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Abstract: Mental health research faces the challenge of developing machine learning models for 

clinical decision support. Concerns about the generalizability of such models to real-world 

populations due to sampling effects and disparities in available data sources are rising. We 

examined whether harmonized, structured collection of clinical data and stringent measures 

against overfitting can facilitate the generalization of machine learning models for predicting 5 

depressive symptoms across diverse real-world inpatient and outpatient samples. Despite 

systematic differences between samples, a sparse machine learning model trained on clinical 

information exhibited strong generalization across diverse real-world samples. These findings 

highlight the crucial role of standardized routine data collection, grounded in unified ontologies, 

in the development of generalizable machine learning models in mental health. 10 

 

One-Sentence Summary: Generalization of sparse machine learning models trained on clinical 

data is possible for depressive symptom prediction. 
 

  15 
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Main Text: The inability to individually predict the occurrence of symptoms and their trajectories 

remains a major limitation for improving mental health care. Generating data-driven support for 

clinical decision-making and diagnostics is therefore the main objective of many innovations and 

advances in mental health research to date. To achieve this goal, we require machine learning 

models to learn consistent patterns for single participants from the complex and multi-faceted 5 

inter-individual variety present in real-world clinical populations, and for these models to be 

validated on independent datasets from a broad range of settings (1).  

Systematic differences in available data sources and sampling effects between real-world clinical 

populations and those derived from research cohorts are thought to hinder generalizability of 

machine learning models in mental health (2–4). Clinical and demographic differences between 10 

and within research and real-world samples may lead to heterogeneity, which substantially impairs 

prediction accuracy and model generalizability (5). Assessing model generalization on real-world 

data is critical as they represent the populations for which predictions are intended, thus 

minimizing bias (3). While successful attempts have been made to train models for clinically 

relevant predictions within a single research dataset (6–8), previous investigations have often 15 

overlooked external validation, specifically validation in real-world clinical samples (9). Recently, 

attempts at validating models for treatment response prediction in mental health in unseen, 

independent data have failed, raising concerns about their generalizability (10, 11). 

Given these recent concerns about the generalizability of models for clinical use cases such as 

treatment response prediction, it appears imperative to first determine whether robust and 20 

generalizable models for predicting the complex phenomena of mental health symptoms can 

indeed be achieved, especially considering the suspected heterogeneity across both research and 

real-world settings.  

Using clinical data for prediction 

Although imaging and genetic data have proven to be invaluable for advancing precision medicine 25 

outside of mental health (12–15), previous mental health research has repeatedly demonstrated the 

particular relevance of training models on clinical information when predicting symptom 

trajectories and treatment outcome in disorders such as schizophrenia or depression (16, 17). 

However, despite the technical feasibility of implementing structured collection of clinical 

information, the widespread absence of harmonized machine-readable clinical data persists across 30 

research and clinical settings, primarily due to a lack of uniform data standards and shared 

ontologies in mental health. 

If prediction using clinical data in easily implementable structured formats is not feasible, and if 

sampling biases or batch effects impede model generalizability to the extent that generalizable 

cross-sectional symptom prediction is not possible, then a reevaluation of our current direction is 35 

imperative. We therefore need to improve our understanding of the differences between study 

populations and real-world data and investigate the generalization of predictive models for mental 

health symptoms in unseen, independent data from various sites and settings as a foundation, 

before taking on the even more complex challenges of predicting symptom trajectories in response 

to intervention. Against this backdrop, the present study investigated whether structured clinical 40 

information facilitates the generalizability of a machine learning model for predicting depressive 

symptoms cross-sectionally across diverse samples, sites, and time points despite potential 

sampling and treatment effects. Specifically, we aimed to systematically validate a machine 
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learning model trained on homogenous research data on real-world clinical data obtained from 

both inpatient and outpatient settings, as well as from the general population. 

Data sources 

We evaluated sampling effects and model generalization across affective disorder patients from 

both a study population and a real-world sample recruited at the same psychiatric hospital: For the 5 

study sample (study population inpatients, site #1), we used clinical and self-report data from two 

pooled neuroimaging cohorts at the same site with virtually identical data assessment protocols. 

