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 2 

Abstract 26 

Background: Exposure to famine in the prenatal period is associated with an increased risk of 27 

metabolic disease, including obesity and type-2 diabetes. We employed nuclear magnetic 28 

resonance (NMR) metabolomic profiling to provide a deeper insight into the metabolic changes 29 

associated with survival of prenatal famine exposure during the Dutch Famine at the end of 30 

World War II and explore their link to disease. 31 

Methods: NMR metabolomics data were generated from serum in 480 individuals prenatally 32 

exposed to famine (mean 58.8 years, 0.5 SD) and 464 controls (mean 57.9 years, 5.4 SD). We 33 

tested associations of prenatal famine exposure with levels of 168 individual metabolic 34 

biomarkers and compared the metabolic biomarker signature of famine exposure with those of 35 

154 common diseases.  36 

Results: Prenatal famine exposure was associated with higher concentrations of branched-37 

chain amino acids ((iso)-leucine), aromatic amino acid (tyrosine), and glucose in later life (0.2-38 

0.3 SD, p < 3x10-3). The metabolic biomarker signature of prenatal famine exposure was 39 

positively correlated to that of incident type-2 diabetes (r = 0.77, p = 3x10-27), also when re-40 

estimating the signature of prenatal famine exposure among individuals without diabetes (r = 41 

0.67, p = 1x10-18). Remarkably, this association extended to 115 common diseases for which 42 

signatures were available (0.3 £ r £ 0.9, p < 3.2x10-4). Correlations among metabolic signatures 43 

of famine exposure and disease outcomes were attenuated when the famine signature was 44 

adjusted for body mass index. 45 

Conclusions: Prenatal famine exposure is associated with a metabolic biomarker signature that 46 

strongly resembles signatures of a diverse set of diseases, an observation that can in part be 47 

attributed to a shared involvement of obesity. 48 

 49 

 50 
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Background 51 

Metabolomics is a powerful tool for illuminating molecular phenotypes underpinning disease 52 

(1). With nuclear magnetic resonance (NMR) approaches, metabolomics is now possible within 53 

large-scale epidemiologic studies and biobanks. Within these settings, NMR metabolomics is 54 

revealing a range of common and unique features to a broad spectrum of diseases (2–5). Less 55 

is known about how the metabolome may reflect or mediate effects of prenatal exposure 56 

histories on disease pathogenesis. Here, we investigate the long-term metabolomic sequelae of 57 

gestational exposure to famine, an established risk factor for the development of metabolic 58 

disease (6,7).  59 

The Dutch Hunger Winter of 1944-1945, a 6-month famine at the end of World War II, 60 

provides a unique setting to study the long-term effects of an adverse prenatal environment 61 

(6,8,9). Previous studies revealed that prenatal famine exposure is associated with an increased 62 

risk in unfavourable metabolic phenotypes in adulthood including increased fasting glucose 63 

and triglyceride levels, obesity, and type-2 diabetes (10–17). These associations have also been 64 

observed for other historical famines (6). To date, a comprehensive view of metabolic changes 65 

linked to prenatal famine exposure is lacking. In this study, we seek to provide a deeper insight 66 

into the metabolomic profile associated with prenatal famine exposure.  67 

We profiled samples for 944 participants from the Dutch Hunger Winter Families Study 68 

using nuclear magnetic resonance (NMR) metabolomics. We compared prenatal famine-69 

exposed individuals to unexposed control participants on 168 different serum metabolic 70 

biomarkers and also compared the metabolome-wide signature of prenatal famine exposure to 71 

an atlas of signatures marking risk of a range of common diseases in order to characterize the 72 

phenotype of prenatal famine exposure. Our study reveals specific metabolic biomarker 73 

alterations and broader connections with a range of chronic diseases, providing new insights 74 

into how prenatal famine exposure shapes health across the life course.  75 
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 76 

