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Abstract 

Paediatric autoimmune encephalitis (e.g., acute disseminated encephalomyelitis, N-methyl-D-

aspartate receptor antibody encephalitis) is an inflammatory brain disease that causes cognitive 

deficits, psychiatric symptoms, seizures, MRI, and EEG abnormalities. Patients can continue to 

experience residual cognitive difficulties months to years after the acute illness. 

Magnetoencephalography (MEG) can examine neural changes in the absence of frank structural 

abnormalities and may help identify factors predicting children at risk of long-term cognitive 

deficits. We predicted that theta and delta brain functional connectivity networks would be 

associated with processing speed and working memory in children with autoimmune 

encephalitis. 

Participants were children diagnosed with autoimmune encephalitis at least 18 months before 

testing and typically developing children. All completed MEG recording (Elekta Neuromag 

Triux) at rest, eyes open with a fixation cross during six minutes; T1 MRI scans; and cognitive 

evaluation using the primary subtests of the Weschler Intelligence Scale for Children, fifth 

edition. Brain connectivity, specifically in delta and theta brain activity, was estimated with 

amplitude envelope correlation, and network efficiency was measured using graph measures 

(global efficiency, local efficiency, modularity). The measures were compared across the two 

groups with permutation correction for multiple thresholds. Finally, statistical associations with 

processing speed and working memory scores were tested in the autoimmune encephalitis 

group. 

Age and sex-matched cohorts of 12 children with AE (11.2±3.5y, IQR 9y; 5M:7F) and 12 

typically developing controls (10.6±3.2y, IQR 7y; 8M:4F) participated in this study. On 

average, children with autoimmune encephalitis did not differ from controls in working 

memory (t(21)= 1.449; p = .162; d = 0.605) but had a significantly lower processing speed 

(t(21) = 2.463; p = .023; Cohen’s d = 1.028). The groups did not differ in theta network topology 

measures but the autoimmune encephalitis group had a significantly lower delta local efficiency 

across all thresholds tested (d = -1.60 at network threshold 14%). Theta modularity was 

associated with lower working memory (β = -.781; t(8) = -2.588, p = .032) but this effect did 

not survive correction for multiple comparisons (p(corr) = .224). No other graph measure was 

significantly associated with psychometric scores in the autoimmune encephalitis group. 

MEG was able to capture network alterations in paediatric autoimmune encephalitis patients, 

specifically in the topological organisation of delta brain activity. This preliminary study 
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demonstrates that MEG is an appropriate tool for assessing children with autoimmune 

encephalitis; future studies should focus on confirming which functional networks can predict 

cognitive performance.  

 

Keywords: neurodevelopment, ADEM, autoimmune encephalitis, neuropsychology, MEG, 

NMDAR 
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Introduction  

Paediatric auto-immune encephalitis (PAE) is an inflammatory brain disease associated 

with seizures, movement disorders, neuropsychiatric symptoms, and cognitive deficits1-4. 

Despite advances in diagnosing and treating PAE, a proportion of children are still left with 

long-term cognitive and academic difficulties (up to 45% in N-methyl-D-aspartate receptor 

antibody encephalitis (NMDARE)5-7 and 15.8–22% in acute disseminated encephalomyelitis 

(ADEM)8, 9). Routinely used clinical outcome assessments such as the modified Rankin Scale 

(mRS) or the Extended Disability Status Scale (EDSS) focus on motor abilities missing 

independent subtle cognitive deficits6, 10-12. Identifying factors that predict neuropsychological 

outcome would allow rehabilitation therapies to be focussed on PAE patients at highest risk of 

cognitive difficulties5. A recent review in adults with AE found the most frequent impairments 

and highest yield neuropsychological measures were found in tests of visual and verbal 

learning/memory, processing speed, attention, and executive functions.13  

Functional connectivity is an indicator of neural activity that reveals a systematic 

relationship between brain areas and is therefore interpreted as reflecting neural connections. 

Resting state functional connectivity analyses that focus on the meaningful organisation of 

spontaneous brain activity, in the absence of any specific task (‘at-rest’), offer great potential 

for investigating the underlying mechanisms of cognitive sequelae in autoimmune encephalitis 

(AE). In adults, functional Magnetic Resonance Imaging (fMRI) studies suggest that patients 

with AE have reduced functional connectivity at rest.14 Altered connectivity (i.e. 

