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Abstract 

Whilst the use of single-cell RNA sequencing (scRNA-seq) to understand target biology is well 
established, its predictive role in increasing the clinical success of therapeutic targets remains 
underexplored. Inspired by previous work on an association between genetic evidence and 
clinical success, we used retrospective analysis of known drug target genes to identify potential 
predictors of target clinical success from scRNA-seq data.  We investigated whether successful 
drug targets are associated with cell type specific expression in a disease-relevant tissue (cell 
type specificity), and with cell type specific over-expression in disease patients compared to 
healthy controls (disease cell specificity). Analysing scRNA-seq data across diseases and 
tissues, we found that both cell type and disease cell specificity are features enriched in targets 
entering clinical development, and that cell type specificity in the disease-relevant tissue is 
robustly predictive of target progression from Phase I to II. While scRNA-seq analysis 
identifies a larger and complementary target space to that of direct genetic evidence, its 
association with specificity and drug approval appears less clear. We discuss how further 
expansion and harmonization of single-cell datasets, more sophisticated integration of this data 
in target discovery, and improved methods for tracking clinical trial outcomes could enhance 
our ability to leverage scRNA-seq insights in drug development in future.  
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Introduction 
 
Drug discovery begins with the identification of candidate targets, drug-binding molecules 
whose modulation is hypothesized to be useful for the treatment of disease [1]. The discovery 
and development of a novel drug for a candidate target progresses in steps, from target 
validation to safety and efficacy clinical trials, and, in successful cases, regulatory approval. 
Development of a single new drug takes an average of 12-15 years and costs (including 
concurrent program failures) are estimated to range from 900 million – 2.6 billion USD per 
success [2,3]. A drug discovery program can fail at each step between early research to 
regulatory approval, and it is estimated that in >90% of cases failures can be attributed to 
suboptimal target selection for a given disease, resulting in safety or efficacy issues [4]. 
Together, these observations point to the need to improve the strategies and the data used in 
early stages of drug discovery to support the selection of candidate therapeutic targets, to 
increase the likelihood of clinical success. 
Single-cell RNA sequencing (scRNA-seq) data is a particularly promising source of evidence 
for target selection, providing cell-level resolution of molecular profiles in disease-relevant 
tissues. Single cell technologies have already been applied extensively to characterize disease 
biology, in emerging diseases like COVID-19 [5,6], cancer [7–10], and common complex 
diseases across tissues [11–14]. The rapidly growing body of disease-relevant scRNA-seq data 
has already begun to inform the development of novel diagnostics and cell-targeting precision 
therapies [15]. This led us to ask to what extent information on cell type specific expression 
can boost the selection of promising drug targets. 
Retrospective analysis of known drug targets has been used to identify features predictive of 
target success. Notably, such analyses have shown that targets linked to genetic variants 
associated with the relevant disease are twice as likely to reach clinical approval as targets with 
no genetic support [16–18]. These studies greatly impacted decision-making in biotech and 
pharmaceutical industries. Out of 428 newly FDA-approved drugs from 2013 to 2022, 271 
(63%) are backed by direct or indirect human genetic evidence [19,20]. Even though 
establishing whether this influenced their discovery or development phases is difficult, 250 out 
of 271 genetics-backed drugs had publicly accessible genetic support before approval.  
Given this precedent, here we used retrospective analysis to investigate whether common 
scRNA-seq disease analyses are informative as predictors of target clinical success.  

Results 
 
Although scRNA-seq data can reveal several gene features useful for drug targeting, we 
focused on testing two features which are commonly derived from scRNA-seq studies and used 
as a way to validate genes of potential use as therapeutic targets: (1) cell type specificity in 
healthy disease-relevant tissue and (2) disease cell specificity, here referred to as the over 
expression in a cell type in a diseased compared to a healthy tissue (Figure 1). The reasoning 
behind highlighting these features is that drugs targeting cell type specific genes inhibit 
expansion and function of normal cells acquiring aberrant phenotypes in disease. For example, 
the GLP-1 receptor, targeted by commonly used anti-diabetic drugs, is normally expressed in 
pancreatic beta cells, which become dysfunctional in disease [13]. Conversely, drugs targeting 
disease cell specific genes suppress aberrant gene programmes directly. For example, 
inflammatory bowel disease patients are treated with antibodies targeting the tumor necrosis 
factor (TNF), which is known to be produced by various immune cell types and has been 
recently shown to be over-expressed in regulatory T cells, as well as other immune subtypes, 
in disease [21].  
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Figure 1: Overview of study design. (A) Illustration of rationale behind scRNA-seq support classes for target 
discovery: cell types expanding or acquiring aberrant function in disease can be targeted using cell type specific 
targets. Cells specifically expressing aberrant gene programmes can be targeted with disease cell specific targets 
(B) Workflow for analysis of association between scRNA-seq support and clinical success. We identify cell type 
specific and disease cell specific gene-disease pairs through differential expression analysis on pseudo-bulked 
data from the disease-relevant tissue (1). Data on genetic association and clinical success of targets was collected 
from the Citeline Pharmaprojects database, as processed by Minikel et al. 2024 (2). For each omic support class, 
we compute the odds ratio for the association between clinical success (passing clinical trials) and different 
classes of omic support (3). 
 
