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Abstract 12

During an infectious disease outbreak, public health policy makers are tasked with strategically 13

implementing control interventions whilst balancing competing objectives. To provide a quantitative 14

framework that can be used to guide these decisions, it is helpful to devise a clear and specific 15

objective function that can be evaluated to determine the optimal outbreak response. In this study, 16

we have developed a mathematical modelling framework representing outbreaks of a novel emerging 17

pathogen for which non-pharmaceutical interventions (NPIs) are imposed or removed based on 18

thresholds for hospital occupancy. These thresholds are set at different levels to define four unique 19

control strategies. We illustrate that the optimal intervention strategy is contingent on the choice of 20

objective function. Specifically, the optimal strategy depends on the extent to which policy makers 21

prioritise reducing health costs due to infection over the costs associated with control interventions. 22

Motivated by the scenario early in the COVID-19 pandemic, we incorporate the development of a 23

vaccine into our modelling framework and demonstrate that a policy maker’s belief about when a 24

vaccine will become available in future, and its eventual coverage (and/or effectiveness), affects the 25

optimal control strategy to adopt early in the outbreak. Furthermore, we show how uncertainty in 26

these quantities can be accounted for when deciding which interventions to introduce. This research 27

highlights the benefits of policy makers being explicit about the precise objectives of introducing 28

interventions. 29
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1 Introduction 30

The COVID-19 pandemic has highlighted the importance of mathematical and statistical models for 31

informing and guiding public health policy decisions [1–3]. For example, infectious disease models 32

can be used to assess the effects of non-pharmaceutical interventions (NPIs) [4] or to test different 33

vaccination strategies [5] in real-time during an epidemic, informing policy makers about effective 34

control strategies to implement moving forwards. Policy makers are required to consider a range 35

of costs in order to determine the optimal policy for outbreak management. The overall cost of an 36

epidemic includes both the direct effects of disease (as quantified by public health metrics such as 37

the total number of infections, hospitalisations and deaths) and the economic costs associated with 38

the maintenance of control measures designed to suppress the epidemic. It is usually desirable to 39

take both measures into account when deciding upon the control strategy to implement, but the 40

degree to which multiple objectives relating to disease burden and economic factors are weighed in 41

the final decision is often unclear. In the early stages of the COVID-19 pandemic, for example, there 42

was extensive discussion regarding the contrast in the timing and principles of control strategies 43

adopted in different countries [6]. Certain governments such as China and Australia favoured a 44

“zero-COVID” suppression strategy as opposed to less stringent policies adopted by countries such 45

as Sweden. In the absence of a vaccine, countries only had NPIs at their disposal to mitigate disease 46

spread. These intensive interventions were effective at controlling the epidemic [7], but resulted in 47

negative economic and social consequences [8, 9]. On the other hand, less stringent approaches 48

reduce the non-disease harms, but result in more individuals being exposed to infection and hence 49

more severe disease outcomes in the short term, as observed in Sweden and the United Kingdom 50

where less intense restrictions were adopted to curb COVID-19 in summer 2020 [10]. For models to 51

be used to identify the optimal policy, it is necessary to define the objectives of control explicitly 52

[11]. If policy objectives are clearly stated, epidemiological modellers can construct an objective 53

function that can be quantified and used to guide decision making. 54

Objective functions have been constructed previously in epidemiological studies in which optimal 55

control theory is applied to identify optimal disease management strategies [12–17]. Factors typically 56

considered in the cost function include a measure of disease burden and time-dependent control 57

variables, balanced by weighting coefficients. The disease burden contribution can be based on 58

quantities such as the number of infected individuals [14] or can instead be based on the impact 59

on healthcare resources (through e.g., the number of hospitalised individuals). The cost of control 60

can include treatment and vaccination effort [16], which is often included in a nonlinear fashion to 61

reflect, for example, the disproportionate costs at heightened control efforts [17]. Once an objective 62

function has been formulated, different control strategies can be tested. In some studies, a limited 63

range of different interventions are tested, and in others it is possible to identify the optimal strategy 64

from a substantial range of possibilities. 65

In a previous study, Probert et al. [11] discussed the need for an objective function to be 66
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constructed for evaluating intervention strategies in the context of foot-and-mouth disease (FMD). 67

Strategies for FMD control can incorporate the targeted culling of livestock, including those that are 68

not yet infected, which leads to both the death of animal hosts and substantial direct economic costs 69

to farmers. Those authors demonstrated that the optimal control action is highly dependent upon 70

both the objectives of disease management and the epidemiological model used to guide decision 71

making. In that study, different strategies are ranked comparatively rather than highlighting the 72

best performing strategy alone. This is important as it can inform policy makers about robust 73

control strategies that perform relatively well across a range of modelling assumptions and objective 74

functions. If the cost function is well-defined, policy makers may consider the risk of a catastrophic 75

cost occurring (i.e., a reasonable worst case scenario), which can be explored if the underlying 76

simulation model incorporates uncertainty. We build on this previous work by considering how 77