“dysconnectivity”) may reflect disruptions in neural connections, leading to impairment of 

cognitive functions that rely on inter-area neural communication. Network dysconnectivity in 

adult AE has been linked to lower cognitive performance15-20 disease severity15, 16, 21, higher 

mood lability22, and psychiatric symptoms16. Specifically, deficits in working memory and 

information processing speed significantly correlated with functional connectivity measures.23 

One study in adult limbic encephalitis (a form of AE) hypothesised that damaged brain 

structures could provoke increased connectivity associated with deficits, reporting a positive 

relationship between functional connectivity to the insular cortex and impaired verbal episodic 

memory.18 To date, children and young people with AE have not been specifically investigated 

for functional dysconnectivity, despite evidence to show they may be more adversely affected 

in terms of neuropsychological and cognitive outcomes5, 24, in part due to the vulnerability of 

the developing brain.25 It is therefore imperative that paediatric neuroimaging investigations 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305194doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305194


   

 

5 

 

into autoimmune encephalitis are conducted in order to understand changes in functional 

connectivity that could predict negative developmental outcomes.  

Magnetoencephalography (MEG) is an alternative non-invasive method used for 

measuring functional brain dynamics26, but studies in AE are limited to case reports.27, 28 MEG 

provides a direct measure of neuronal activity, unlike fMRI which relies on a surrogate signal 

based on blood oxygenation levels. MEG can reveal widespread changes in functional 

connectivity with higher temporal resolution than fMRI, which is especially relevant to 

examining synchrony of neural oscillations across brain regions29. In addition, MEG provides 

a better spatial resolution than EEG, being less susceptible to the spatial distortions in recorded 

brain activity caused by interactions between the signal and tissue layers with variable electric 

conductivity surrounding the brain30. Resting-state MEG recordings can be used to infer 

functional networks31, 32, in a similar way as fMRI in AE16. MEG has been widely used in 

paediatric epilepsy to predict cognitive outcomes33 and has the same advantages as EEG, i.e.  it 

is cost-effective, non-invasive and reproducible34. In addition, MEG is practically preferrable 

for children, requiring less preparation time than EEG,35 and does not require children to lie 

still for long periods in a noisy environment like fMRI. 

EEG is abnormal in >95% of adult and paediatric AE patients showing encephalopathy, 

but changes in specific frequency bands such as altered theta-delta activity, extreme delta 

brushes, and generalized  rhythmic delta activity36-39 have also been widely reported.36, 40 Theta 

brain networks have been linked to attention and stimulus processing (sensation and 

perception), encoding and consolidation of information in memory, and executive functions 

including working memory41. Delta networks are also associated with attention and 

concentration and working memory42. 

In this study, we investigated whether MEG-derived delta and theta connectivity in PAE was 

associated with cognitive measures in the long-term. We hypothesised that following AE, 

children would have lower scores in processing speed and working memory, as well as changes 

in delta and theta frequency resting-state network compared to typically developing controls. 

We further hypothesised that these network measures would be associated with lower cognitive 

performance in PAE. 
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Materials and methods 

Participants 

Patients were recruited between 2018 and 2022 from a single-centre, Birmingham 

Children’s Hospital, Birmingham UK as part of a larger study investigating the effect of 

neurological disease on the developing brain (Aston University Ethics reference #18/LO/0990; 

#IRAS 233424). Healthy, typically developing controls were recruited from the local 

community through social media advertisement and local outreach events (Aston University 

Ethics reference #HLS21011). Consent was obtained according to the Declaration of Helsinki 

and approved by ethical committees of each institution.  

Patients were selected based upon the following criteria: Diagnosis of immune-mediated 

encephalitis, according to established criteria1, 3, at least 18 months after disease onset, aged 6 

to 16 years at the time of recruitment to the study and cognitive assessment. Exclusion criteria 

included dissent of the child from participating and presence of contraindication for MRI 

scanning. For typically developing controls, exclusion criteria included a diagnosis of learning 

difficulty, psychiatric, neurodevelopmental, neurological disorder, a known or suspected 

cerebral abnormality, dissent of the child from participating and/or presence of contraindication 

for MRI scanning. 

As an observational study where all participants followed the same protocol, 

participants were not randomized nor were researchers blinded to group membership. 

Information regarding the children’s clinical and disease course were collected from 

medical records by paediatric neurologists (SW and EW) including clinical assessment of The 

Modified Rankin Scale (mRS) to classify the disability in patients. A score of 0 represents no 

disability, 3 is moderate disability requiring some help but able to walk and 5 is severe disability 

requiring constant care for all needs; 6 is death 43. 

 

Neuropsychological assessment 

The Wechsler Intelligence Scale for Children, 5th Edition (WISC-V) was used to assess 

general intellectual functioning in all children from 6 years to 16 years and 11 months44. The 

Wechsler scale uses a battery of psychometric tests that assess intellectual quotient (IQ) into 

separate indices44. For the fifth edition of the WISC, the subtests are classified into the 
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following indices: Verbal Comprehension, Visual Spatial, Fluid Reasoning, Working Memory, 

and Processing Speed44. Working Memory and Processing Speed composite scores were 

selected for this study analysis given the evidence that these are the most frequently studied and 

testing recommended in adult and paediatric AE and neuroinflammatory disease.13, 45, 46 

 

MRI image acquisition 

Each participant underwent structural MRI scans (T1w MPRAGE and T2-FLAIR), 

acquired using a 3T MRI scanner located at the Aston Institute of Health & Neurodevelopment, 

Birmingham, UK) (flip angle = 15; dimensions = 176x240x256). From March 2022, the MRI 

scanner was upgraded from a Siemens TrioTim (TE=(ms) 0.00337; TR(ms)=1.900) to a 

Siemens MAGNETOM Prisma (TE=(ms) 0.00341; TR(ms)=1.960). Three children with AE 

and all controls were scanned using the newer Prisma MRI. 