Methods 77 

 78 

Study population 79 

The Dutch Hunger Winter Families study (DHWFS) is described in detail elsewhere (18). In 80 

short, historical birth records were retrieved from three institutions in famine-exposed cities of 81 

all singleton births between 1 February 1945 and 31 March 1946 and a systematic sample of 82 

births born in 1943 or 1947. From these records we identified infants whose mothers were 83 

exposed to the famine during or immediately preceding that pregnancy and unexposed time-84 

controls born before or after the famine. These individuals were invited to participate in a 85 

telephone interview and in a clinical examination, together with a same-sex sibling not exposed 86 

to the famine (family-control).  87 

The Dutch Hunger Winter Families study was approved by the Medical Ethics Committee of 88 

Leiden University Medical Center (P02.082) and the participants provided verbal consent at 89 

the start of the telephone interview and written informed consent at the start of the clinical 90 

examination. 91 

We conducted 1,075 interviews and 971 clinical examinations between 2003 and 2005. 92 

One non-biological sibling identified with genetic analyses was excluded from the cohort. 93 

NMR metabolomics profiling was performed on serum samples of 962 individuals. Our sample 94 

for this study included 944 individuals after excluding non-fasted samples (n = 17) and an 95 

outlier in the metabolomics dataset as identified with principal component analysis (n = 1) 96 

(Supplemental Fig. 1).  97 

 98 

Famine exposure definitions 99 
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Food rations were distributed centrally and below 900 kcal/day between November 26, 1944 100 

and May 15, 1945 (8). We defined famine exposure by the number of weeks during which the 101 

mother was exposed to < 900 kcal/day after the last menstrual period (LMP) recorded on the 102 

birth record (18). For analysis of timing of gestational exposure, we subdivide the gestational 103 

period into units of 10 weeks. We considered the mother exposed in gestational weeks 1-10, 104 

11-20, 21-30, or 31 to delivery if these gestational time windows were entirely contained within 105 

this period and had an average exposure of < 900kcal/day during an entire gestation period of 106 

10 weeks. As the famine lasted 6-months some participants were exposed to famine during two 107 

adjacent 10-week periods. In chronological order, pregnancies with LMP between 30 April 108 

1944 and 24 August 1944 were considered exposed in weeks 31 to delivery; between 9 July 109 

1944 and 15 October 1944 in pregnancy weeks 21-30; between 17 September 1944 and 24 110 

December 1944 in pregnancy weeks 11-20, between 26 November 1944 and 4 March 1945 in 111 

pregnancy weeks 1-10. Individuals with a LMP between 4 February and 12 May 1945 were 112 

exposed to an average of < 900kcal/day for less than 10 weeks before conception and up to 8 113 

weeks post-conception, are denoted as the weeks 9-0 weeks group. We defined individuals 114 

exposed to one or at most two of these definitions exposed to ‘any’ gestational exposure.  115 

 116 

Characteristics 117 

Information on health history, including information on the use of cholesterol-lowering drugs, 118 

was collected through telephone interviews. Measurement of height was carried out to the 119 

nearest millimeter using a portable stadiometer (Seca), and body weight was measured to the 120 

nearest 100 g by a portable scale (Seca). BMI was calculated from these measures (weight (kg) 121 

/ [height (m)]2). Cholesterol measures were reported previously (14) and were assessed using 122 

standard enzymatic assays. LDL cholesterol was calculated for individuals with a triglyceride 123 

concentration lower than 400 mg/dl using the Friedewald formula. A blood draw was 124 
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performed at the start of a 75-g oral glucose test, and fasted glucose was quickly assessed in 125 

serum by hexokinase reaction on a Modular P800 (Roche). The presence of type-2 diabetes 126 

was either determined through previous health history or defined as fasting glucose ≥ 127 

7.0mmol/l or 2hr glucose tolerance test ≥ 11.1mmol/l (19). 128 

 129 

Metabolic biomarker quantification 130 

Metabolic biomarkers were measured from serum samples using a high-throughput 1H-NMR 131 

metabolomics platform developed by Nightingale Health Ltd. (Helsinki, Finland; 132 

nightingalehealth.com; biomarker quantification version 2021). Details of the procedure and 133 

application of the NMR metabolomics platform have been described elsewhere (20,21). This 134 

method provides simultaneous quantification of 168 directly measured and 81 derived 135 

metabolic biomarkers, including 37 clinically validated metabolic biomarkers certified for 136 

diagnostics use. The metabolic biomarkers measured include amino acids, ketone bodies, 137 