We first considered diseases for which scRNA-seq data was available via the CZ CellxGene 
Discover database [22], defining a disease-relevant (DR) tissue for each disease term. Of the 
58 disease terms in the CZ CellxGene database, 25 terms were retained for association analysis, 
based on availability of data from disease-relevant tissue and overlap with disease annotation 
terms in clinical data (see Supplementary Table 1 for a complete list of considered diseases and 
reasons to exclude from analysis). The most prevalent diseases were lung and immune 
disorders (Figure 2A). For each disease term, we collected gene expression count matrices and 
coarse cell type labels, harmonized using the Cell Ontology [23] (Figure 2B, Supplementary 
Figure 1, see Methods), for disease-relevant tissue samples from healthy and diseased 
individuals (Supplementary Table 2). 
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Figure 2: Single-cell RNA-seq dataset selection and pre-processing. (A) Overview of diseases and tissues in 
scRNA-seq dataset. Table of disease-relevant tissue of samples (x-axis) and disease condition (y-axis) for all 
scRNA-seq data considered in this study. The number and color of each square indicates the number of individuals 
for whom scRNA-seq data are available. The availability of data from healthy individuals is shown in the top row 
(disease condition: normal). (B) Illustration of selection and pre-processing steps for scRNA-seq datasets from 
CZ CellxGene Discover database (DR: disease-relevant). 

For each disease, we identified cell type specific and disease cell specific genes with highly 
variable gene (HVG) selection and differential expression (DE) analysis, aggregating mRNA 
counts across cell types and donors (Figure 1B, see Methods). With this analysis across 25 
diseases, we annotated 27780 gene-disease (G-D) pairs as cell type specific and 49253 G-D 
pairs as disease cell specific (Supplementary Figure 2). To explore associations between 
scRNA-seq support and clinical success, we extracted information about targets of drugs 
approved or in trial from the filtered Citeline Pharmaprojects table used by Minikel et al. [18]. 
This contrasts with a previous version of our analysis, where the Open Targets dataset was used 
as the main source of information on clinical targets (see Discussion and Methods for more 
details on the differences between clinical databases). The current dataset includes evidence 
for 2663 G-D pairs from drug development programs, of which 1648, 1208, 336 and 145 pairs 
have respectively reached phase I, phase II, phase III and market launch stages. We then 
computed the odds of reaching each phase of clinical development, with or without support 
from scRNA-seq data (see Methods, Supplementary Table 3). Of note, this analysis is disease-
specific: we count successful G–D pairs with corresponding scRNA-seq support from analysis 
of healthy and diseased individuals in the disease-relevant tissue. For example, a gene that is 
cell type specific in oesophagus is not considered as scRNA-seq supported for pulmonary 
fibrosis.  
In order to limit the analysis to only those genes expressed at a sufficient level in the disease 
relevant tissue, the association testing was restricted to highly variable genes (see Methods). 
Amongst all genes tested, we observed that scRNA-seq support both from cell type specificity 
and disease cell specificity significantly increase the odds of the cognate drugs to reach clinical 
phase I to III (Figure 3A-B). Since not all highly variable genes expressed in the disease 
relevant tissue are druggable, this result might indicate that cell type and disease cell specific 
targets are simply more likely to enter clinical development. Therefore, we next asked whether 
these features influence the overall likelihood of progressing to phase II and III for targets 
already in preclinical stages of drug development.  To this aim, we restricted our analysis to the 
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G-D pairs under active investigation by pharmaceutical companies, either at preclinical or 
clinical stages, as annotated in the Pharmaprojects data. Our results show that cell type specific 
targets are significantly more likely to reach phase I and II compared to non-cell type specific 
targets. However, the association is not significant for targets to reach phase III (Figure 3C).  
Conversely, disease cell specificity does not significantly increase the odds of reaching phase 
I, II or III (Figure 3D). Surprisingly, we also observed weak negative association between both 
cell type and disease cell specificity, and drug launch. As a positive control, we compared the 
odds observed with scRNA-seq support in this subset of G-D pairs with those derived from 
genetic support of the target, as defined by Open Targets direct genetic association score [1] 
and by Minikel et al [18]. As previously observed [16–18], when testing amongst highly 
variable ones, genes with genetic support are associated with clinical success, and the 
association is stronger for G-D pairs reaching phase III and launch. However, the association 
between genetic support and clinical success is no longer significant when the analysis is 
restricted to targets in preclinical or clinical stage. However, the odds of launch are markedly 
higher than those observed with scRNA-seq support. The discrepancy between these results 
and previous studies [16–18] can be explained by the smaller disease set used here, which is 
also biased towards immune diseases for which genetic evidence is known to be weakly 
associated with clinical progression [18]. 

 
Figure 3. Association between omic-based evidence and target clinical success. Odds ratio for association 
between omic evidence (y-facets) and clinical phase reached (y-axis) for target-disease pairs for 25 diseases with 
available single cell data from CellxGene and disease ontology information based on Medical Subject Headings 
(MeSH) IDs. The left panels (A, C) show association testing for cell type specific targets. The right panels (B, D) 
show association testing for disease cell specific targets. For comparison between scRNA-seq support and genetic 
evidence, we show association with genetic evidence as defined by Minikel et al. (2024) and by Open Targets 
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genetic association annotation. (A-B) Enrichment amongst all highly variable genes used for differential 
expression analysis; (C-D) Enrichment amongst highly variable genes that are under active investigation (using 
Pharmaprojects data processed by Minikel et al. 2024). For each test, the numbers to the right show the number 
of omic-supported targets over total targets that have reached each phase. The totals differ between test on cell 
type specific genes and disease cell specific genes because the set of HVGs used for the DE test is different (see 
Methods). The error bars denote 95% confidence intervals of the odds ratio. Points in red indicate cases where 
the enrichment for successful targets was statistically significant (Fisher’s exact test, Benjamini-Hochberg 
adjusted FDR < 10%). The dotted line denotes Odds Ratio = 1 (no enrichment). Genetic evidence as defined by 
Minikel et al. is shown only in C-D panels since annotation of genetic evidence in this database was available 
only for the gene-disease pairs in preclinical or clinical development. 