As comparison to the research setting, a sample from a naturalistic study of a real-world clinical 

population that was digitally phenotyped during inpatient treatment at the same psychiatric 

hospital was included (real-world inpatients, site #1). All available data were extracted and 10 

retained as predictor variables for the training of machine learning models if they were available 

in both samples. This resulted in a set of 76 features that were used to train a model for the 

prediction of depressive symptoms on study population inpatients #1 and tested on real-world 

population inpatients #1. Further information about all materials can be found in the supplementary 

material (SM, pp. 3-5). 15 

To assess model generalization across different sites and settings, we included seven additional 

samples from various sites across Germany and one sample containing data from multiple sites 

across Europe, deviating further from the study population in terms of patient characteristics and 

recruitment setting with each site. To capture heterogeneity and diversity of real-world patient 

populations, these samples included inpatient samples with persistent depressive disorder (PDD) 20 

undergoing specialized psychotherapy, inpatient samples undergoing ECT treatment as well as 

outpatient samples from psychotherapy services undergoing long-term psychotherapeutic 

treatment, inpatient and outpatient participants with recent onset depression (ROD), and a general 

population sample with no relation to a clinical setting. An overview of all samples including 

descriptive and clinical information can be found in table 1. All samples are findable through the 25 

Meta-Data Study Repository of the German Centre for Mental Health (DZPG) (https://webszh.uk-

halle.de/cohort-registry/). 

Patients and outcomes 

From May 2010 to February 2024, 2,808 participants aged 15 to 81 were included. All participants 

were diagnosed with major depressive disorder (MDD) and undergoing inpatient or outpatient 30 

treatment at the time of assessment, with the exception of the real-world general population 

sample, from which participants were selected who reported having received an MDD diagnosis 

at some point before the assessment. Symptomatic outcomes were assessed based on scores from 

self-report measures of depression severity for all sites (see SM, p. 5). Where available, depression 

severity after a psychotherapeutic intervention or at the conclusion of treatment was additionally 35 

included for model validation across time-points. 

Systematic Comparison between Study Populations and Real-World Samples  

To systematically assess sample differences in clinical features and risk factors, we compared 

study population inpatients #1 and real-world inpatients #1, both consisting of participants 

recruited and treated at the same university hospital. Comparisons between the groups were 40 

assessed for the available variables, which could be grouped into the following dimensions: 

sociodemographic variables, current symptom severity, current psychotropic medication, family 
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and personal psychiatric history, childhood maltreatment and stressful life events, somatic 

symptoms, and personality dimensions. 

The two samples differed substantially in features from all dimensions except for somatic 

symptoms. The real-world sample displayed more severe current depressive symptoms only in 

external symptom assessment, not in a self-report measure. They also showed a more severe 5 

disease course, as well as differences in prescribed medication (more stimulants, benzodiazepines, 

and z-drugs), recalled childhood maltreatment (more physical neglect) and personality dimensions 

(lower extraversion and conscientiousness, higher agreeableness) compared to the study 

population (see SM, Table S2).  

Real-World Validation of machine learning model and development of sparse model 10 

First, we trained a model on all N=366 study population inpatients #1, using all available 76 

features to predict depression severity. Analogous to Chekroud et al. (10), we used the elastic net 

algorithm, a penalized regression method that is appropriate when covariates are correlated with 

one another and predictors may only be sparsely endorsed (see SM for more details; (18, 19). We 

performed cross-validation to assess validation performance of our model using the PHOTONAI 15 

software (www.photon-ai.com, (20)). The cross-validation part of this procedure randomly 

reshuffles the data and separates the dataset into 10 non-overlapping folds and uses 9 of the subsets 

for training, repeating the process such that each subset is left out once for testing. The repeated 

part of this procedure randomly reshuffles and re-splits the data ten times to reduce the impact of 

the first random data split; in aggregate, 100 total models were fit to the 10 folds by 10 repeats. 20 

Model performance was calculated by averaging the performance metrics across all 100 models. 