lipids, fatty acids, and lipoprotein subclass distribution, particle size and composition. A subset 138 

of the biomarkers was selected for inclusion in the presented analysis, focusing on the 168 139 

directly measured metabolic biomarkers.  140 

Missing values were set to the minimum value for each metabolic measure. A value of one 141 

was added to all metabolic biomarkers containing zeroes (i.e. x + 1), which indicated that they 142 

were below the limit of quantification. All metabolic biomarkers were then natural logarithmic 143 

transformed to obtain an approximately normal distribution. The metabolic biomarkers were 144 

subsequently scaled to standard deviation (SD) units (mean 0, SD 1) for use in the analysis. 145 

 146 

Genotype data generation and polygenic scores 147 

From our metabolomics sample population, 931 individuals also had genotype data available. 148 

Genotype data were measured using the Illumina InfiniumTM Global Screening Array (GSA) 149 
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genotyping platform (version 24 v3.0. Illumina Inc., San Diego, USA) by the Human Genomics 150 

Facility in the Genetic Laboratory Rotterdam (Rotterdam, the Netherlands). Imputation was 151 

performed using the 1000G P3v5 reference panel (22). Polygenic scores were calculated for 152 

tyrosine, leucine and glucose levels with the PRSice-2 software using the independent hits of 153 

publicly available genome-wide association study (GWAS) summary statistics (Supplemental 154 

Table 3) (23). The base GWAS study utilized the same NMR platform and had participants 155 

with the same ancestry (European) as those in our study (24). The polygenic scores were 156 

residualized on the first ten genetic principal components and subsequently scaled to standard 157 

deviation (SD) units (mean 0, SD 1) for analysis. 158 

 159 

Statistical analysis 160 

All analyses were performed in the R programming environment (R version 4.2.2). 161 

For all linear regression analyses, we used linear regression within a generalized estimating 162 

equations framework to account for the correlation between sibships (R geepack package, 163 

version 1.3.9) (25) and adjusted for age, sex and cholesterol-lowering medication.  164 

We first validated the NMR measurements by testing the consistency between glucose, 165 

triglycerides, total cholesterol, LDL, and HDL cholesterol measured by routine clinical 166 

chemistry and Nightingale Health NMR (Supplemental Fig. 2). Consistent with previous 167 

studies, correlations were high (r ³ 0.9) for all metabolic biomarkers tested (26,27). We 168 

subsequently tested whether previously observed associations between prenatal famine 169 

exposure and these five metabolic biomarkers as measured by routine clinical chemistry were 170 

consistently found when the same biomarkers were measured using Nightingale Health NMR.  171 

Next, we performed a metabolome-wide association study of prenatal famine exposure by 172 

assessing the relationship between famine exposure and 168 metabolic biomarkers. Due to the 173 

correlated nature of the metabolic biomarkers, 95% of the variation in the 168 metabolic 174 
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biomarkers was explained by 14 principal components. Therefore, as previously described (28–175 

30), we corrected for 14 independent tests using Bonferroni multiple testing correction (p value 176 

= 0.05/14 = 3.57×10−3). Sensitivity analyses were performed to assess the robustness of the 177 

results of the metabolome-wide association study of prenatal famine. First, to assess the effect 178 

of famine exposure independent of BMI or type-2 diabetes, the main model was additionally 179 

adjusted for BMI and type-2 diabetes. Second, to determine the extent to which the observed 180 

associations between prenatal famine exposure and metabolic biomarkers levels could be 181 

attributed to genetics, the main model was additionally adjusted for the polygenic scores of the 182 

metabolic biomarkers. Third, to check for potential differences between sexes, sex-stratified 183 

analyses were performed adjusting for the same covariates as the main model and an interaction 184 

term for sex and metabolic marker was included in the model to test whether potential 185 

differences were statistically significant. Fourth, potential gestation timing specific effects of 186 

famine exposure were examined by subdividing famine exposure into 5 gestational time 187 

windows. In the regression analysis, the single indicator of famine exposure was replaced with 188 

indicator variables identifying exposure within each of the gestational time windows.  189 