Results are comparable also in progression analysis considering only targets that have entered 
a specific clinical phase (Supplementary Figure 3). Also in this case, we observe a weak but 
significant association of cell type specificity with progression through phase I (OR = 1.39, 
adj. p-val = 0.0078), while genetic support does not show statistically significant association 
with progression through the later phases of clinical development. Stratifying by disease, we 
confirmed that these trends are not driven by a specific disease or disease-relevant tissue 
(Supplementary Figure 4). 
 
Taken together, these results suggest that cell type and disease cell specificity are features of 
targets that enter clinical development but are not predictive of success in late phases of clinical 
development. However, cell type specificity is robustly associated with early-stage success, 
suggesting that a cell-targeted mechanism may be associated with lower toxicity. 
We next proceeded to the validation of these results on a larger set of indications. To expand 
the analysis to a larger number of diseases we focused on the 227 diseases in the 
Pharmaprojects data for which a single disease relevant tissue could be identified amongst the 
eleven available in CZ CellxGene database (Figure 4, Supplementary Table 4). Of note, in this 
analysis the cell type specificity was derived only from healthy donors and not from patients’ 
data. 

 
Figure 4. Overview of tissues and diseases considered for expanded cell type specificity analysis. The barplot 
shows the number of diseases considered for each Disease-relevant (DR) tissue from filtered Pharmaprojects 
table. The heatmap shows the total number of G-D pairs reaching each clinical phase for each DR tissue. Here 
the” Preclinical” category denotes the size of the gene universe for each DR tissue. 
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In this set of G-D pairs, the fraction of cell type specific targets in phase I and II of clinical 
development is higher than targets supported by genetic evidence. Conversely, the fraction of 
targets of launched drugs with genetic support is substantially higher than those supported by 
cell type specificity (Figure 5A). The odds ratio analysis replicates what we observed in the 
smaller disease set, whereby cell type specificity increases the odds of access to early stages of 
clinical development, but not of approval (Figure 5B, Supplementary Table 5). In this larger 
set of diseases we could also replicate the association between genetic evidence and 
progression previously reported by Minikel et al [18].  
When we stratified the analysis by tissue, the association between cell type specificity and 
progression in early stages results to be general and not driven by any specific disease area 
(Supplementary Figure 5). Interestingly, when we focused on progression from phase I to II, 
we could identify specific disease areas, such as immune diseases where blood was annotated 
as disease-relevant tissue, where cell type specificity is a stronger indicator than genetic 
support, despite the fact that more genes have genetic support than scRNA-seq support (59 G-
D pairs with genetic support and 37 G-D pairs with cell type specificity support, of 936 total 
G-D pairs passing phase I). Additionally, cell type specificity showed a weak, albeit not 
significant, negative association with progression from stage I to II for lung and colon diseases.  
We speculate that this might be due to our empirical definition of tissues deemed to be disease-
relevant. Respiratory disorders might indeed affect specific or multiple sections of the airways, 
and a more refined definition of tissues involved might lead to a more effective definition of 
cell type specificity. Similarly, the colon was used in the analyses as a disease-relevant tissue 
for gastrointestinal disorders even though Crohn’s disease lesions can occur anywhere in the 
gastrointestinal tract, from the mouth to the anus. Moreover, both Crohn’s disease and 
ulcerative colitis can have several extra-intestinal manifestations in the eyes, hepatobiliary 
system, joints, and other tissues.  
 

 
Figure 5. Expanded cell type specificity analysis on 227 diseases in filtered Pharmaprojects table and disease-
relevant tissue data in CellxGene database. (A) Barplot of total number of G-D pairs (y-axis) by maximum clinical 
phase reached. G-D pairs supported by cell type specificity, genetic evidence or both are colored. (B) Odds ratio 
for association between omic evidence (y-axis) and clinical phase reached (y-facets) for target-disease pairs for 
227 diseases. For comparison between scRNA-seq support and genetic evidence, we show association with genetic 
evidence as defined by Minikel et al. (2024). For each test, the numbers to the right show the number of omic-
supported targets over total targets that have reached each phase. The error bars denote 95% confidence intervals 
of the odds ratio. Points in red indicate cases where the enrichment for successful targets was statistically 
significant (Fisher’s exact test, Benjamini-Hochberg adjusted FDR < 10%). The dotted line denotes Odds Ratio 
= 1 (no enrichment). Genetic evidence as defined by Minikel et al. is shown since annotation of genetic evidence 
was available only for the gene-disease pairs in preclinical or clinical development. 