Preprocessing of structural MRI (T1w MPRAGE) was done with semi-automated 

pipelines in FreeSurfer (v6.047): including segmentation of gray matter, white matter and CSF 

boundaries; brain extraction; quality check for segmentation or surface estimation errors; 

normalization and automated structural parcellation48. Intensity correction was done with non-

parametric non-uniform intensity normalization adapted to scans acquired from 3T scanners 

using the “-3T” flag.47 3D white matter and gray matter surfaces were generated, smoothed and 

aligned for inter-participant comparability48. Pial surface estimation was improved with the 

contrasts from the FLAIR scans (“-FLAIRpial” argument47) when a FLAIR scan was available. 

Every scan was visually quality-checked for skull-stripping and segmentation errors: manual 

edits were done in FreeSurfer to remove artefacts, remaining unwanted tissues and to correct 

surface estimation errors when needed. Scans with excessive noise or artefacts after visual 

inspection of processed scans were discarded (1 AE and 1 control). 

 

MEG protocol and processing 

MEG acquisition parameters 

MEG recordings were conducted using the Elekta Neuromag® TRIUX MEG system at 

the Aston Institute of Health and Neurodevelopment, comprising 306-channels (including 102 

magnetometers and 204 planar gradiometers) located in a single-shell magnetically shielded 
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room equipped with MaxShieldTM technology. Recordings were conducted with a 2000 Hz 

sampling rate, a high-pass filter of 0.1 Hz and a low-pass filter of 330 Hz. Internal active 

shielding was off. Five head position indicator coils were placed on the participant, three on the 

forehead and one on each mastoid to record head movements. Co-registration between the MEG 

and the MRI scans was facilitated using a Polhemus Fastrak motion tracker which digitizes the 

coordinates of each participant’s head shape, starting with three fiducial coordinates (nasion, 

and bilateral preauricular points), followed by the head position coils and the rest of the head. 

Resting state protocol 

During the MEG recordings, participants underwent a recording at rest, in which they 

were instructed to sit still in the scanner for a recording period of 6 to 6”30 minutes and to look 

at a black fixation cross projected on a white background. This was performed in a session in 

which other, task-based, acquisitions were performed (not reported here).  

MEG co-registration and source modelling 

 Each individual’s MRI was co-registered with their MEG recording using BrainStorm 

(v. 3.210818, 18 August 202149), which is documented and freely available for download online 

under the GNU general public license (http://neuroimage.usc.edu/brainstorm). Co-registration 

was achieved using fiducial points manually defined on the T1w MRI and refined using the 

head position indicator coil coordinates. Participant-level anatomy models were imported from 

the FreeSurfer pipeline described above. The number of vertices used to construct the whole 

cortical surface generated in FreeSurfer was downsampled to 15000 as per Brainstorm’s 

recommended default ("good balance between the spatial accuracy of the models and the 

computation speed”, https://neuroimage.usc.edu/brainstorm/Tutorials/ImportAnatomy).  

For cases where this anatomy model was unavailable (for example if an MRI scan 

contained too many artefacts to generate FreeSurfer meshes or could not be preprocessed), an 

age-matched paediatric symmetric MRI template50, 51 preprocessed with the same FreeSurfer 

pipeline was used as a substitute. The templates were preprocessed with FreeSurfer to maintain 

the same parcellation across participants. Template models were used for one AE case and one 

control participant. 

Three-shell realistically-shaped head models were generated for each participant based 

on their FreeSurfer derived surface-based models, with adaptive integration in BrainStorm and 

the OpenMEEG plug-in52, 53, using scalp/skull/brain layers with default settings for layer 
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conductivities, vertices and skull thickness. The boundary element method (BEM) was used, as 

it supports more accurate localization of signal sources compared to sphere-based methods54. 

The source of the signal was reconstructed in each anatomical model using LCMV beamformer, 

which suppresses external background noise assumed to be captured in a data covariance matrix 

extracted from each recording, regularized with the median eigenvalues (as recommended55).  