different objective functions lead to different optimal interventions in the context of a novel disease of 78

humans, accounting for features of outbreaks that are particularly pertinent to outbreaks in human 79

populations (e.g. the rapid development of a vaccine, as was undertaken during the COVID-19 80

pandemic). 81

A key challenge for epidemiological modellers when designing models for use to guide interven- 82

tions is to account for uncertainties about outbreak dynamics and the effects of interventions, par- 83

ticularly at the early stages of the outbreak. Such uncertainties should be reflected when evaluating 84

control measures using any objective function. Examples of sources of uncertainty which may affect 85

the projected impacts of the outbreak include uncertainty in the parameters underlying pathogen 86

transmission [18], the effectiveness of a potential vaccine and/or other control measures [19] and the 87

economic impacts of control [20]. A particular source of uncertainty which likely affected decision 88

making at the beginning of the COVID-19 pandemic was related to future vaccination prospects. 89

COVID-19 vaccines were developed rapidly as vaccination became a global research priority early in 90

the pandemic [21]. However, the time that it would take for effective vaccines to be developed and 91

approved, as well as their eventual uptake, were unknown in the early months of the pandemic [22]. 92

This likely affected early decision making regarding the implementation of NPIs, as the swift arrival 93

of a highly effective vaccine would allow policy makers to maintain interventions with assurance of 94

an imminent path to higher levels of (vaccine-induced) immunity in the population. Thus, a key 95

feature of our current study is an investigation into how the optimal control strategy early in an 96

outbreak changes based on uncertainty about whether or when a vaccine will be developed, as well 97

as its eventual effectiveness and coverage. 98

In this paper, we present an age-structured mathematical model for the spread of a novel emerg- 99

ing pathogen. The model explicitly tracks the number of individuals in hospital as a result of severe 100

infection during the epidemic, which is used as a trigger to switch between three levels of population- 101

wide infection control. We consider four different possible control strategies, each of which is defined 102

by the precise trigger values at which interventions are changed. The performance of each control 103

strategy is evaluated using model projections and an objective function that takes into account 104
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disease burden, the cost of control and the risk of hospital capacity being exceeded at any stage 105

during the epidemic. Crucially, we demonstrate how the optimal control strategy changes according 106

to the relative weighting of disease burden and control stringency contributions in the objective 107

function, as well as the time horizon that is considered. 108

Our goal is to develop a general epidemiological modelling framework that can be extended 109

and used to guide interventions during future outbreaks of a range of pathogens, rather than to 110

provide a detailed model that represents specific features of the COVID-19 pandemic. However, 111

to demonstrate how the model can be used in specific scenarios, we consider a situation in which 112

NPIs are being implemented but a vaccine may become available in future (as was the case early in 113

the COVID-19 pandemic). We show how uncertainty in the time at which the vaccine will become 114

available can be accounted for when determining the current optimal control strategy. We show that 115

the optimal strategy can be different when accounting for the possibility of vaccine development 116

compared to the vaccine-absent scenario. Finally, we consider different ways in which objective 117

functions can be used to identify optimal control measures - including minimising the expected 118

value of the objective function or minimising different quantiles of the objective function. The 119

latter approach allows policy makers to choose, for example, to introduce control to limit impacts 120

of the “worst case” scenario. Taken together, this work provides a framework that can be used to 121

test different control interventions during future outbreaks of a range of pathogens. 122

2 Methods 123

2.1 Epidemiological model 124

We consider a general deterministic model of pathogen transmission in a closed population, com- 125

prising a system of ordinary differential equations (see supplementary material). It is based upon 126

the model initially developed by Keeling et al. [23] to simulate COVID-19 dynamics within the 127

United Kingdom, although as noted above explicitly modelling COVID-19 is not the focus of our 128

study. The population comprises of individuals subdivided into three demographic cohorts of ages 129

G = {0 − 19, 20 − 64, 65+} to reflect variability in disease severity with age; namely, the age- 130

dependent probabilities of developing symptomatic infection (da) and the probabilities of hospi- 131

talisation given symptomatic infection (ha). Transmission is also dependent on the ages of the 132

potential infectors and infectees, based upon mixing matrices derived from social contact patterns 133

in the United Kingdom [24]. Transmission rates are scaled so that the basic reproduction number 134

(calculated using the Next Generation Matrix approach [25]) takes the value R0 = 3. 135

The model includes four infectious classes. Asymptomatic infection is differentiated from symp- 136

tomatic infection, which is further subdivided by severity (including whether the individual is hos- 137

pitalised). The prevalence of individuals in the hospitalised compartment is used as a trigger to 138

introduce or relax control measures. All four infectious classes contribute towards transmission, al- 139