 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.04.04.24305313doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/


 

Internal 

Discussion 
 
The ever-expanding use of scRNA-seq data to study disease, is accompanied by an increasing 
interest in quantifying the extent to which these data can support the drug discovery process, 
by identifying genes with increased probability of success as therapeutic targets early on. Our 
analysis is aimed at assessing whether cell type-specific features commonly derived from 
scRNA-seq studies are associated with increased success of targets to progress through 
preclinical and clinical development. We tested two distinct patterns of cell type specific 
expression: cell type specific expression in disease-relevant tissue (cell type specificity) and 
cell type specific over-expression in disease-relevant tissue from disease patients compared to 
controls (disease cell specificity).  
 
Our results show that cell type specificity is associated with increased likelihood of entering 
clinical development and passing phase I, making it valuable information for target 
prioritization in the drug discovery process. Importantly, cell type specificity doesn't require 
patient data, only harmonized cell type labels, and cell type-specific gene annotations for each 
tissue could be systematically computed and shared through open resources like the Human 
Cell Atlas Data Portal (data.humancellatlas.org) or the CZ CellxGene database [22]. Our 
analysis also points to the importance of the accurate definition of tissues defined as relevant 
for each given disease, something that was proved challenging, especially for complex 
diseases. We expect that complementary approaches such as heritability enrichment [24] could 
be used to improve this analytical framework by more accurately and systematically matching 
diseases and their cognate involved tissues.  
 
Our analysis found no evidence linking cell type or disease cell specificity of a target with the 
likelihood of drug approval. Although we followed established best practices and utilized a 
large dataset, we believe these results should not be considered as conclusive with regards to 
the role of single-cell expression data in drug development. Several considerations can be made 
on the limitations of the results presented, and on potential areas for future analysis, suggesting 
that further research is necessary to fully understand this relationship. 
 
First, clinical evidence data for target-disease pairs is sparse, with notable inconsistencies 
between data sources. For example, comparing the filtered Pharmaprojects dataset [18] with 
annotations of target-disease pairs from Open Targets [1], there are notable discrepancies in 
number of target-disease pairs associated to each clinical phase for the same set of diseases, 
which leads to different results for omic evidence association analysis (Supplementary Figure 
6A-B). Not only is there a difference in size between the curated Pharmaprojects and Open 
Targets datasets, but also many G-D pairs are annotated in a specific clinical phase by one 
source only (Supplementary Figure 6C). The differences are especially marked amongst what 
are considered targets of approved drugs.   
 
Also, publicly available data on clinical trials are often sparse and full information is not 
available regarding the reasons why programs failed. Of the 74 G-D pairs indicated as failing 
in phase III by Minikel et al. [18], only 13 pairs had annotations regarding the reasons for their 
cessation from a recent study on this topic [25]. Considering G-D pairs from Razuvayevskaya 
et al. [25], the majority of G-D pairs not passing phase III with single-cell support fail because 
of general “strategic” reasons (Supplementary Figure 7). Larger sets of gene-disease pairs and 
more granular information would be needed to more accurately determine the association 
between cell type or disease cell specificity with lack of demonstrated efficacy.  
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Furthermore, this work relies heavily on harmonized collections of scRNA-seq data, such as 
the CZ CellxGene Discover database. As a result, in certain diseases our analysis was 
constrained by the availability of tissue samples from only a small number of individuals 
(Figure 2A), and we found that with a larger patient cohort we could detect more disease cell 
specific genes (Supplementary Figure 10). Another potential limitation lies in the use of Cell 
Ontology-based cell type labels [23], which rely on annotations provided by curators upon 
submission to the database. These might penalize the accuracy of cell annotations, with the 
same label applied to transcriptionally distinct cells or different labels for identical cell types. 
While label harmonization partially addresses some issues, it leads to coarser annotations and 
penalizes the accurate labelling of rare, tissue-specific subpopulations.  
 
Importantly, while we found that cell type specificity is an informative feature for success in 
early stages of clinical development, more sophisticated analyses on scRNA-seq data might be 
needed to identify a cell-centric diagnostic that is predictive of drug efficacy. We define disease 
cell specificity using a naïve cell type-level differential expression analysis, where technical 
effects are only partially mitigated. This could lead to false discoveries that could be mitigated 
by refined experimental design and using more robust statistical methods to recover expression 
differences in scRNA-seq data [26]. Additional improvements might come from the pre-
selection of disease-relevant cell types to derive cell type specificity. This could be achieved 
through differential cell abundance analyses [27,28], other supervised methods for multi-
condition scRNA-seq data [29–31] or heritability enrichment [32,33]. Furthermore, methods 
to infer differentiation trajectories [34,35], cell-cell interactions [36,37], regulatory networks 
[38], and immune repertoires [39] from single-cell genomics provide additional unexplored 
space for novel targets. Our work provides a framework and baseline to assess the potential 
impact of alternative single-cell data analysis methods and modalities on target discovery. 
 
Finally, it is worth considering that retrospective analyses such as the one presented here focus 
on historical data. This implies that therapeutic mechanisms in diseases where cell type-specific 
analyses have the greatest impact may not have been fully explored or exploited. For example, 
we found that a significant proportion of cell type-specific and disease-specific genes are 
considered tractable by therapeutic agents (Supplementary Figure 8). Notably, cell type-
specific genes are particularly enriched in membrane-bound proteins, which are promising 
targets for certain therapeutic modalities such as antibody-based therapies. In addition, cell-
specific therapies might have the greatest benefits in patient subsets identifiable by cell-driven 
precision medicine approaches, which are rarely implemented today. 
 