This procedure yielded an internal validation performance of Pearson r(364)=.57 (Standard 

Deviation = .151). Next, we identified the most relevant features for this model using permutation 

importance with 1,000 repeats. This yielded five main variables driving model performance 

(Figure 1): neuroticism, extraversion, global assessment of functioning, somatization, and 25 

emotional abuse during childhood, one of which (extraversion) had emerged as significantly 

different between study population and real-world inpatients in the previous analysis step. Using 

these five variables alone, we trained the base model on all N=366 study population inpatients #1. 

We then tested the base model based on the five relevant variables in N=352 real-world inpatients 

#1 consisting of participants recruited and treated at the same university hospital. Based on the 30 

prediction of the base model trained above, we computed the Pearson correlation between the true 

and the predicted values to assess predictive performance in the real-world sample. The base model 

performed above chance in the real-world sample (r(350)=.73, p<.001). Using the Binomial Effect 

Size Display (BESD, see SM) for illustration, this corresponds to an accuracy of 87% in a 

classification scenario. 35 

Generalizability of the base model across sites, treatment settings, and populations 

To further assess model generalizability, we tested the base model across all nine external samples 

from different research and clinical settings and geographical sites with a total of N=2,675 

participants for external validation (see Figure 1). The model performed above chance level across 

all external datasets (r(2,673)=.60, Standard Deviation = .089, p<.001). Using the BESD for 40 

illustration, this corresponds to an accuracy of 80% in a classification scenario. Importantly, this 

performance is nominally higher than base model performance on study population inpatients #1 

dataset (see above), indicating excellent generalization performance.  

Investigating performance on the nine samples separately shows that performance on all sites 

varies between r(1,227)=.48 in the real-world general population sample, r(250)=.50 in real-world 45 
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outpatients #6 and r(350)=.73 in real-world inpatients #1. Thus, even the lowest performance (real-

world general population sample) lies within .60 standard deviations of the mean of the base model 

performance (r(364)=.57, standard deviation=.151). Note that the comparatively poorer 

performance in the real-world general population sample may result from only two of the five 

features being available for this sample, which moreover differed most markedly from the training 5 

set in participant characteristics due to it being a general population sample in which participants 

were not necessarily acutely depressed or currently undergoing treatment. Supplementary analyses 

excluding the most highly weighted feature, neuroticism, also confirmed good generalizability of 

the sparse model across sites (see SM, p. 9). 

Generalizability of machine learning model across two time points 10 

To assess whether base model performance remains robust after therapeutic interventions, we used 

the base model to predict depression severity after treatment. We show that the base model 

performs above chance level (r(566)=.50, p<.001) across the five external datasets which provide 

an assessment after a therapeutic intervention (study population in- & outpatients #1, real-world 

inpatients #1, real-world inpatients #4, real-world outpatients #5, real-world outpatients #6). 15 

Again, using the BESD for illustration, this corresponds to an accuracy of 75% in a classification 

scenario. While this performance is nominally lower than base model performance on the study 

population inpatients #1 dataset, it lies within one standard deviation of the mean of the base model 

performance, indicating good generalization for the prediction of depression severity at a different 

measurement time without explicit training. Investigating performance on the five sites separately 20 

shows that performance varies between r(125)=.20 (real-world outpatients #6) and r(56)=.54 (real-

world inpatients #1). Note that treatment duration differed substantially between sites and 

treatment modalities. The comparatively low performance in real-world outpatients #6 may be due 

to the long duration of treatment. Investigating this, we show that treatment duration is indeed 

positively associated with model error across all sites indicating increased model error with longer 25 

duration between baseline and follow-up assessment (Spearman r(554)=0.12, p=0.004). 

Investigating potential model bias, we assess the association of model error and age and sex, 

respectively. We show that neither age (Spearman r(554)=0.07, p=0.093 nor sex (t(554)=-1.54, 

p=0.123) are significantly associated with model error. Supplementary analyses indicate a 

classification accuracy of 66% for identifying subjects with persistent depressive symptoms at both 30 

time points based on the top 5 variables (see SM, p. 8).  