4

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305343doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305343
http://creativecommons.org/licenses/by/4.0/


though we assume that asymptomatic individuals are less infectious (e.g., due to a lower viral load) 140

and hospitalised individuals have significantly fewer contacts due to ward isolation (while allowing 141

for the possibility of nosocomial transmission [26]). The waning of immunity is possible sometime 142

after an individual recovers from infection. The time spent in the recovered class is assumed to 143

follow an Erlang distribution, so that immunity is unlikely to wane immediately (as opposed to 144

under the more standard assumption of an exponential distribution). The mean of this distribution 145

is 800 days and the standard deviation is 462 days. This broad distribution was chosen to allow 146

reinfections to occur over the timescale of the simulated outbreaks, but to ensure that infection 147

induces immunity in most infected individuals in the initial stages of the outbreak. We also take 148

deaths in hospital settings into consideration. 149

Gamma or Erlang distributions have been found to represent epidemiological periods more 150

accurately than exponential distributions [27]. The Erlang distributed period of waning immunity 151

is implemented using the method of stages [27], which is also used to obtain Erlang distributed latent 152

and infectious periods in our model. A schematic illustrating the model’s compartmental structure 153

is shown in Figure 1. A detailed description of the model is provided in the supplementary material. 154

2.2 Control 155

Policy makers are assumed to manage the spread of the pathogen by switching between three control 156

states for population-wide physical distancing measures. The policy makers can impose No Control 157

(state 0) on the system or implement control measures which vary between Intermediate Control 158

(state 1) or Lockdown (state 2). Control is associated with a fixed reduction in all transmission 159

rates βij (40% and 70% reductions in transmission respectively for the Intermediate Control and 160

Lockdown states in comparison to the No Control state). Switching between control states is deter- 161

mined by relaxation or reintroduction of measures based upon the total active number of individuals 162

in the hospitalised compartments, IH(t) =
∑

a∈G IHa (t), in the simulation. We incorporate differ- 163

ent control policies by defining four control strategies with distinct relaxation and reintroduction 164

thresholds. We note that the thresholds for introducing and relaxing interventions are not neces- 165

sarily identical. For example, policy makers may relax measures from lockdown to intermediate 166

control at a lower threshold number of hospitalisations than are required to move from intermediate 167

control to lockdown, reflecting the fact that measures are only likely to be relaxed when there is 168

substantial evidence that the outbreak is being controlled effectively. 169

The principles of each control strategy that we consider are summarised below. 170

• S1 (Cautious easing): This strategy sets low thresholds for relaxing control with a high 171

threshold for entering full lockdown. This strategy is conservative in that it aims to enforce 172

moderate control throughout the epidemic but simultaneously seeks to limit the number of 173

phases and duration spent in lockdown. 174
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Figure 1: Epidemiological model structure. Schematic illustrating the structure of the model
that governs the disease dynamics. Susceptible individuals (Sa) can acquire infection from any of
the four infectious classes (asymptomatic (IAa,m), symptomatic without requiring hospital treatment

(ISa,m), symptomatic and eventually requiring hospital treatment (IPH
a,m) and hospitalised with severe

disease (IHa )), highlighted by the grey box. Immediately following infection, individuals temporarily
occupy an exposed class (Ea,m) where they spend the latent period, before progressing to the
infectious classes according to age-dependent severity parameters da and ha. At the end of the
infectious period, individuals who recover remain in the Ra,m class until they undergo natural
waning immunity and return to the susceptible class. Disease-induced mortality occurs in hospital
settings at age-dependent probability µa, and deceased individuals are removed from the model.
Where relevant, subscripts distinguish between demographic cohorts a ∈ G = {0−19, 20−64, 65+}
and Erlang-stage classification m ∈ {1, 2, 3}.

• S2 (Suppression): This strategy aims to maintain a low prevalence, using very low thresh- 175

olds for relaxation and introduction, at the cost of frequent jumps between Lockdown and 176

Intermediate Control. This is an extreme case which prolongs the epidemic but may be 177

beneficial when the arrival of an effective vaccine is likely. 178

• S3 (Slow control): Similarly to the Cautious easing strategy, this strategy enforces low 179

thresholds to return to No Control and a high threshold to enter Lockdown. In contrast, the 180

threshold to relax from Lockdown to the Intermediate Control state is high, in the hope that 181

relaxing to the Intermediate Control state is sufficient to prevent disease resurgence. 182

• S4 (Rapid control): This strategy is characterised by a high switching threshold to return 183

to No Control and a narrow gap between all thresholds. It allows for swift relaxation from 184

Lockdown to No Control, keeping the duration of continuous intervention periods low. Preva- 185

lence of infections and hospitalisations can be higher than other strategies, but measures can 186

be reintroduced swiftly to avoid exceeding healthcare capacity. 187

6

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305343doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305343
http://creativecommons.org/licenses/by/4.0/


The principles of each strategy are encapsulated by four switching thresholds – two each for 188

relaxation and reintroduction of control measures. We use Tij to depict the switching threshold 189