In summary, our work demonstrates that currently standard single-cell analyses can aid in 
prioritizing druggable and safe targets. However, more refined data curation and analytical 
methods are necessary to support the later phases of clinical development with evidence-based 
approaches. We hope this serves as a foundation for future research focused on leveraging 
emerging tissue profiling technologies for target discovery. 

Methods 

Single-cell RNA-seq data collection from CZ CellxGene Discover platform 
To select a set of diseases and scRNA-seq datasets, we downloaded cell- and dataset-level 
metadata for all H.Sapiens datasets from the CZ CellxGene Discover database, using the 
cellxgene_census python API (census version: 2023-07-25) [22]. Disease-relevant (DR) tissues 
were manually annotated for the 58 disease terms in the database. We excluded datasets 
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profiled with targeted scRNA-seq assays (BD Rhapsody), inDrop and STRT-seq. We further 
excluded fetal samples, based on Human Developmental Stage Ontology [40], where available, 
and by manual curation for 12 datasets where stages were annotated as “unknown”. 10 disease 
terms were grouped into 4 broader terms (Supplementary Table 1).  
 
After curation, 25 disease terms were retained for association analysis. Reasons to exclude 
diseases included: missing overlapping disease terms in clinical databases (filtered Citeline 
Pharmaprojects or Open Targets), missing data from DR tissue, data available from less than 3 
donors with the disease, download errors (see Supplementary Table 1 for a complete list of 
diseases and reasons to exclude from analysis). After selecting suitable datasets, for each 
disease we downloaded full transcriptome gene expression profiles for all cells from the DR 
tissue from healthy donors and disease patients, as well as cell type labels (Cell Ontology terms 
[23]) and sample-level technical metadata (scRNA-seq assay and suspension type, 
Supplementary Figure 11).  
 
To ensure consistency in granularity of cell type annotations across studies, we implemented a 
rollup procedure on the Cell Ontology tree, by relabelling cells with parent terms if a given 
term is a descendant of another term in the dataset (see example outcome in Supplementary 
Figure 1). For each term, the search for parent terms was limited only to a level of depth in the 
ontology tree given by the total number of ancestors of the term divided by a factor of 5. For 
example, if a term had 20 ancestors in the ontology tree, we searched for the 4 closest parent 
terms in the dataset for relabelling. We recognize that this step reduces the resolution of cell 
type annotations, yielding broader and partially redundant annotation labels. However, it 
mitigates the need for batch correction, clustering, and manual cell type annotation across 30 
datasets. We defined the cell type labels used after roll-up as high-level cell type annotations. 
 
For the analysis of cell type specificity in healthy DR tissue on an expanded set of diseases 
(Figure 4), we considered all tissues in the CZ CellxGene database for which data from at least 
3 healthy individuals was available.  

Differential expression analysis and extraction of scRNA-seq supported gene-disease pairs 
We identified cell type specific and disease cell specific genes for each disease using 
differential expression (DE) analysis.  
 
For each disease dataset, we aggregated cell-level gene expression profiles summing counts 
and size factors (total counts per cell) by donor and high-level cell type annotations (hereafter, 
pseudo-bulks), following best practice recommendations for DE analysis on scRNA-seq data 
[26,41]. Only cell types found in at least 3 healthy donors (and 3 disease donors for disease cell 
specificity analysis) were included in DE testing. To identify cell type specific genes, we 
selected pseudo-bulks from healthy donors from the disease-relevant tissue and we tested for 
DE between pseudo-bulks of one cell type against all other cell types. To identify disease cell 
specific genes, for each cell type we tested for DE between diseased donors and healthy donors. 
For each test, we selected the top 5,000 highly variable genes amongst considered pseudo-
bulks, using the method implemented in the R package scran [42]. We tested for differential 
expression between groups with the edgeR quasi-likelihood test [43] using the implementation 
in the R package glmGamPoi [44]. In all tests, we modelled the number of cells per pseudo-
bulk as a confounder, as well as suspension type (cell or nuclei) and scRNA-seq assay where 
possible (when the confounder was not perfectly collinear with the disease label). After DE 
analysis, we obtained the effect size (log-fold change, logFC) and Benjamini-Hochberg 
adjusted p-values for each tested gene in each tested cell type.  
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We annotated a gene-disease (G-D) pair as cell type specific when the gene is significantly 
over-expressed in at least one cell type compared to all other cell types in healthy disease-
relevant tissue (adjusted p-value < 0.01, logFC > 5). The choice of logFC threshold was 
motivated by the observation that genes significantly over-expressed at lower log-fold changes 
are often ubiquitously highly expressed, while those at higher fold changes are genuinely cell 
type specific (Supplementary Figure 9). We annotated a G-D pair as disease cell specific when the 
gene is significantly over-expressed in disease in at least one cell type in disease-relevant tissue 
(adjusted p-value < 0.01, logFC > 0.5). The total number of supported G-D pairs for each 
disease is shown in Supplementary Figure 2.  