To expand our analysis from focusing on individual metabolic biomarkers to broader 190 

metabolic biomarker signatures associated with disease, we compared the metabolic biomarker 191 

signature associated with prenatal famine exposure to the metabolic biomarker signature 192 

predicting the future risk of type-2 diabetes. For this we utilized published results from a 193 

metabolome-wide study on incident type-2 diabetes using UK Biobank data (2). Specifically, 194 

we correlated the effect sizes of famine exposure in DHWFS with the effect sizes in the UK 195 

Biobank for incident type-2 diabetes across the 135 shared metabolic biomarkers in both 196 

datasets. 197 

We then extended our analysis and correlated the metabolic profile of prenatal famine to 198 

the publicly availably metabolic signatures of a large set of diseases as estimated with UK 199 
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Biobank data (4). Out of 674 incident diseases available in the metabolomics atlas, we selected 200 

those with at least 1000 cases (out of a total population ranging from ~103,300 to ~118,000) to 201 

represent common diseases (n = 162), and those with at least one significant association with 202 

a metabolic biomarker in the UK Biobank analysis (p < 5x10-4) (n = 154), resulting in 154 203 

diseases. The effect sizes of the overlapping 168 metabolic biomarkers were correlated between 204 

prenatal famine and each disease. We corrected for multiple testing using Bonferroni correction 205 

(p value = 0.05/154 = 3.2x10-4). Finally, we re-estimated the effect sizes of the association 206 

between prenatal famine exposure and all 168 metabolic biomarkers, while additionally 207 

adjusting for BMI. We then repeated the correlation analysis comparing this BMI-adjusted 208 

prenatal famine metabolic biomarker signature with the 154 metabolic biomarker disease 209 

signatures from the UK Biobank. 210 

 211 

Results  212 

 213 

Population characteristics 214 

Within the Dutch Hunger Winter Families Study, fasting NMR metabolomics data were 215 

available for 944 study participants. Among these participants, 480 (51%) were prenatally 216 

exposed to famine, and 464 (49%) were controls (including unexposed time controls born at 217 

the same institution as the exposed individuals and unexposed same-sex sibling controls both 218 

born either before or conceived after the famine). As previously reported, famine-exposed 219 

participants had an increased BMI (11) and a higher prevalence of type-2 diabetes (16) and 220 

controls were on average 0.9 years younger than famine-exposed. No differences were 221 

observed in sex or the use of cholesterol lowering medication (Table 1). 222 

 223 

Validation of NMR metabolomics measures 224 
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We first sought to validate the newly measured metabolomics measures in our study by 225 

correlating them with previously measured clinical chemistry data available for five metabolic 226 

biomarkers, namely fasted glucose, triglycerides, total cholesterol, LDL, and HDL cholesterol 227 

(14,17). The correlations were all high (r ³ 0.9) in line with previous studies (Supplemental 228 

Fig. 2) (4,31). Next, we examined the associations between prenatal famine exposure and these 229 

five metabolic biomarkers, as measured by clinical chemistry or NMR, and found the effect 230 

sizes to be consistent between the two measurements (Supplemental Table 1).  231 

 232 

Metabolome-wide association study on prenatal famine exposure 233 

Next, we examined the association of any prenatal famine exposure with all 168 metabolic 234 

biomarkers individually. Prenatal famine exposure was associated with higher tyrosine (effect 235 

size 0.28 SD), leucine (0.21 SD), glucose (0.23 SD), and isoleucine (0.18 SD) concentrations 236 

(p<3x10-3; all analyses adjusted for age, sex, and use of cholesterol-lowering drugs) (Fig. 1A, 237 

Supplemental Table 2).  238 

We performed three sets of follow-up analyses for tyrosine, leucine, and glucose to gain 239 

further insight into these associations. Isoleucine was excluded because it was highly correlated 240 

with leucine (r = 0.9), both are branched-chain amino acids, while leucine showed the stronger 241 

association with famine exposure (Fig. 1B, Supplemental Fig. 3). First, the associations 242 

between prenatal famine exposure and tyrosine, leucine, and glucose remained after including 243 