(in the number of currently hospitalised individuals) for moving from control state i to control 190

state j. Table 1 lists the switching thresholds for the four control strategies considered. Decisions 191

regarding the switching of control measures are discrete and occur at the beginning of each day in 192

the simulation. The new control state is implemented after a three-day delay following the switching 193

threshold being triggered to account for logistics and the change in behaviour of the population in 194

response to new control measures. Control states must last at least three weeks before relaxation 195

can take place and at least two weeks before reintroduction can be imposed, as in reality policy 196

makers are unable to change policy on a daily basis. This is inclusive of the aforementioned three- 197

day implementation delay. If the outbreak is rapidly growing and the T12 threshold is triggered 198

during the No Control state, policy makers move directly to Lockdown. However, it is not possible 199

to skip the Intermediate Control state for total relaxation; we assume that Intermediate Control 200

is a necessary precursor to returning to No Control. Policy makers will also never choose to relax 201

measures if hospital occupancy is growing at the time that the relevant relaxation threshold is 202

triggered. 203

ID Name T01 T12 T21 T10

S1 Cautious easing 100 500 150 50
S2 Suppression 100 200 150 50
S3 Slow control 200 500 400 100
S4 Rapid control 300 450 350 200

Table 1: Control strategy thresholds for hospital occupancy. Thresholds Tij for the number
of active hospitalisations IH(t) required to switch control state under each of the four control
strategies.

2.3 Objective Function 204

We define H(t) and u(t) to be the number of new hospital admissions and the level of control 205

(relative reduction in transmission), respectively, over the previous day [t−1, t] in the epidemic, for 206

t ∈ {t0 + 1, . . . , tf}. The objective function J that we use in this study to evaluate epidemic costs 207

given a control strategy takes the following form: 208

J(H,u,w) =

tf∑
t=t0+1

(
w
H(t)

ϕb
+ (1− w)

(u(t))2

ϕs

)
+ exp (wH(max[IH(t)]−Hc)).

(1)

The cost function contains three major components each associated with weights (w,wH). The 209

first component measures severe disease outcomes based on total hospital admissions. The second 210

7

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305343doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305343
http://creativecommons.org/licenses/by/4.0/


component measures the cost of maintaining control measures which may be associated with a 211

continuous economic cost. We assume this to scale non-linearly with greater levels of stringency, so 212

that Lockdown is disproportionately costly. The constants ϕb = 30, 100 and ϕs = 252.5 normalise 213

both cost contributions against the highest costs observed across all scenarios explored in this work, 214

so that each cost contribution varies on a similar scale. The weighting w ∈ [0, 1] represents the 215

extent to which the policy maker trades-off the competing objectives (increasing w places a larger 216

emphasis on reducing the direct public health costs as opposed to the costs of interventions). The 217

third (exponential) component acts to heavily penalise strategies under which a specified capacity 218

on peak hospitalised individuals, Hc, is exceeded. This component gives a negligible contribution to 219

strategies which maintain a below-capacity level of hospitalised individuals, but a rapidly increasing 220

contribution once hospital capacity is exceeded (See Figure S3 for a demonstration of this qualitative 221

behaviour). In this study, this weighting is fixed at wH = 2. No discounting of costs is applied 222

in the objective function in our baseline analyses due to the short simulation timescales, but the 223

results were robust to discounting at a rate of 3.5% per annum (Figure S18). 224

This objective function can be used to evaluate a standalone cost for a given scenario or yield 225

a distribution of costs when uncertainty is incorporated. It then becomes important to consider 226

the summary statistic used to identify the optimal strategy which may reflect a level of acceptable 227

risk. A robust strategy could require, for example, a low risk of a reasonable worst-case scenario in 228

addition to a low expected cost. Thus, different statistics arising from the distribution of strategy 229

costs were calculated to explore how the effectiveness of the four control strategies are affected by 230

uncertainty. 231

2.4 Vaccination 232

In the midst of a global pandemic, vaccination rates can be nonlinear due to logistical bottlenecks 233

and global inequalities [28]. Sasanami et al. [29] previously used a logistic function to model 234

COVID-19 vaccine coverage in Japan. In a similar vein, in our work the number of cumulative 235

vaccinations of age cohort a ∈ G at a time t days into the simulation – after the specified arrival 236

date T of a vaccine – is calculated using the logistic function, 237

Va(t) =
ηNa

1 + exp(−κ(t− (T + tc)))
. (2)

The parameter η ∈ [0, 1] encapsulates the efficacy and eventual coverage of the vaccine. Given 238

the nature of our model, we are not explicitly considering vaccine efficacy and vaccine coverage 239

independently and therefore η = 0.5 can be interpreted as either a vaccine with 50% eventual 240

coverage with 100% efficacy against infection, or a vaccine with a higher coverage and lower efficacy 241

against infection (resulting in an overall 50% reduction in susceptibility). Henceforth, we refer to η 242

as the eventual coverage of the vaccine. Adjusting the eventual coverage η can reflect vaccination 243
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campaigns with varying success. For fixed η, the remaining parameters κ and tc control the speed 244

of increase of the vaccine rollout and the duration required (measured from deployment date T ) to 245

obtain 50% of the final coverage, respectively. 246

Vaccination follows an age-staggered protocol by beginning with the 65+ demographic on de- 247

ployment date T , before commencement of the 20 − 64 and 0 − 19 age groups after a delay of 248

tc/2 and tc days, respectively. Vaccination is assumed to target individuals in the susceptible and 249

recovered classes. Figure S4 demonstrates the cumulative vaccination uptake using the logistic 250

function (2) for an example simulation, using an arrival date of T = 360 days and parameters 251