Drug development data 
We used data on clinical progression for G-D from the Citeline Pharmaprojects database, as 
filtered, pre-processed and re-distributed by Minikel et al. [18]. Briefly, this includes 
monotherapy programmes added since 2000 annotated with a highest clinical phase reached 
and where a human gene target and a disease indication were available. The table was 
downloaded from the study supplementary materials. We selected this as our primary source 
of drug development data to ensure comparability with the latest retrospective analysis studies 
[18,45] and to use the annotation of targets considered for pre-clinical development, which is 
missing from alternative publicly-available resources. For the extended analysis, we assigned 
disease-relevant tissue for each indication, starting from the annotations of therapeutic areas 
by Minikel et al. Indications ‘oncology’, ‘congenital’, and ‘other’ (except for kidney and 
prostate disorders) were excluded from this extended analysis due to concerns about the ability 
to select an appropriate disease-relevant tissue. Digestive disorders were subdivided into those 
with liver, oesophagus, small intestine, or colon as their disease-relevant tissue. Hematologic 
disorders could be assigned blood, lymph node, or bone marrow. Respiratory disorders could 
be assigned nasal tissue or lung. Indications where a disease relevant tissue could not be 
identified were excluded, leaving 227 diseases for inclusion in the extended analysis 
(Supplementary Table 4). We decided to always assign a single tissue to each indication to 
avoid potential artifacts coming from analysing much larger set of gene-disease pairs for 
indications with multiple tissue assignments. 
 
For comparison between sources of clinical evidence (Supplementary Figure 6), we collected 
data on clinical progression for G-D pairs from Open Targets, using two distinct sources: 

- Open Targets (ChEMBL score): Open Targets direct association evidence was accessed 
via download from the Open Targets Platform (version 23.02) [1,46]. Downloads used 
for this analysis were the ‘Diseases’ and ‘Direct Associations by Type’ tables. 
Experimental Factor Ontology (EFO) disease terms used in Open Targets were mapped 
to their corresponding term in used in the CellxGene database (MONDO IDs) using the 
ontology tree available in the Open Biological and Biomedical Ontology Foundry 
(https://obofoundry.org/ontology/mondo.html). We annotated G-D pairs for which 
approved or clinical candidate drugs exist using the ChEMBL evidence score from the 
Open Targets Platform. Briefly, each G-D pair is assigned a score between 0 and 1 
based on clinical precedence, then the score is down-weighted by half if the clinical 
trial has stopped early for negative results (no effect of the drug) or safety and side 
effects concerns. Following the ChEMBL evidence scoring in Open Targets 
(https://platform-docs.opentargets.org/evidence#chembl),  we classified G-D pairs with 
a ChEMBL evidence score > 0.1 as safe (> phase I), pairs with score > 0.2 as effective 
(> phase II), and pairs with score > 0.7 as approved (> phase III). While we do not 
explicitly exclude gene-disease pairs supported by failed trials, the down-weighting in 

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.04.04.24305313doi: medRxiv preprint 

https://obofoundry.org/ontology/mondo.html)
https://platform-docs.opentargets.org/evidence#chembl
https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/


 

Internal 

Open Targets ensured that targets failed in early clinical trials are excluded, and targets 
failed in phase III were at most classified as passing phase II.  

- Open Targets (Razuvayevskaya et al. 2024): data processed by a recent study from 
Open Targets [25] was downloaded from HuggingFace 
(https://huggingface.co/datasets/opentargets/clinical_evidence). 

Genetic association  
 
We used two distinct annotations of G-D pairs with genetic support, both aggregating evidence 
for association of genes and rare and common variants from several sources:  

- Direct genetic association score provided in Open Targets (https://platform-
docs.opentargets.org/evidence) [1]. We classified as supported by genetics any G-D 
pair with genetic association score > 0.  

- Annotation of genetically supported G-D pairs from Minikel et al. [18], including 
evidence from an expanded set of indications, based on similarities on Medical Subject 
Headings (MeSH) ontology tree. These annotations are reported only for G-D pairs 
under active investigation by pharmaceutical companies present in the filtered 
Pharmaprojects data. Therefore, we did not use these annotations for enrichment 
analyses on the set of highly variable genes. 

 
Both genetic annotations derive from aggregated analysis of multiple data sources including 
associations with both rare and common variants implicated by association studies, and have 
been used in different studies [25,45]. 

Association between omic evidence and progression through clinical trials 
To test for association between omic evidence (cell type specificity, disease cell specificity, 
genetic association) and clinical success (reaching clinical phase I, II, III or launch) we 
computed the odds ratio and Fisher exact test p-value under the null hypothesis that the true 
ratio between the odds of being a successful G-D pair with omic support and of being successful 
without support is 1. In all association tests, drug indications for clinical success and data for 
omic support are aligned by disease. To compute odds ratios, 95% confidence intervals and p-
values, we used the odds ratio calculation implementation in the python package scipy [47]. In 
all figures and tables, we report FDR corrected p-values using the Benjamini-Hochberg 
procedure. To enumerate the space of possible G-D pairs for odds ratios analysis, we used the 
following gene sets as “gene universes”:  

- HVGs: all highly variable genes considered for DE analysis for each disease. We test 
on this set as standard practice for enrichment analysis after DE testing, and to consider 
genes that are expressed at a sufficient level in the DR tissue, regardless of their 
druggability potential. We recognize this might lead to a conservative estimate of 
association for cell type specificity, where highly variable gene selection between cell 
types should already be selecting weakly cell type specific genes. However, we observe 
that several HVGs selected for cell type specificity analysis are frequently ubiquitously 
expressed and cell type specific only at very low fold changes (Supplementary Figure 9).  