BMI or type-2 diabetes as a covariate in the model (Fig. 1C). Second, we also considered 244 

genetics as a potential explanatory factor for these associations. Since the polygenic scores of 245 

each metabolic biomarker explained only approximately 1%-5% of their variance 246 

(Supplemental Table 3), the associations were not affected by including the polygenic scores 247 

as covariates (Fig. 1C). Third, we explored whether associations between famine exposure and 248 

the three metabolic biomarkers were dependent on sex or the timing of exposure during 249 
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gestation (Supplemental Fig. 4). Effect sizes across different exposure timing subgroups were 250 

similar to our estimates of the main analysis. In the sex stratified analysis, the effect sizes for 251 

glucose and tyrosine were lower in females than males, but we found no statistical evidence 252 

for effect modification (interaction p values > 0.39). 253 

 254 

Comparison to metabolic biomarker signatures of diseases 255 

The individual metabolic biomarkers associated with prenatal famine exposure were previously 256 

linked to type-2 diabetes (32). To further investigate whether these associations reflect an 257 

increased risk of type-2 diabetes among individuals prenatally exposed to famine, we utilized 258 

a previously reported metabolic biomarker signature of incident type-2 diabetes from UK 259 

Biobank (2) and compared it to the complete set of biomarker associations in our study. 260 

Specifically, we took the effect sizes of 135 metabolic biomarkers for the risk of type-2 diabetes 261 

and compared them to the effect sizes we observed for prenatal famine. The metabolic 262 

biomarker signature of prenatal famine exposure was highly correlated with that of incident 263 

type-2 diabetes (r = 0.77, p = 3x10-27; Fig. 2A). This similarity persisted when we re-estimated 264 

the effect sizes for prenatal famine exposure after excluding participants with type-2 diabetes 265 

(r = 0.67, p = 1x10-18) (Fig. 2B). 266 

To explore whether the metabolic biomarker profile of prenatal famine exposure may 267 

reflect a risk of diseases beyond type-2 diabetes, we extended the analysis to recently published 268 

atlas of signatures of a wide range of diseases in the UK Biobank (4). We focused on metabolic 269 

biomarker signatures for the future onset of disease obtained from individuals not affected by 270 

the disease of interest at baseline. For the analysis, we utilized a subset of 154 common incident 271 

diseases that had at least one metabolic biomarker association in the UK Biobank (p < 5x10-4). 272 

Remarkably, the metabolic biomarker signature of prenatal famine exposure was positively 273 

correlated with the metabolic biomarker signature of 115 diseases (75%; 0.3 £ r £ 0.9, p < 274 
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3.2x10-4), and negatively correlated with 13 diseases (8%; -0.9 £ r £ -0.4, p < 3.2x10-4) 275 

(Supplemental Table 4). The metabolic biomarker signature of prenatal famine exposure 276 

exhibited the strongest correlation with the signature of the future risk of myocardial infarction 277 

(r = 0.9, p = 1.8x10-47). Other diseases with a strong correlation (r ³ 0.7) included those related 278 

to the digestive system, diseases with an endocrine, nutritional and metabolic component, as 279 

well as diseases of the nervous system (Fig. 3). The diseases displaying a negative correlation 280 

were primarily associated with injury and other consequences of external causes, such as 281 

fractures and open wounds (Supplemental Table 4). 282 

We hypothesized that a potential common factor among the diseases with a similar 283 

metabolic biomarker signature is obesity. To test this hypothesis, we re-estimated the effect 284 

sizes for prenatal famine exposure while additionally adjusting for BMI and then re-calculated 285 

the correlation between the resulting BMI-adjusted metabolic biomarker signature with the 286 

signatures of the 154 common incident diseases (Supplemental Table 4). The strength of the 287 

correlations was consistently attenuated across all diseases (mean = -58%; SD = 19%). Among 288 

the 30 diseases whose metabolic biomarker signature was most similar to that of prenatal 289 

famine, the attenuation ranged between 27-48% and the correlations remained moderate (0.4 £ 290 

r £ 0.6). The degree of attenuation was not linked to whether the disease had an obvious 291 

metabolic component (Fig. 4). 292 

 293 

Discussion 294 

We further defined the metabolic phenotype associated with prenatal famine exposure using 295 