η = 0.9, κ = 0.05, tc = 100. The parameters controlling the shape of the logistic function (namely, 252

κ and tc) are fixed and the uncertainty in control strategy cost is generated by varying the arrival 253

date T and coverage η. 254

We incorporate uncertainty in the vaccine arrival time and coverage by selecting a specified 255

arrival date T and parameter η from discrete probability distributions, to limit the number of 256

required model simulations. We allow T to take discrete values between 60 and 1,080 days, in 257

increments of 60 days. Similarly, we allow η to take discrete values between 0 and 1, in increments 258

of 0.05. Four discrete probability distributions are generated to reflect distinct levels of optimism 259

regarding the timing and eventual coverage of the future vaccine. Visualisation and details regarding 260

the generation of these distributions are provided in the supplementary material. The principle 261

behind each distribution considered is summarised in the list below. 262

• D1 (Radical): Timeliness is prioritised over maximising efficacy in order to enable vaccina- 263

tion rollout as early as possible. Characterised by E[T ] = 420 days, E[η] = 0.25. 264

• D2 (Optimistic): The global focus on vaccine development has enabled a highly effective 265

vaccine to be deployed promptly. Characterised by E[T ] = 420 days, E[η] = 0.75. 266

• D3 (Pessimistic): Global factors render the vaccine significantly less timely and effective in 267

comparison to those developed for COVID-19. Characterised by E[T ] = 720 days, E[η] = 0.25. 268

• D4 (Conservative): A lengthier timeline for vaccine research and development leads to a 269

higher quality vaccine. Characterised by E[T ] = 720 days, E[η] = 0.75. 270

Uncertainty leads to a cost distribution for each control strategy conditional on the joint proba- 271

bility distribution for the timing and eventual coverage of the vaccine. Denoting the set of possible 272

combinations of vaccine arrival times and coverage by Ψ, the expected cost of a control strategy 273

E[J ] is conditional on all plausible outcomes of T and η, 274

E[J ] =
∑

(T,η)∈Ψ

E[J |T, η]P(T, η) , (3)

9
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where P(T, η) is the probability mass function of the vaccine joint probability distribution. For a 275

distribution of cost, we rank the control strategies based upon a number of criteria: 276

1. Minimise the expected (mean) cost, E[J |Strategy]. 277

2. Minimise the cost of the “most likely outcome” (corresponding to the mode of the (T, η) joint 278

distribution, disregarding any other potential outcomes). 279

3. Minimise the 95th percentile cost (the cost Jc such that P[J > Jc|Strategy] ≈ 0.05). 280

4. Maximise the probability of having the lowest cost,
∑

(T,η)∈ΨS P(T, η), where ΨS ⊂ Ψ is the 281

set of outcomes in which strategy S is optimal (out of the four control strategies considered). 282

Some criteria focus upon minimising the objective function by averaging over all scenarios or 283

considering scenarios that are most likely to happen; for example, minimising the expected cost 284

E[J |Strategy] or the cost for the mode of the underlying vaccine distribution. Other criteria can be 285

viewed as a measure of strategy robustness, such as the 95th percentile cost which a policy maker 286

may perceive to reflect a “reasonable worst-case scenario”. Such situations are particularly impor- 287

tant to consider when there is high uncertainty regarding the future progression of the outbreak, or 288

when extreme scenarios can be particularly detrimental. 289

3 Results 290

3.1 Model simulations 291

First, we explored the effects of the four control strategies considered on outbreak dynamics. Simu- 292

lations were performed by numerically solving the differential equation system (see supplementary 293

material), checking each day whether a switching threshold Tij is triggered and implementing policy 294

decisions accordingly. Each simulation was preceded by a 30-day preliminary simulation without 295

any control, since in reality interventions are not implemented instantaneously when a pathogen 296

first arrives in the population. 297

Without vaccination, each control strategy considered led to different outbreak dynamics (Figure 298

2). Hospital levels in the Cautious easing strategy rose to a high first peak as a consequence of the 299

high T12 threshold. This strategy had the fewest waves of infection across the time frame used and 300

was also the only control strategy in which Lockdown was only implemented once. In contrast, under 301

the Suppression control strategy, the narrow gap between thresholds leads to frequent switching 302

between Intermediate Control and Lockdown without a break in measures to return to No Control. 303

However, high stringency was rewarded by generally low prevalence and overall disease burden 304

was lowest when measured throughout the epidemic. For the Slow control strategy, there were 305

two short successive periods of Lockdown in response to high levels of infection. This resulted in 306

the effective reproduction number falling below one after the second lockdown and low hospital 307
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(a) (b)