- HVGs under active investigation: the intersection between genes considered for DE 
analysis and genes that are under active investigation by pharmaceutical companies for 
each disease, as annotated in the filtered Pharmaprojects dataset (see “Drug 
development data”). 
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Data availability 
All scRNA-seq data analysed in this study is available via the CZ CellxGene Discover database 
and CxG Census API (https://chanzuckerberg.github.io/cellxgene-census/, version: 2023-07-
25).  Data on clinical precedence for known drugs for each target-disease pair, as well as gene-
disease genetic association scores, was obtained from the supplementary materials of Minikel 
et al. 2024 [18] and from Open Targets (version 23.02, 
https://platform.opentargets.org/downloads/data). Processed datasets and analysis outputs are 
available as supplementary tables and via figshare (doi:10.6084/m9.figshare.25360129) and 
through our code repository (https://github.com/emdann/sc_target_evidence). 

Code availability 
All code to reproduce data downloads, processing and analysis is available at 
https://github.com/emdann/sc_target_evidence. 
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Supplementary Figures  

 
Supplementary Figure 1: Example outcome of harmonisation of cell type annotations based on Cell Ontology. The y-axis shows the original 
Cell Ontology label used in CZ CellxGene database for the myocardial infarction dataset (disease-relevant tissue: heart) and the x-axis 
shows the updated label after label harmonisation. The heatmap color and number indicate the number of cells for each label. 
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Supplementary Figure 2: Number of clinically successful and supported targets per disease. Barplot of number of gene targets with scRNA-
seq support by disease. The total number of G-D pairs for each class is reported above the bar plots. 
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Supplementary Figure 3. Progression analysis. Odds ratio for association between omic evidence (y-facets) and progression through 
clinical phases (y-axis) for gene-disease pairs for 25 diseases. For comparison between scRNA-seq support and genetic evidence, we show 
association with genetic evidence as defined by Minikel et al. (2024) and by Open Targets genetic association. For each test, the numbers 
to the right show the number of omic-supported targets over total targets that have reached each phase. The error bars denote 95% 
confidence intervals of the odds ratio. Points in red indicate cases where the enrichment for successful targets was statistically significant 
(Fisher’s exact test, Benjamini-Hockberg adjusted FDR < 10%). The dotted line denotes Odds Ratio = 1 (no enrichment). 
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Supplementary Figure 4: Association between omic support and clinical progression stratified by disease. Odds ratio (x-axis, in log10 
scale) of association between clinical success of a target and scRNA-seq support (y-axis) computed stratifying by disease. Results are 
shown for diseases with at least 1 launched and 1 supported target.  For each test, the numbers to the right show the number of omic 
supported targets over total successful targets. The error bars denote 95% confidence intervals of the odds ratio. Points in red indicate 
cases where the enrichment for successful targets was statistically significant (Fisher’s exact test p-value < 0.05). The dotted line denotes 
Odds Ratio = 1 (no enrichment). 

  

 . CC-BY-ND 4.0 International licenseIt is made available under a 
perpetuity. 

 is the author/funder, who has granted medRxiv a license to display the preprint in(which was not certified by peer review)preprint 
The copyright holder for thisthis version posted October 22, 2024. ; https://doi.org/10.1101/2024.04.04.24305313doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305313
http://creativecommons.org/licenses/by-nd/4.0/


 

   
 

Internal 

 

Supplementary Figure 5 Association between cell type specificity and clinical progression stratified by disease-relevant tissue. Odds ratio 
(x-axis, in log10 scale) of association between clinical success of a target and scRNA-seq support (top panel) or genetic evidence (bottom 
panel. For each test, the numbers to the right show the number of omic supported targets over total successful targets. The error bars 
denote 95% confidence intervals of the odds ratio. Points in red indicate cases where the enrichment for successful targets was statistically 
significant (Fisher’s exact test p-value < 0.05). The dotted line denotes Odds Ratio = 1 (no enrichment). 
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Supplementary Figure 6. Comparison between sources of clinical evidence for gene-disease pairs. (A-B) Odds ratio for association between 
omic evidence (y-facets) and maximum clinical phase reached (y-axis), as in figure Figure 3A-B, computed using different datasets of 
clinical progression for G-D pairs: filtered Pharmaprojects data from Minikel et al. 2024, filtered Open Targets data from Razuvayesvskaya 
et al. 2024, unfiltered Open Targets data (v23.02) based on ChEMBL score. Results are shown for 24 diseases for which G-D pairs were 
available in all sources. This comparison is limited to tests within highly variable genes, since only the Pharmaprojects data annotates 
pairs of datasets in pre-clinical development. (C) Upset plots showing the intersection of G-D pairs that have reached each clinical phase 
between clinical evidence sources. 
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Supplementary Figure 7: The proportion of trial failures due to various reasons, grouped by gene-disease (G-D) pair types. The x-axis 
represents the proportion of failures for each category, while the y-axis lists the different reasons for failure as predicted in a recent Open 
Targets study [25]. The distribution of failures highlights differences in failure reasons across G-D pair types, suggesting variability in 
trial success depending based on available target evidence. 