Resting state network analysis 

Resting state recordings were epoched into non-overlapping trials of 10 seconds using 

Fieldtrip (v. 22 January 202156). Signals were filtered with a 4th-order Butterworth zero-phase 

low-pass filter for better visualization (cut-off: 70 Hz, as in57). An independent component 

analysis (ICA) was run (number of components equal to the number of included channels), to 

reject heartbeats, eye blinks and eye movement artefacts in all participants. These were visually 

identified using an in-house script that allows toggling through the components, plotting their 

topography and signal time-course across all trials. Components containing these artefacts were 

regressed out of the MEG data. In addition, each individual trial was toggled manually in order 

to reject trials and channels that contained excessive artefacts caused by muscle activity and 

SQUID jumps. The cleaned data was then imported into BrainStorm (v. 3.210818, 18 August 

202149) to facilitate connectivity analysis. The number of 10 second epochs that remained after 

processing were distributed as follows: 37.5±1.6 (IQR = 1) for the Encephalitis group and 

37.33±1.1 (IQR = 3) in the Control group. 

Before computing connectivity, a weighted average of the trials was obtained and 

transformed in the time-frequency domain using Hilbert transformation. Frequency bands of 

interest were delta (1 to 4 Hz) and theta (5 to 8 Hz). Using the Desikan-Killiany atlas, 

Brainstorm’s scout function was applied to produce the mean time-frequency signal within each 

parcellated region before estimating frequency connectivity (instead of after estimating 

connectivity for each dipole in order to reduce processing time). Connectivity between these 

regions was computed for each frequency band of interest using Amplitude Envelope 

Correlation, a measure of temporal evolution of spectral power (envelope), correlated between 

pairs of orthogonalized signals within separate regions58. This method avoids common source 

contamination and has also been shown to have a superior between-sessions network estimation 

consistency compared to other measures of connectivity59, 60. Two 68x68 connectivity matrices 

were generated for each epoch and then averaged for each participant; resulting in one average 
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delta connectivity matrix (example given in Supplementary Figure 1) and one average theta 

connectivity matrix per participant.     

The average connectivity matrices were exported individually for each participant in 

Matlab. Negative correlations were transformed into zeros. The Brain Connectivity Toolbox 

(BCT v. 2019-03-0361) was then used to normalize the matrices’ weights into a range from 0 

(no connection) to 1 (maximum connectivity). Proportional thresholds were chosen for their 

higher stability within graph measures62; and applied to keep 10% to 30% strongest connections 

for each frequency matrix (as in previous paediatric MEG research63), in intervals of 4%, thus 

6 matrices per frequency band. The purpose of looking at the networks with different thresholds 

is to control for the instability of graph measures across threshold and the arbitrariness of 

selecting one threshold64. 

Measures of efficiency and modularity, that reflect how well brain networks integrate and 

segregate distinct modules to efficiently transmit neuronal information, were chosen. These 

specific measures were investigated as they were applied in previous AE fMRI research65, 66.  

For each thresholded matrix, the following measures were computed: 

• Modularity (M), the degree to which the network can be subdivided into non-

overlapping groups, maximizing within-group edges, and minimizing between-group 

edges61 (using Q maximized modularity). 

• Global efficiency (Eglob), the average inverse shortest path length between all pairs of 

nodes.61 

• Mean Local efficiency (Eloc), the global efficiency computed for neighbouring nodes at 

the level of each node61 (with the recommended 2017 BCT function) 

Statistical analyses 

Multi-threshold permutation correction for network selection 

To avoid the issue of multiple comparisons produced by the multiplication of thresholds, as the 

group difference would need to be assessed for 2 frequency bands * 6 thresholds * 3 graph 

measures, multi-threshold permutation correction (MTPC) was applied. MTPC was 

implemented in the brainGRAPH package (v.3.0.067, 68) in R (v.4.2.1; R Core Team, 2022). This 

method allows the identification of a group difference that is stable across thresholds and 
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controls for multiple comparison through permutation correction. The MTPC was successfully 

applied in other clinical populations with structural diffusion-weighted imaging networks64, 69-

71, and can be replicated in MEG-derived networks as they are both represented as mathematical 

graphs. The Desikan-Killiany atlas in brainGRAPH was reordered in order to match the labels 

of the matrices in Brainstorm. The MTPC computes a test-statistic (here, t) on graph measures 

across groups for each threshold, and permutes group assignments (here, 5000 times). The 

maximum t across all permutations for each threshold are used to establish a critical value at a 

desired confidence level (here at α = .05). For each threshold, an area-under-the-curve is 

computed for significant “clusters” where the observed t is higher than the critical value. A 

critical AUC is determined from the mean of the AUCs above critical t value of the permuted 

tests: the output of the MTPC is significant if the AUC of the significant clusters exceeds the 

critical AUC64. In the present study, the MTPC model was one-sided and tested reduced (“less”) 

connectivity in the AE group.  

To account for the multiple MTPC analyses (2 frequency bands * 3 graph measures), the p 

values corrected across all six thresholds in each MTPC (p.fdr values), were corrected again for 

false discovery rate against the p.fdr values of the other MTPC analyses (6 * 6 p.fdr in total). 