 

Discussion 

In this study, we demonstrate that a machine learning model trained on mental health research data 

can achieve comparable performance for predicting depression severity in unseen, independent 35 

real-world datasets across different sites, treatment settings, and time points. To the best of our 

knowledge, this study includes the most extensive independent validation in the field of mental 

health research to date. In contrast to previous studies (10, 16), we show robust generalization 

performance across nine independent sites comprising over 2,600 participants, reflecting the full 

spectrum of heterogeneity and diversity present in real-world patient populations. This suggests 40 

that real-world validation of mental health symptom prediction models is possible, despite 

substantial sample heterogeneity.  

Tackling the challenges of model generalization 
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A first challenge to consider for model generalization is the avoidance of overfitting when training 

the base machine learning model (21). When a model overfits, it captures both the signal and the 

noise in the training data on which it may perform exceptionally well while failing to generalize 

to new, unseen data (22). Regularization, which imposes constraints on the model parameters to 

encourage sparsity, can help prevent overfitting by promoting simpler, more interpretable models. 5 

In our study, working with low-dimensional clinical data and further reducing the dimensionality 

of the feature space by focusing on the most informative features was used to prevent overfitting. 

Sampling effects between study and real-world populations 

The second challenge for validating models in independent datasets is that patient groups from 

research contexts may be too different from real-world clinical populations (21). We demonstrate 10 

that systematic differences indeed exist between research populations and real-world MDD 

patients, even when both samples are treated and assessed at the same psychiatric hospital. 

However, we also demonstrate that these differences do not necessarily impede model 

generalization to populations from different study sites or real-world treatment contexts. While 

previous research from other areas of medicine, such as predicting positive COVID-19 screenings, 15 

reveal that site-specific model customization can improve predictive performance, the approach of 

applying a ready-made model “as-is” has been found to be effective (23) and appears to also be 

feasible in the context of mental health.  

Predicting symptom severity at different time points 

Additionally, biases arise not only from baseline differences in patient characteristics and site but 20 

also from variations in treatment modalities, especially for prospective predictions of depression 

severity after a mental health intervention. We show that our model remains robust after treatment 

with markedly different modalities and across various settings, particularly for the translation from 

inpatient to outpatient psychotherapy service users. While performance drops markedly the further 

the treatment context deviates from the training set and with increasing time between baseline and 25 

follow-up assessment, prediction of both baseline as well as post-treatment depression severity is 

still possible. This underlines the finding that heterogeneity within and between datasets and 

measurement time does not stand in the way of model generalizability. Although the predictive 

clinical features used in our sparse model may allow for the identification of participants with 

persistent depressive symptoms across time points and after treatment, it should not be 30 

misinterpreted as a readily applicable model for clinical decision support. The present findings 

rather suggest the general feasibility of developing machine learning models for predicting 

complex phenomena of mental health symptoms. These findings may thus serve as a foundational 

step for future endeavors aimed at refining models suitable for ecologically valid clinical use cases 

in daily practice. 35 

Predictive value of clinical information 

Another challenge of model generalization is the quality, quantity, and diversity of the data needed 

to achieve accurate predictions. While previous research in study populations shows that predictive 

models which include more than one data modality, such as clinical, neuroimaging, and genetic 

data, achieve better performance (24) we demonstrate that symptom severity prediction is possible 40 

with sparse features that can be collected during the clinical routine. This is in line with previous 

findings on the particular importance of clinical information when predicting symptom trajectories 
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and treatment outcome in mental health research (16, 17). The extracted features, encompassing 

two personality dimensions, somatic symptom severity, childhood emotional abuse, and global 

functioning, and thus a mixture of state and trait variables, consistently form a predictive pattern 

for depression severity across diverse patient populations, irrespective of illness stage or treatment 

setting. It is crucial to highlight that these features have demonstrated greater importance compared 5 

to more than 70 other variables, some of which might be presumed to hold equal or greater 

relevance in determining depressive symptom severity including clinician-relevant factors like 