(c) (d)

Figure 2: Hospitalisation dynamics in the absence of vaccination. Number of active
hospitalised individuals across all age cohorts IH(t) for each control strategy, in the scenario with
no vaccination. Strategies are labelled as (a) S1 (Cautious Easing), (b) S2 (Suppression), (c) S3
(Slow Control) and (d) S4 (Rapid Control). Shaded are the periods spent in (red) Lockdown,
(yellow) Intermediate Control and (white) No Control. The switching thresholds Tij are marked
with horizontal dashed lines.

occupancy was maintained before a brief return to No Control and smaller waves of infection. 308

Finally, the narrow gaps between switching thresholds for the Rapid control strategy allowed the 309

epidemic to be managed at a moderate but sufficiently low level of infection such that hospital 310

capacity was never overwhelmed. This required regular switching between controls – this simulation 311

moved through the largest number of phases of all strategies with four phases of Lockdown in total. 312

Additionally, the high T10 threshold meant that this strategy allowed the longest and most frequent 313

periods of No Control. 314

Outbreak dynamics with vaccination are shown in Figure S5 for initial vaccine deployment 315

time T = 360 and eventual coverage (or effectiveness) η = 0.9. Since the vaccination coverage was 316

sufficiently above the critical level 1−1/R0 required to eradicate infection [30], and waning immunity 317

was assumed to occur slowly, the vaccine presented itself as a rapid pathway out of the epidemic for 318

this scenario, with the pathogen approaching elimination after the onset of vaccination. However, 319

there remained the possibility for smaller waves of infection, and corresponding reintroduction of 320

NPIs, while vaccination was taking place. 321

The ranking of control strategies using the objective function (1) depends upon the policy 322

maker’s choice about the relative importance of reducing the costs due to disease or the costs of 323

stringent public health measures. In our model, this choice determines the value of the parameter 324
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(a)

(b)

(c)

(d)

Figure 3: Strategy rankings. Ranking of control strategies with respect to weighting w for
choice of hospital capacity (Hc) and time horizon (tf , in days): (a) Hc = 1, 250, tf = 360, (b)
Hc = 1, 250, tf = 720, (c) Hc = 1, 250, tf = 1, 080 and (d) Hc = 1, 000, tf = 1, 080. The figure
shows the scenario of no vaccination (left) contrasted with a vaccination scenario for η = 0.9 and
T = 360 days (right).

w. The ranking of the four strategies is shown for a range of values of w, both in the absence of 325

and with vaccination, in Figure 3. When a short time horizon tf is considered, the optimal strategy 326

was either Slow Control or Suppression, depending on the value of w. Over longer time horizons, 327

each of the four strategies were optimal in different scenarios, again depending on the precise value 328

of w but also the level of hospital capacity. When hospital capacity Hc is lowered from 1,250 to 329

1,000 individuals, the Cautious Easing and Slow Control strategies are suboptimal as their first 330

wave peaks (1,052 individuals) would overwhelm capacity and are thus infeasible strategies (Figure 331

3d). To allow for the consideration of all four strategies henceforth, Hc will remain fixed at 1,250 332

individuals (1.25 beds per 1,000 population). The variance in strategy rankings across Figure 3 333

demonstrates that the objective of the policy maker is crucial in determining the optimal control 334

strategy. 335
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3.2 Incorporating vaccination uncertainty 336

We then simulated the model while varying the vaccine arrival time and coverage parameters (T, η) ∈ 337

Ψ to represent plausible vaccination scenarios. The time horizon used in each model simulation was 338

1,080 days (approximately 3 years). Surface plots depicting the overall cost of the outbreak under 339

each control strategy as a function of w and vaccine arrival time T are shown in Figure 4. Different 340

rows in Figure 4 reflect different levels of eventual vaccine coverage, η. Analogous surface plots 341

of cost by control strategy are also provided in which the vaccine coverage parameter η is varied 342

continuously for specific vaccine arrival times T = 360 (Figure S6a), T = 630 (Figure S6b) and 343

T = 900 (Figure S6c). Notably, the most stringent strategy (Suppression) is most likely to be 344

optimal when the policy maker prioritises lowering disease costs (i.e. a high value of w) and when 345

the vaccine is developed quickly and high vaccination coverage is achieved (see, for example, low 346

values of T in Figure 4c). In contrast, the Slow control and Rapid control strategies are optimal 347

for lower values of w, with the optimal strategy in that case depending on the time at which the 348

vaccine will be developed and the eventual vaccination coverage. 349

The probability distributions which characterise vaccine-related uncertainty (detailed in Figure 350