For significant differences, a post-hoc exploratory analysis was run to verify a potential 

difference in overall raw functional connectivity (overall FC), compared across groups using 

nonparametric permutation tests (t-test with threshold 3.1, two-tailed, 5000 permutations, 

significant at p = .05, component size = extent) in the Network Based Statistic toolbox72. The 

point of such post-hoc analysis is to verify whether the network organization differences may 

simply be explained by the overall difference in FC or, on the contrary, remain different 

regardless of this overall connectivity contrast. That is because low overall FC can introduce 

spurious connections within proportional thresholds and in turn influence network metrics73, 74. 

If overall FC differed between groups, a strategy proposed by van den Heuvel et al.74 was 

followed if applicable to the data, by establishing overall FC-matched subgroups and rerunning 

the graph metrics analyses. 

A priori power analyses using G*Power75, assuming a strong two-tailed individual t effect size 

(f² = .35),which is what is required from a relevant biomarker, is observed for the effect of the 

graph measure,  suggest 25 participants are needed to reach a sufficiently high power (1-β = 

.80). Due to recruitment challenges (secondary to the COVID-19 pandemic) that sample size 

was not reached (N=11, 1-β = .41 for the minimum strong effect).  
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Multiple regressions for resting state networks 

Regression analyses were computed in R (v.4.2.1; R Core Team, 2022) using the car package76. 

Following the MTPC comparison analyses, graph measures for each participant in the AE group 

were extracted for the threshold where the group difference was the highest compared to 

controls, regardless of significance. Graph measures were then separately included in multiple 

regression analyses predicting Processing Speed Index (PSI) and Working Memory Index 

(WMI).  

Sex was also included in these models. Whilst the WISC-V demonstrates measurement 

invariance across both males and females,77 there is evidence to suggest that cognitive outcomes 

in this patient population differ as a function of sex. In paediatric ADEM, there is greater risk 

of neurological poor outcome (including intellectual difficulties) for males.78 There are similar 

trends in paediatric-onset multiple sclerosis, with males being more likely to be cognitively 

impaired [x],79 and experience further decline in cognitive processing speed80 and overall 

cognitive functioning, even at 2-5yrs post-onset.81 Given this propensity for sex-differences in 

cognitive and intellectual outcomes across paediatric neuroinflammatory diseases, sex was 

therefore included in models as a predictor. The analysis of network associations with cognition 

without the sex covariate is detailed in the Supplementary material (Supplementary Table 1). 

Age was not controlled for as the standard WISC scores are already standardized across age-

range.  

Each linear model was defined as such in R: cognitive measure ~ graph measure + sex. This 

amounted to 12 linear models (2 frequency bands * 3 graph measures * 2 cognitive measures). 

The p-value output for individual graph measure coefficients were corrected for false discovery 

rate across all the regressions if significant. 

A Shapiro-Wilk test was used to assess the normality of the distribution of the cognitive 

variables. Outliers were defined as three standard-deviations over or under the mean. The 

assumption of linearity was checked through Residuals vs Fitted scatterplots. The assumption 

of multicollinearity was tested by computing VIF values (below 10), and the assumption of 

independence of error residuals was tested with the Durbin-Watson test (non-significant p 

value). 

Results 
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Demographics 

24 children completed the study, including 12 PAE patients and 12 typically developing 

children (Table 1). In the PAE patients, the average time from disease onset to scanning was 

7.3 years (range 3-15 years). Nine patients were diagnosed with ADEM (four with positive 

serum MOG-antibodies), and three with autoimmune encephalitis (one with NMDAR-Abs, one 

with MOG-antibodies and one antibody negative). Three participants had comorbid 

neurodevelopmental diagnoses; one patient had diagnoses of autism spectrum disorder (ASD), 

attention deficit hyperactivity disorder, dyspraxia and focal epilepsy; one had epilepsy and one 

had a diagnosis of ASD. Four patients were on anti-seizure medications. The average Modified 

Rankin score for the PAE patients was 1.0 (range 0-3). 

Neuropsychological outcomes 

One child with AE did not return for a second visit to complete cognitive assessments. Groups 

did not significantly differ in Working Memory (t(21) = 1.449; p = .162; Cohen’s d = 0.605), 

however, the PAE group had a significantly lower average score in Processing Speed (t(21) = 

2.463; p = .023; Cohen’s d = 1.028) (Figure 1). Participant scores based on WISC’s age-

normalized population categories are depicted in Figure 2. Proportions were compared binary-

wise (Extremely low to Low average | Average to Extremely High) between controls and PAE 

using Fisher’s Exact Test: no significant difference in categories was observed between groups 

in Processing speed (p = .414) or Working Memory (p = .193). 