 

 

 

Supplementary Figure 8: Tractability of unexplored targets across diseases. Scatter plot of fraction of tractable unexplored genes (x-axis) 
for 24 diseases (y-axis) for different classes of omic evidence (color). We consider three categories: antibody tractable, small molecule 
tractable, and tractable by either class of drugs. Dashed lines represent the fraction of tractable genes across all protein-coding genes. 
Diseases for which no gene with genetic evidence was found are not shown (n=3).   
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Supplementary Figure 9: Analysis of parameters for definition of targets with scRNA-seq support. (A) Barplot of number of supported G-
D pairs with increasing log-Fold Change (logFC) threshold on differential expression (DE) analysis results, for cell type specific genes 
(left) and disease cell specific genes (right). (B) Example from lung adenocarcinoma scRNA-seq data showing cell type specificity of 
candidate target genes at high DE log-fold changes. The left scatterplot shows the mean expression (log-normalized counts, x-axis) and 
DE log-fold change for one-vs-all test (y-axis) used for cell type specificity analysis for each significantly over-expressed gene (1% 
FDR). The dotplots to the right show the expression, in terms of mean (color) and cell fraction (size) for 5 randomly selected cell type 
specific genes detected in 10 lung cell types (the cell ontology term is indicated on top of the plots). The top plot shows significant genes 
with logFC > 5 and the bottom plot shows significant genes with logFC < 5.  
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Supplementary Figure 10: Variability in scRNA-seq supported targets between diseases. (A) Scatterplots showing the number of tested cell 
types in disease-relevant tissue (x-axis) against the number of identified cell type specific (left) and disease cell specific (right) genes. Dots 
are colored by disease-relevant tissue. Pearson’s correlation coefficient and p-value for permutation test are shown on top. (B) Scatterplots 
showing the number of disease donors (left column) and control donors (right column) in scRNA-seq dataset for each disease against the 
number of identified cell type specific (bottom row) and disease cell specific (top row) genes. Pearson’s correlation coefficient and p-value 
for permutation test are shown on top. Data is shown for 30 diseases and 13 tissues with data in CellxGene datasets (including diseases 
that were subsequently excluded because of missing clinical data).  
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Supplementary Figure 11: Technical metadata for disease scRNA-seq datasets. Heatmap showing the scRNA-seq assay and suspension 
type (x-axis) for samples of different tissues and diseases (y-axis). Heatmap color and annotated numbers denote the number of samples 
analysed for each group. Diseases are grouped by disease-relevant tissue. 
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Supplementary Tables 
Supplementary Table 1: Table of diseases available in CZ CellxGene database considered for study 
[disease] name of disease used in study 
[disease_ontology_id] MONDO identifier for disease used in study 
[disease_relevant_tissue] Manually curated annotation for disease-relevant tissue 
[disease_name_original] Name of disease found in CZ CellxGene database 
[disease_ontology_id _original] MONDO identifier for disease found in CZ CellxGene database 
[reason2exclude] if not NA, description of reason to exclude disease from final analysis 
 
Supplementary Table 2: Sample-level metadata for scRNA-seq datasets from CZ CellxGene database used in study  
[assay] scRNA-seq protocol 
[tissue] original tissue annotation 
[tissue_general] high-level mapping of a tissue 
[suspension type] indicates whether cells or nuclei were isolated 
[disease] disease condition of donor 
[dataset_id] Identifier for dataset in CellXGene Census 
[donor_id] Identifier for donor in dataset 
[development_stage_ontology_term_id] Human Developmental Stages ontology term for age of donor  
[sample_id] sample identifier (donor, assay, tissue) 
[disease_name_original] name of disease found in CZ CellxGene database 
[disease_ontology_id _original] MONDO identifier for disease found in CZ CellxGene database 
[disease_ontology_id] MONDO identifier for disease used in study 
[disease_relevant_tissue] Manually curated annotation for disease-relevant tissue 
 
Supplementary Table 3: Results of association analysis between omic support and clinical success across diseases 
[odds_ratio] Odds ratio of association between evidence and clinical success 
[ci_low] 95% confidence interval of odds ratio (bottom) 
[ci_high] 95% confidence interval of odds ratio (top) 
[pval] Fisher exact test p-value for enrichment (alternative hypothesis: odds ratio higher than 1) 
[n_success] Number of successful gene-disease pairs 
[n_insuccess] Number of not successful gene-disease pairs 
[n_supported_approved] Number of successful gene-disease pairs supported by omic evidence 
[n_supported] Total number of gene-disease pairs supported by omic evidence 
[evidence] omic support class (all_sc_evidence indicates cell type and disease cell specific genes) 
[clinical status] Clinical success class 
[universe] Name of considered gene universe 
[universe_size] Number of genes in gene universe  
 
Supplementary Table 4: Table of diseases and disease-relevant tissue annotation for expanded cell type specificity analysis 
[indication_mesh_term] Name of disease/indication from MeSH 
[indication_mesh_id] MeSH ID for disease/indication 
[tissue_test] Annotation of disease-relevant tissue used in this study 
 
Supplementary Table 5: Results of association analysis between cell type specificity and clinical success across expanded 
set of diseases  
[odds_ratio] Odds ratio of association between evidence and clinical success 
[ci_low] 95% confidence interval of odds ratio (bottom) 
[ci_high] 95% confidence interval of odds ratio (top) 
[pval] Fisher exact test p-value for enrichment (alternative hypothesis: odds ratio higher than 1) 
[n_success] Number of successful gene-disease pairs 
[n_insuccess] Number of not successful gene-disease pairs 
[n_supported_approved] Number of successful gene-disease pairs supported by omic evidence 
[n_supported] Total number of gene-disease pairs supported by omic evidence 
[evidence] omic support class 
[clinical status] Clinical success class 
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