a piecewise hazard. We illustrated 
the NPS method with five examples that show common situations encountered when building 
DES models and provided their mean execution times. NPS can be used to sample the age of 
death from age-, sex-, race-, and year-specific life tables, and or times to smoking initiation or 
cessation from smoking histories14. It can also be used to sample times to events with hazards 
that are functions of either time-independent or time-dependent covariates. 

The proposed NPS method works similarly to previous methods when sampling ages of death 
from a life table for a specific group (e.g., white females born in 1980 in the US) using a 
piecewise-constant exponential distribution15. However, a strength of the proposed method is the 
use of multivariate categorical sampling, which extends the NPS method to simultaneously 
sample multiple ages of death from multiple life tables for different groups. 

The NPS method accurately approximates the expected time to events from parametric 
distributions and can generate times to events from hazards for which no parametric distributions 
can be accurately fitted, such as time-varying hazards described by time-varying covariates. 
Once the probability distributions are derived from the observed hazards, the sampling process is 
computationally efficient and can be easily repeated multiple times. This approach can be very 
useful for individual-level models that require sample times to events following processes that 
could not be appropriately addressed using parametric distributions. 

Our approach does not provide criteria to determine the optimal time interval length and it is up 
to the user to define it. This may pose a limitation because selecting an excessively wide interval 
can result in distributions that do not resemble the observed hazard, such as those with extremely 
swift changes in their levels. However, this is a focus for future research. Additionally, since this 
method utilizes a nonparametric categorical distribution, a sufficient number of samples must be 
drawn to obtain unbiased estimates. Our method assumes that the analyst is interested in 
sampling time to events from the mean process. However, if the analyst is interested in 
propagating the uncertainty of the estimated time-to-event process and has access to the 
mechanism generating the uncertainty of the estimation of the average process, the user can 



sample multiple hazards from this mechanism and apply our method to each of the sampled 
hazards. 

We proposed a method that can efficiently sample times to event from any time-to-event process 
from its hazard, survival, or cumulative distribution function over time. Moreover, this method 
can simultaneously sample from multiple different hazards with the multivariate categorical 
distribution, which we provide as R and Python functions in the Supplementary material. 
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Tables 
Table 1: Comparison of expected time to events and mean sampling time, in milliseconds, from 100 iterations of N samples each 
between the non-parametric sampling (NPS) method and parametric distributions or life table estimates. NPS-U: Non-parametric 
sampling uncorrected; NPS-C: Non-parametric sampling corrected by adding a uniformly distributed random number; N/A: Not 
applicable. 

Distribution NPS-U NPS-C 
Analytic 
solution 

Parametric 
sampling 

Exponential (rate = 0.1; N = 10,000)     
   Expected value 9.51 10.00 10.00 10.00 
   Mean execution time (95% IQR) 0.35[0.31, 0.48] 0.49[0.43, 0.66]  0.45[0.35, 0.69] 
Gamma (rate = 0.1, shape = 4; N = 
10,000) 

    

   Expected value 39.47 39.98 40.00 40.00 
   Mean execution time (95% IQR) 0.49[0.39, 0.68] 0.61[0.50, 0.85]  0.88[0.68, 3.12] 
Log-normal (μ = 3.5, σ = 0.15; N = 
10,000) 

    

   Expected value 32.99 33.49 33.49 33.49 
   Mean execution time (95% IQR) 0.34[0.30, 0.49] 0.54[0.42, 0.78]  0.64[0.54, 0.97] 
Life tables - Homogeneous cohort; N = 
100,000 

    

   Expected value 78.04 78.53 78.37 N/A 
   Mean execution time (95% IQR) 3.63[3.23, 4.05] 5.15[4.38, 5.36]   
Life tables - Heterogeneous cohort; N = 
200,000 

    

   Expected value (females) 80.32 80.93 80.76 N/A 
   Expected value (males) 75.71 76.22 75.93  
   Mean execution time (95% IQR) 254.36[217.37, 

394.44] 
255.30[219.65, 

409.17] 
  



Boxes 
 

 

Box 1: Steps to draw a time-to-event using a nonparametric sampling (NPS) approach. 𝐹!: 
cumulative distribution function for a discrete-time random variable; 𝐻!: discrete-time 
cumulative hazard function; ℎ!: discrete-time hazard function; H(𝑡): continuous time 
cumulative hazard function; ℎ(𝑡): continuous time hazard function; 𝑝!: probability mass 
function; Cat: categorical distribution; and Cat*: multivariate categorical distribution for K 
random variables.. 

 

 

  



Figures 

 

 

Figure 1: Steps to sample time-to-events using a nonparametric sampling (NPS) approach. 

 

  



 

Figure 2: A) Time-dependent hazard, ℎ(𝑡), for different values of a covariate; B) example of a 
covariate path; C) Corresponding path of the ℎ(𝑡). 

  



 

Figure 3: Probability mass function (PMF) of dying within a year of age in the total U.S. 
population in 2015. 

  



 

Figure 4: PMF of dying within a year of age by sex, U.S. population in 2015. 

  



 

Figure 5: A) Individual-specific trajectories. B) Individual-specific time-dependent hazards. 
Sample of 10 individuals 