Resting state network analysis 

Brain network differences between groups 

Resting state MEG recordings were obtained in all 12 controls and 12 children with AE. The 

MTPC comparison analysis in the delta frequency showed that modularity and global efficiency 

did not significantly differ, but the mean local efficiency of the AE group was significantly 

lower than in the Control group (Figure 3). There was no significant difference between the AE 

group and the Control group in the theta frequency (Figure 4). The group average delta networks 

are depicted in Figure 5, highlighting regions where efficiency was highest and connections 

strongest. All significantly different thresholds remained significant at p < .05 after all the p 

values (corrected across thresholds) of the MTPC analyses were corrected again for false 
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discovery rate across all twelve comparison analyses. No difference in overall functional 

connectivity was observed across groups in either frequency band. 

Network associations with cognition 

Based on the threshold at which group difference had the lowest p-value, the following graph 

measures were selected as independent variables: theta modularity at threshold 0.1; theta global 

efficiency at threshold 0.3; theta local efficiency at threshold 0.3, delta modularity at threshold 

0.22, delta global efficiency at threshold 0.18, delta local efficiency at threshold 0.14.  

One AE case was not included in the regression analyses because the neuropsychological 

assessments were not completed. This amounted to a group of 11 PAE cases, which is 

underpowered for a regression analysis with two regressors (1-β = .41 for the individual effect 

coefficient, assuming a large effect size is detected according to a post-hoc estimate in 

G*Power75). 

No outliers were detected, and the distribution of the cognitive scores was normal. No 

multicollinearity between the regressors or significant dependence of error residuals was 

observed in any model. Their relationship with regressors was linear except for 5 out of the 12 

models. Respectively:  

• Theta modularity did not have a linear relationship with processing speed index 

• Theta global efficiency, theta local efficiency, delta global efficiency and delta local 

efficiency did not have a linear relationship with working memory index 

This violation of linearity could not be solved using log, square root or square transformations 

of either dependent variables, independent variables or both. The above 5 regressions models 

were therefore not run. However, given the group difference between AE and controls in delta 

local efficiency, a non-parametric approach to exploratively test the non-linear relationships 

was taken using a Spearman correlation (Supplementary Table 2). Delta local efficiency 

showed a trend towards association with working memory index but this did not reach statistical 

significance (p=0.067). 

The overall regression model for theta modularity was not significantly associated with 

Working memory performance (F(2,8)= 3.348; p = .088; adjusted R² = 0.320). However, theta 

modularity individually predicted working memory performance but this did not survive false 

discovery rate correction (β = -.781; t(8) = -2.588, p = .032. All individual effect coefficients 
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are shown in Table 2, model 1). The regression models for theta global efficiency (F(2,8)= 

0.085; p = .919; adjusted R² = -0.224) and theta local efficiency (F(2,8)= 0.029; p = .972; 

adjusted R² = -0.241) did not significantly predict processing speed performance. The 

regression models for delta modularity did not significantly predict working memory 

performance (F(2,8)= 0.181; p = .837; adjusted R² = -0.196) or processing speed performance 

(F(2,8)= 0.049; p = .952; adjusted R² = -0.234). The regression model for delta global efficiency 

(F(2,8)= 0.166; p = .850; adjusted R² = -0.200) and delta local efficiency did not significantly 

predict processing speed performance (F(2,8)= 0.027; p = .974; adjusted R² = -0.242).  

Discussion 

This study employed advanced network analyses of MEG recordings to investigate whether 

disruption to functional connectivity was associated with cognitive outcome in paediatric 

autoimmune encephalitis. MEG resting-state connectivity in delta and theta frequency bands 

were analysed in a cohort of children with AE and a group of similarly aged typically 

developing controls. Metrics describing the organisation of the functional connectivity data 

were included in linear (and non-linear) models to predict processing speed and working 

memory as these are domains known to be affected in PAE. Local efficiency within delta 

networks was lower on average in AE compared to controls (and trended towards an association 

with working memory index). Modularity in theta networks significantly predicted lower 

working memory performance in AE. This is the first study to demonstrate feasibility, validity, 

and potential predictive validity of MEG-based functional connectivity analyses in a cohort of 

children with AE. 

In this current study, a proportion of PAE patients had an identifiable cognitive impairment in 

processing speed (33%) and working memory (16.7%), consistent with other studies5, 82-84. It is 

important to note here that the  PAE patient cohort were considered to have a “good” outcome 

on average (mRS score 0 to 24) based on the Rankin scale’s measure of disability, with only 

one child having moderate disability with a mRS of 3. Processing speed was significantly lower 

on average in the PAE cohort compared to the controls and is one of the most common 

difficulties observed in paediatric NMDARE and ADEM5, 82, 85. This suggests PAE patients 

may be more likely to struggle with responding rapidly to task-relevant information, even some 

years after disease onset. The use of resting state neuroimaging paradigms in this population is 

therefore highly relevant, being easier to undertake by these children who may struggle with 

the demands of an interactive task or paradigm whilst in the MEG.  