psychiatric history or prescribed medication. However, it is crucial to note that the initial selection 

of 76 features may not encompass the full spectrum of variables with predictive potential and that 

there may be other variables of greater significance. 10 

Improving structured clinical data collection 

Given our demonstration of the generalizability of machine learning models trained on clinical 

information, along with considerations of technical and cost efficiency, these findings should 

encourage structured, machine-readable clinical information acquisition in routine settings. We 

should thus increase efforts to improve interoperability and invest in uniform data standards and 15 

ontologies in mental health. Successful examples from the medical community such as the 

introduction of the Systematized Nomenclature of Medicine, Clinical Terms (SNOMED CT (25)), 

Logical Observation Identifiers, Names, and Codes (LOINC (26)), and Fast Health Interoperability 

Resources (FHIR (27)) profiles are encouraging in this regard. Wide-reaching infrastructures such 

as the German Medical Informatics Initiative (28) as well as other international efforts (29–31) 20 

have set the goal of improving integration of clinical data from patient care and medical research 

and the French Health Data Hub is even explicitly set up to facilitate health data sharing with the 

aim of developing health-related Artificial Intelligence projects (32). As dedicated solutions for 

mental health are lacking within current infrastructure efforts, our findings highlight the necessity 

for national and international endeavors to tailor, develop, and disseminate such solutions 25 

specifically for mental health. The recent establishment of the German Centre for Mental Health 

(DZPG) with its translational agenda and integration with key data infrastructures in Germany 

signifies an important step forward in this regard (33). 

In summary, our findings highlight successful real-world validation of sparse machine learning 

models for depressive symptom prediction and emphasize the potential of using standardized 30 

routine data collection for developing generalizable empirical models in mental health. 
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Fig. 1. Methodology and results of the predictive model analysis

 
(A) Analytic workflow from systematic differences analysis to multisite model evaluation. (B) Scatter plot depicting p-values for group differences between study 

population and real-world inpatients from site #1 across clinical and demographic variables. (C1) Line plot of ranked feature importances with specified cutoff. (C2) 

Bar plot highlighting the top 5 features selected through permutation importance analysis. (D) External validation results of the base model showing Pearson correlation 5 

of true and predicted depressive symptoms, contrasted across nine external sites. (E) Follow-up validation scatter plot showing Pearson correlation of true and predicted 

depressive symptoms following therapeutic intervention, including the presentation of average follow-up durations by site.
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Table 1. Overview and descriptive information for all sites. 

Sample Recruitment 

site 
Interventi

on 
Treatment 
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in Days 

Age Gende

r 
Baseline 

Depressio

n 

Depressio

n FU 
Extra- 

version 
Neuro- 

ticism 
GAF Somati

-zation 
CTQ 

EA 

   Mean (SD) Range 

Mean 

(SD) 

m/f Mean (SD) Mean (SD) Mean 

(SD) 

Mean (SD) Mean 

(SD) 

Mean 

(SD) 

Mean 

(SD) 

Study Population Samples 

Study 

population 

inpatients, site 

#1 

(n=366) 

Department of 

Psychiatry, 

University 

Hospital 

Münster,  

Germany 

Medication

,CBT 

NA 18-65 

37.16 

(12.86) 

158/20

8 

39.82 

(17.02) 

NA 39.08 

(14.53) 

66.95 

(15.50) 

54.43 

(9.37) 

11.69 

(7.79) 

11.18 

(5.50) 

Study 

population in-

& outpatients, 

site #1 

(n=83) 

Department of 

Psychiatry, 

University 

Hospital 

Münster,  

Germany 

Medication

,ECT, CBT 

167.24 

(108.71) 

19-66 

33.72 

(12.13) 

28/55 34.17 

(18.81) 

26.29 

(16.92) 

NA NA 57.84 

(12.63) 

NA 11.19 

(5.57) 

Study 

population 

inpatients, site 

#2 

(n=109) 

Department of 

Psychiatry, 

University of 

Marburg,  

Germany 

Medication

,CBT 

NA 18-63 

36.75 

(13.18) 

50/59 36.43 

(16.39) 