S2) were used to generate a distribution of possible outbreak costs under the four control strategies, 351

assuming that Hc = 1, 250 individuals. These costs are shown in Figure 5, centre. Predictably, 352

a shorter waiting time T for vaccine development and a greater eventual coverage η were associ- 353

ated with the smallest expected cost; both of these aspects are necessary to achieve a significant 354

reduction in cost in comparison to the pessimistic distribution (Figure 5c). The expected cost of 355

the Suppression strategy decreased with w and increased for the remaining strategies. The Sup- 356

pression strategy generally had the widest credible interval for cost. While this strategy certainly 357

benefits from a prompt vaccine arrival, delays to vaccine deployment resulted in overwhelming costs 358

to maintain control with minimal reduction in hospitalisation as alternative strategies returned to 359

low levels without control measures. 360

For each distribution characterising uncertainty in when a vaccine will be developed and its 361

eventual coverage, we calculated the probability that each control strategy leads to the lowest cost 362

(Figure 5, right) or the highest cost (Figure S7). These probabilities were calculated by first ranking 363

the control strategies separately for each combination of (T, η). Then, the proportion of values 364

(weighted by the relative likelihood of each (T, η) combination) in which each strategy leads to the 365

lower (or highest) cost was computed. Conveying strategy performances in terms of probabilities can 366

assist the decision making process, as policy makers may be inclined to adopt strategies with a high 367

likelihood of being optimal or a low likelihood of performing poorly. Regardless of the underlying 368

vaccine distribution, the Suppression strategy had a high probability of being optimal for larger 369

w, but the performance of the Slow control strategy for low w depended upon the probability 370

distribution characterising future vaccine availability and coverage (i.e., this strategy performed 371

well when the vaccine was expected to be developed quickly and when it was expected to have high 372
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(a)

(b)

(c)

Figure 4: Outbreak costs under different control strategies for different assumptions
about the timing of vaccine development and the eventual vaccination coverage. Surface
plots of cost (evaluated by the objective function (1) for different values of the weighting w and the
timing of the arrival of the vaccine (left). The z-axis has the lowest cost at the top, allowing the
optimal strategy (corresponding to the lowest cost) to be seen more clearly. Results were generated
separately for vaccine coverage (a) η = 0.1, (b) η = 0.5 and (c) η = 0.9. The control strategies are
coloured as follows: yellow (Cautious easing), green (Suppression), purple (Slow control) and blue
(Rapid control).

coverage). Since the Suppression and Rapid control strategies typically resulted in the largest level 373

of control or hospitalisations respectively, they also maximised the probability of having the highest 374

cost irrespective of the vaccine probability distribution when the weighting w was unfavourable (see 375

Figure S7). 376

We also evaluated the control strategies based upon different ranking criteria (see Methods). For 377

the same weight w, the optimal choice was dependent upon the ranking criteria used (Figure S8). For 378

the Optimistic joint probability distribution (Figure 5b), the Suppression strategy was favourable 379
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(a)

(b)

(c)

(d)

Figure 5: Effect of uncertainty in when a future vaccine will be developed and its
likely coverage on the outbreak cost and the optimal control strategy. The underly-
ing distribution of vaccine outcomes (left), resulting in cost distributions for the control strategies
which varied according to weight w (center), in addition to the probability each strategy had the
lowest cost across outcomes (right). The joint distributions (rows) covered a range of optimistic and
pessimistic scenarios regarding the effectiveness of the vaccination campaign; (a) D1 (Radical) dis-
tribution, (b) D2 (Optimistic) distribution, (c) D3 (Pessimistic) distribution, (d) D4 (Conservative)
distribution.The expected costs, E[J ], are marked by the scatter points, and the shaded regions
indicate the 2.5th and 97.5th cost percentile.

for intermediate w when the goal is to minimise the expected (mean) cost, most likely cost (mode 380

of the vaccine distribution) or maximise the probability of having the lowest cost. However, it did 381

not fare as well if policy makers instead choose to minimise the 95th percentile cost. Likewise, the 382

performance of the Slow control strategy worsened if we consider the 95th percentile cost in the case 383

of lower w. This again highlights the need for policy makers to consider their objectives carefully 384

when determining the control strategy to implement. 385
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4 Discussion 386

In this study, we have demonstrated that optimal interventions in the early stages of infectious 387

disease epidemics depend on the precise objectives of the policy maker. The optimal control strategy 388

to introduce depends on the extent to which the policy maker chooses to prioritise lowering negative 389

disease-related costs (e.g., numbers of hospitalisations) or limiting the costs of control (e.g., the 390

economic and social costs associated with stringent measures) - see Figure 3. We also showed how 391

key uncertainties can be accounted for in the decision making process - for example, uncertainty in 392

the time required for a vaccine to be developed and the level of vaccine uptake in the host population 393

(Figure 5). 394

Of the strategies that we considered, we found that the stringent Suppression strategy was 395

most likely to be optimal if a vaccine was expected to be developed quickly and a high vaccination 396

coverage could be achieved (Figure 4c). In that scenario, intensive control measures could limit 397

the negative effects of disease until the vaccine became available. In contrast, less stringent NPIs 398

were more likely to be beneficial if vaccine development was expected to take a long time and/or 399

vaccination uptake was expected to be low (Figure 4a). In addition, we found that the optimal 400

strategy can differ according to whether a policy maker prefers to minimise the expected outbreak 401

cost or the risk of a “reasonable worst case” scenario occurring (Figure S8). 402