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 5, 2024. ; https://doi.org/10.1101/2024.04.04.24305194doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.04.24305194


   

 

16 

 

Resting-state network connectivity and topology were assessed within delta and theta frequency 

bands because of their relevance for cognition41, 42 and their previously observed alterations in 

adult AE studies (with the exception of Miao et al. reporting a MEG study on a 16 year old 

patient)27, 37, 57, 86.  

In the delta frequency, neither modularity nor global efficiency differed from controls, but local 

efficiency was significantly lower compared to controls. This suggests that while a globally 

efficient topology and modularity of the overall functional brain network is preserved, the local 

topology is altered. When considering brain regions that form local neighbourhoods and are 

functionally 'connected' (these are not necessarily local in the sense of spatial location in the 

brain), information transmission between these regions is less efficient than would typically be 

expected in the healthy brain. The delta band specificity may be linked to the abnormalities that 

are commonly reported in AE patient EEG. For example, extreme delta brush (delta activity 

with superimposed bursts of beta frequency), which can also be observed with MEG27, 3 and 

generalised rhythmic delta activity are common observations in NMDARE39. Slowing of brain 

activity (in the delta frequency range) is frequently noted in ADEM87, 88 and NMDARE89 patient 

EEG. This present study suggests slow-wave delta activity may be affected in PAE years after 

onset and could represent a good candidate biomarker for future research.  

In the theta frequency, modularity, global efficiency and local efficiency were not significantly 

different in PAE compared to controls. These measures estimate the extent to which the brain 

is efficient in transmitting information across the whole network while maintaining efficient 

and distinct local groups of brain activities.  

With regards to correlation with cognitive outcome, one graph measure – theta modularity- 

returned a significant result (but did not survive correction for multiple comparisons). Theta 

modularity was significantly associated with lower working memory performance, i.e., 

increased modularity in the theta band was associated with lower working memory 

performance. While the failure to survive correction may be explained by lack of statistical 

power, such a result, if replicated in larger studies, suggests that the more theta activity tends 

to form individual and distinct modules within the network, the harder it is for children with 

AE to keep information in mind and manipulate it. This may reflect a narrowing of a normally 

widely distributed cognitive network underlying working memory functioning. Recent research 

has shown that theta connectivity in specific edges were correlated negatively to working 

memory in paediatric temporal lobe epilepsy90 supporting our observation that alterations in 

typical patterns of theta activity may interfere with working memory function in children with 
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neurological disease. Theta modularity may represent a sensitive measure to detect differences 

in working memory in PAE5, 82. 

None of the other graph measures significantly predicted processing speed or working memory 

when a valid statistical model was used. Adult AE studies have found associations between 

fMRI connectivity in regionally defined networks with working memory and processing 

speed18, 91. Previous fMRI studies in NMDARE observed a higher connectivity to neighbouring 

nodes in the right lateral orbital gyrus compared to controls66, and lower clustering coefficient 

and local efficiency in the left insula65, which suggests differing local areas within a network 

could be identified in future studies. The present study lacked statistical power to investigate 

specific regions of interest and was focused on global and average measures of network 

efficiency. 

Limitations  

 A small sample size (a result of the COVID pandemic, condition rarity and single-centre 

recruitment), is the main study limitation. The present findings must therefore be interpreted 

with caution and cannot be extrapolated to the entire population of children with AE.  However, 

they do offer compelling preliminary findings and provide direction for future larger-scale 

studies. Additionally, this “real-world” cohort was heterogeneous in terms of subtypes of AE 

and was too small to be subdivided.  

In terms of analysis, adult atlases were used for parcellation of the MRI acquired brain surfaces, 

because no atlas specific to the age-range of the cohort was available in FreeSurfer. The selected 

atlases were not standardized for children of that age range and therefore may lack accuracy. 

However these atlases have been validated in children from 4 to 11 years92 and are routinely 

used in paediatric samples.93   There were also manual processes, such as manual edits to correct 

for MRI artefacts, or manual fiducial positioning of the MEG coordinates along the MRI scans, 

which could not be automated with the Neuromag coordinate system. Manual intervention may 

have introduced a level of bias and to mitigate this, the guidance detailed in the FreeSurfer 

online resources was followed 

(https://surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData). 

Although maxfiltering was not used on MEG resting state recordings, and no principal 

component analysis was used, an independent component analysis was deemed necessary to 

obtain a sufficiently clean data for further analysis. This involves the risk of the phase being 
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distorted as documented in some EEG simulations94, 95. Because spurious changes in phase may 

occur, so do spurious indices of phase coherence when measuring connectivity94. This was 

further demonstrated by phase distortion observed in segments that were specifically artefact-

free after an ICA run on overall EEG recordings95. Because the connectivity analysis of the 

present study relied on amplitude envelope correlation rather than phase-locking connectivity, 

it may be less affected by phase distortion (given the envelope is a broader measure of the 

signal). The extent to which such distortion impacts MEG data is unknown, and if it exists, 

there is a risk that artificial correlations between signals appeared as a result of random 

distortions. Thresholding may have however minimized the likeliness of including spurious 

connections. Signal decomposition in paediatric MEG data still appears to be the most efficient 

way to address artefacts, given manual inspection and attempts to minimize motion during the 

recordings were not sufficient to produce clean data in the present paediatric cohorts. 