nuclear magnetic resonance (NMR) metabolomic profiling. We show that prenatal exposure to 296 

undernutrition is associated with specific metabolic differences later in life, including higher 297 

levels of branched-chain amino acids (BCAA), an aromatic amino acid, and glucose. In 298 
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addition, we report that the metabolic biomarker signature of prenatal famine has marked 299 

similarities to the signature of a wide range of common diseases. 300 

Our study indicated specific differences in the metabolic profiles of famine-exposed 301 

individuals compared to controls. We observed that those exposed to famine prenatally have 302 

higher levels of the aromatic amino acid tyrosine, the branched-chain amino acids leucine and 303 

isoleucine, and glucose six decades after exposure. All four metabolic biomarkers have been 304 

linked to type-2 diabetes and thus support the known association between prenatal famine 305 

exposure and type-2 diabetes risk in adulthood (6,33). In addition, higher levels of other 306 

branched-chain and aromatic amino acids such as valine and phenylalanine that have also been 307 

associated with type-2 diabetes showed a nominally significant association with prenatal 308 

famine exposure, further supporting the link between famine and type-2 diabetes risk (33). 309 

Interestingly, the metabolic biomarker associations with prenatal famine were independent of 310 

BMI and type-2 diabetes status, indicating that they may not be fully driven by the higher BMI 311 

and increased prevalence of type-2 diabetes among famine-exposed individuals.  312 

The link with a higher type-2 diabetes risk among individuals exposed to famine in the 313 

prenatal period was reinforced by investigating the complete range of metabolic biomarkers. 314 

We observed a strong resemblance in the metabolic biomarker signature of prenatal famine 315 

with that of the future onset of type-2 diabetes (33). Moreover, the strong correlation of the 316 

famine signature with the incident type-2 diabetes signature persisted after excluding 317 

participants who were already diagnosed with type-2 diabetes at the time of assessment. This 318 

result reinforces that type-2 diabetes is a main health outcome of prenatal famine exposure (6) 319 

and indicates that even exposed individuals not diagnosed with type-2 diabetes have an 320 

increased risk of developing this condition in the future.  321 

Upon extending our analysis beyond type-2 diabetes, we observed a striking similarity 322 

between the metabolic biomarker signature of famine exposure and a wide range of other 323 
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incident disease signatures. This included conditions like disorders of lipoprotein metabolism, 324 

obesity and type-2 diabetes, but also a priori less expected diseases like osteoarthritis, kidney 325 

stones, and depressive disorders. Interestingly, these high correlations were substantially 326 

attenuated for all incident diseases when we repeated the analysis using a metabolic biomarker 327 

profile of prenatal famine that was adjusted for BMI. Our findings suggest that BMI is a shared 328 

risk factor for or consequence of the diseases and that the metabolic biomarkers measured by 329 

the NMR platform used may have a particularly strong association with BMI. Of note, after 330 

accounting for BMI, moderate correlations between the metabolic biomarker profiles of 331 

incident disease and prenatal famine remained. Our findings and previous studies highlight that 332 

the NMR platform applied is especially useful for disease risk prediction, but of limited value 333 

to gain new mechanistic insights. Further studies with more comprehensive metabolomics 334 

platforms are needed to fully understand why the metabolic biomarker signature of prenatal 335 

famine exposure links to a broad range of diseases, including effects independent of obesity.  336 

 337 

Conclusions 338 

Prenatal exposure to famine is associated with marked metabolic alterations later in life. 339 

Differences in individual metabolic biomarkers include higher levels of branched-chain amino 340 

acids, aromatic amino acids, and glucose. Moreover, the metabolic biomarker signature 341 

characteristic of prenatal famine strongly resembles that of a diverse set of diseases. Overall, 342 

our findings underscore the broad impact of prenatal famine on adult health and highlight 343 

obesity as a plausible contributing factor. 344 

 345 

 346 

 347 

 348 
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Table 1. Population characteristics 494 

 
Controls 

(n = 464) 