NA 45.24 

(16.13) 

66.03 

(15.36) 

54.96 

(8.89) 

14.05 

(8.69) 

11.41 

(5.25) 

Study 

population 

inpatients, site 

#3 

(n=43) 

Department of 

Psychiatry and 

Psychotherapy, 

Jena University 

Hospital,  

Germany 

Medication

,CBT 

NA 18-67 

39.23 

(15.58) 

18/24 49.65 

(20.07) 

NA 32.71 

(10.58) 

56.04 

(14.78) 

42.85 

(11.35) 

NA 11.62 

(5.74) 

Study 

population in- 

& outpatients, 

multisite 

(n=301) 

Ten 

international 

recruitment 

sites1 

Medication

, 

psychother

apy,  

counseling 

NA 15-41 

25.4 

(6.11) 

155/14

6 

39.88 

(19.37) 

NA 47.12 

(16.19) 

64.14 

(17.33) 

54.02 

(12.28) 

NA 9.21 

(4.22) 

Real-World Samples 
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Real-world  

inpatients, site 

#1 

(n=352) 

Department of 

Psychiatry, 

University 

Hospital 

Münster,  

Germany 

Medication

,CBT 

44.67 

(23.23) 

18-81 

39.3 

(17.22) 

165/18

7 

39.40 

(18.05) 

21.38 

(18.57) 

36.17 

(18.78) 

68.60 

(17.32) 

53.86 

(9.18) 

12.22 

(7.75) 

11.51 

(5.79) 

Real-world  

inpatients, site 

#4 

(n=161) 

Department of 

Psychiatry and 

Psychotherapy, 

Ludwig-

Maximilian 

University 

Munich,  

Germany 

Medication

,10-week 

CBASP 

70.98 

(8.12) 

18-66 

39.33 

(12.55) 

68/93 48.95 

(16.77) 

36.10 

(21.41) 

33.81 

(14.51) 

71.26 

(13.77) 

46.42 

(8.25) 

NA 14.40 

(6.01) 

Real-world  

outpatients, 

site #5 

(n=144) 

Psychotherapeut

ic Outpatient 

Unit, University 

of Halle,  

Germany 

Medication

,CBT 

191.98 

(12.25) 

19-60 

28.76 

(9.72) 

32/112 32.47 

(17.32) 

19.07 

(17.56) 

NA NA 62.11 

(11.68) 

8.07 

(6.09) 

10.72 

(4.76) 

Real-world  

outpatients, 

site #6 

(n=252) 

Psychotherapeut

ic Outpatient 

Unit, University 

of Münster,  

Germany 

Medication

,CBT 

613.91 

(338.53) 

19-64 

31.99 

(11.38) 

105/14

7 

37.84 

(16.39) 

15.16 

(14.35) 

NA NA NA 9.47 

(7.56) 

NA 

Real-world 

general 

population 

sample 

(n=1210) 

Institute of 

Medical 

Epidemiology, 

Medical Faculty 

of the Martin 

Luther 

University 

Halle-

Wittenberg, 

Germany 

NA NA 20-72 

51.10 

(11.08) 

 

367/84

3 

25.63 

(19.23) 

 

NA 50.42 

(19.66) 

 

48.56 

(19.13) 

 

NA NA NA 

Note. 1 see supplementary material for details. 

Abbreviations. CBASP = Cognitive Behavioral Analysis System of Psychotherapy, CTQ EA = Childhood Trauma Questionnaire, Emotional Abuse subscale, ECT = 

electro-convulsive therapy, GAF = Global Assessment of Functioning (37, 50), Depression = Percentage of maximum possible depression severity score, calculated 

from Beck Depression Inventory (35, 48) or Patient Health Questionnaire, depression scale (49), Depression FU = depression severity after treatment, Extraversion = 

Percentage of maximum possible extraversion score, calculated from Big Five Inventory-S (51), Big Five Inventory -2- S (43), NEO-Five Factor Inventory (42),  5 

Somatization = Symptom Checklist 90-Revised, somatization subscale 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305250doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305250