The work that we have presented here builds on a substantial body of previous research. The 403

objective function used to evaluate control strategies in this study was informed by cost functions 404

that have previously been used when optimal control theory approaches have been applied in the 405

context of infectious disease epidemiology [12–16]. The nature of these functions allow for the dual 406

consideration of health-associated costs in addition to control-associated costs when deciding upon 407

an optimal strategy. Previous research articles have investigated the impacts of vaccination in the 408

context of the COVID-19 pandemic using scenario modelling, including considering different vaccine 409

effectiveness and uptake levels [19], deployment strategies [5, 31] and assumptions surrounding the 410

health and economic benefits of vaccination [20]. Modelling of this type is increasingly used in real- 411

time during infectious disease outbreaks to guide policy decisions. Our study extends this previous 412

work by considering how uncertainty relating to future vaccination (i.e., the time required to develop 413

the vaccine and its effectiveness or uptake) can be incorporated into methods for determining optimal 414

interventions in the initial stages of an infectious disease outbreak. 415

As with any mathematical modelling study, our research involved necessary simplifications. The 416

objective function used was relatively simple, allowing us to consider how disease-related costs could 417

be balanced against the costs of control in as straightforward a setting as possible. However, the 418

overall cost of an epidemic is not limited to the factors that we considered (i.e., hospitalisations 419

and the maintenance of control measures). Accurate assessment of the cost of an outbreak should 420

require other factors to be included and quantified, for example long-term health harms due to 421

stringent control measures being implemented for long periods. This can include mental health 422
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impacts [32] or complications arising from the cancellation of elective surgeries [33]. The true costs 423

incurred as a result of an epidemic can be extremely complex to measure and may continue to 424

accumulate beyond the lifetime of the epidemic. Previous work has investigated the economic cost 425

of implementing control by fitting polynomial functions describing GDP reduction as a function of 426

lockdown intensity and duration [34], or by modelling GDP reduction as a function of disease and 427

control induced unemployment [35]. Another potential future consideration is that the effectiveness 428

of different measures may change during an epidemic - for example, lockdown may be less effective 429

if it is introduced multiple times or maintained for a long period, since this would likely lead to a 430

reduction in public compliance with government guidelines. 431

In addition, we considered a limited range of control strategies in this study. All of these strate- 432

gies were based on thresholds in the prevalence of hospitalised individuals. However, in principle 433

other triggers for changing NPIs could be considered, for example thresholds in numbers of infections 434

or deaths, or in estimated outbreak growth rates or reproduction numbers. Further investigation 435

into the impacts of different approaches for determining when control measures should be changed 436

is a key area for future work. Even if thresholds in the numbers of hospitalised individuals are 437

used to determine when to amend interventions, in principle the values of the thresholds could be 438

optimised considering all possible values (as opposed to the four strategies that we considered here), 439

at the cost of a huge range of different control strategies to explore. 440

To limit the dimensions of uncertainty, the vaccine in this study was only allowed to vary in its 441

deployment time T and eventual coverage η. Here we use the parameter η as a catalyst to capture 442

a wide array of different vaccine-induced dynamics which range from minimal effect to driving the 443

pathogen extinct. In reality, the efficacy of vaccines against infection, disease and hospitalisation 444

can be unknown prior to large-scale clinical trials and deployment. Increasing the complexity of 445

vaccination can be examined in future projects. Epidemiological parameters in the disease model 446

were fixed as the primary objective was to investigate vaccine-induced uncertainty, however at the 447

beginning of a novel outbreak there can be substantial uncertainty regarding pathogen transmis- 448

sion and disease severity. Sensitivity analyses suggest that despite noticeable changes in epidemic 449

trajectories for the four control strategies as parameters are varied, their relative ranking in cost 450

contributions remains largely unchanging (see supplementary material). Scenario modelling is al- 451

ways sensitive to parameterisation and this motivates the resolution of parameter uncertainty as 452

early as possible during infectious disease outbreaks. 453

Nonetheless, despite these simplifications, our approach enabled us to demonstrate clearly that 454

identification of the optimal control strategy relies upon the objectives of control being set out clearly 455

by policy makers. If these objectives are clearly stated, and if relevant costs can be quantified, then 456

epidemiological modelling can be used to assess the effectiveness of different strategies. Moreover, 457

in settings in which there are relevant uncertainties - for example, uncertainty in the precise costs 458

of different control strategies or uncertainty about when a new vaccine may be developed - then the 459

modelling framework that we have presented can be used to identify the optimal control strategy 460
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accounting for those uncertainties (i.e., based on the best available evidence). As we showed by 461

including the potential for a vaccine to be developed, our modelling framework is easily extensible. 462

We therefore hope that this research lays the foundation for policy makers to be able to assess 463

the likely effectiveness of different control strategies during future outbreaks of a range of different 464

pathogens. 465
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