Famine-exposed 

(n = 480) 

p value 

Age, years (SD) 57.9 (5.4) 58.8 (0.5) 1.1x10-3  

Sex, males, n (%) 200 (43.1) 225 (46.9) 0.24 

Use of cholesterol-lowering medication, n (%) 55 (11.9) 61 (12.7) 0.69 

Body mass index, kg/m2 (SD) 27.0 (4.2) 28.2 (4.8) 1.6x10-4 

Type-2 diabetes, n (%) 38 (8.2) 61 (12.8) 0.02 

Values are means (standard deviation) or numbers of subjects (valid %) shown for famine-exposed and 495 

controls of the study population. Comparing the two categories by a two-sample t-test or chi-square 496 

test, as appropriate. 497 
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 511 

Fig 1. Metabolome-wide association study on prenatal famine exposure. A. Association of prenatal famine 512 

exposure with 168 metabolic biomarkers. Regression models were adjusted for age, sex and cholesterol-lowering 513 

medication and correlation within sibships were controlled for (main model). Scattered points represent metabolic 514 

biomarkers: the x-axis shows the effect size for the association of famine with the respective metabolic biomarker, 515 

while the y-axis is negative log of the p value. The grey line represents the significance threshold for this analysis 516 

(p value = 3.57x10−3). B. Heatmap showing the correlation of famine-associated metabolic biomarkers. Pearson’s 517 

correlation was calculated for each metabolic biomarker pair. C. Sensitivity analyses on famine-associated 518 

metabolic biomarkers. Main: main model; BMI-adjusted: main model additionally adjusting for BMI; Diabetes-519 

adjusted: main model additionally adjusted for type-2 diabetes; polygenic score (PGS)-adjusted: main model 520 

additionally adjusted for the polygenic score of the metabolic biomarkers. Effect estimates and 95% confidence 521 

intervals are depicted for each model and are reported in standard-deviation (SD) units of the log-transformed 522 

metabolic biomarkers.  523 
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 528 

Fig 2. Correlation analysis of the metabolic biomarker signature associated with famine and the metabolic 529 

biomarker signature associated with incident type-2 diabetes. A. Overall metabolic biomarker signature 530 

comparison of 135 metabolic biomarkers for prenatal famine exposure and incident type-2 diabetes (r = 0.77, p = 531 

3x10-27) as established in the UK Biobank Study in a 12-year follow-up. B. Overall metabolic biomarker signature 532 

comparison of 135 metabolic biomarkers for prenatal famine exposure (excluding 101 individuals with type-2 533 

diabetes from the analysis) and incident type-2 diabetes as established in the UK Biobank Study in a 12-year 534 

follow-up (r = 0.67, p = 1x10-18). The effect size estimates for each metabolic biomarker are shown as points. 535 

Famine-associated metabolic biomarkers are indicated in blue.  536 
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 551 

Fig 3. Correlation analysis of the metabolic biomarker signature associated with famine and the metabolic 552 

biomarker signature associated with various common diseases. Heatmap showing the effect size estimates of 553 

the 30 most correlated diseases to prenatal famine exposure. The columns are clustered according to the metabolic 554 

biomarker effect sizes and the rows are ordered according to the correlation of the metabolic biomarker signature 555 

of the disease to prenatal famine exposure (Pearson r for IK21 Acute myocardial infarction = 0.85, Pearson r for 556 

E11 Type-2 diabetes mellitus = 0.69). Only metabolic biomarkers that are nominally associated with prenatal 557 

famine exposure are shown (p < 0.05).  The diseases are shown with their ICD-10 (International Classification of 558 

Diseases 10th Revision) classification. The full names of the metabolic biomarkers can be found in Supplemental 559 

Table 2. 560 
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 564 

Fig 4. Effect of additional adjustment of BMI in the correlation analysis of the metabolic biomarker 565 

signature associated with famine and the metabolic biomarker signature associated with various common 566 

diseases. The main model within the DHWFS cohort was adjusted for age, sex, and cholesterol-lowering 567 

medication. The BMI-adjusted model within the DHWFS cohort was adjusted for age, sex, cholesterol-lowering 568 

medication, and BMI.  The effect sizes estimated for these two models of prenatal famine exposure were each 569 

correlated to the effect sizes estimated for the risk of common diseases. The 30 diseases most correlated to the 570 

metabolic biomarker signature of prenatal famine exposure are shown.     571 
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