Conclusion 

This study reinforces previous findings that children with AE have ongoing residual cognitive 

difficulties in the long term, with lower performance in processing speed compared to typically 

developing children, despite being classified as having a “good” medical outcome. Resting-

state MEG recordings indicated lower local efficiency within delta frequency networks of 

children with AE and that higher levels of modularity within the theta-frequency resting-state 

network may be associated with lower working memory. Future studies will benefit from larger 

sample size and newer neuroimaging approaches, for example using OPM-MEG, guided by the 

measures investigated in the present study. The preliminary data presented supports MEG as an 

appropriate and feasible technique to characterise functional dysconnectivity in paediatric 

autoimmune encephalitis. 

 

Data availability 

The data that support the findings of this study are available from the corresponding author, 

upon reasonable request. 
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Figure legends 

Figure 1 Cognitive outcome from the neuropsychological assessments across groups  

The AE group had a significantly lower average score in Processing Speed (t(21) = 2.463; *p 

= .023; Cohen’s d = 1.028). AE = Auto-immune Encephalitis; PSI = Processing Speed Index; 

WMI = Working Memory Index; measures were obtained with the WISC-V44. 

 

Figure 2 Cognitive scores categorised according to the normative WISC-V classification 

AE = Auto-immune Encephalitis. Classification categories and measures were obtained with 

the WISC-V44. 

 

Figure 3 Comparison of delta network measures(1-4Hz) between AE and Control 

groups, showing a significantly lower local efficiency in AE S.mtpc = maximum observed 

statistic; S.crit = critical value of the null max. statistic; A.crit = mean of the supra-critical 

null AUCs; A.mtpc = AUC value of supracritical cluster. Each graph depicts the network 

contrast of the AE group in reference to the Control group. The green dots are the maximum 

null t statistics of the 5000 permutations. Red dots are the observed t statistics. The dashed 

line is the critical null statistic (S.crit, top 95th percentile of the null distribution of maximum 

t statistics). The red shaded areas represent clusters of observed statistics above the critical 

value, whose area-under-the-curve (A.mtpc) is also greater than the mean areas-under-the-

curve of the supracritical permuted statistics (A.crit). This means that a lower shaded red bar 

is a significantly lower network measure compared to the Control group (at p < .05). Non-

shaded bars are non-significant. The reported effect size d is only that of the threshold with 

the largest difference. 

 

Figure 4 Comparison of theta network measures (5-8 Hz) between AE and Control 

groups, showing no significant differences S.mtpc = maximum observed statistic; S.crit = 

critical value of the null max. statistic; A.crit = mean of the supra-critical null AUCs; A.mtpc 

= AUC value of supracritical cluster. Each graph depicts the network contrast of the AE group 

in reference to the Control group. The green dots are the maximum null t statistics of the 5000 

permutations. Red dots are the observed t statistics. The dashed line is the critical null statistic 

(S.crit, top 95th percentile of the null distribution of maximum t statistics). The red shaded 

areas represent clusters of observed statistics above the critical value, whose area-under-the-

curve (A.mtpc) is also greater than the mean areas-under-the-curve of the supracritical 

permuted statistics (A.crit). This means that a lower shaded red bar is a significantly lower 

network measure compared to the Control group (at p < .05). Non-shaded bars are non-

significant. The reported effect size d is only that of the threshold with the largest difference. 

 

Figure 5 Depiction of average delta networks in Autoimmune Encephalitis and Control 

groups, highlighting regions where efficiency is the highest and connections are the 

strongest AE= Autoimmune encephalitis; C = Controls. The figures were produced using the 

NeuroMArVL web app96. 3D surfaces are based on the fsaverage FreeSurfer template. Node 

size and brightness represent the group average local efficiency per region, and edge thickness 

and brightness represent the group average strength of the connectivity (not relatively to the 

other group, on the same scale). The network was thresholded at 14%. 
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Table 1 

Comparison of children with autoimmune encephalitis and typically developing children 

Child characteristics Controls 

N=12 

AE 

N=12 

Statistics 

Test p value 

Sex (female:male) 4:8 7:5 χ² = 1.510 .219 

Age in years (mean±sd) 

IQR 

10.5 ± 3.2 

6.45 

11.23 ± 3.5 

6.99 

t(22) = -

0.503 

.620 

Age of onset (mean±sd) 

IQR 

NA 4.5 ± 3.2 

3.5 

NA NA 

mRS at scan 

IQR 

NA 0.92 ± 0.9 

1 

NA NA 

Note. AE = Autoimmune Encephalitis; mRS = modified Rankin Scale. 

 

Table 2 

Individual effects of delta and theta graph measures on Processing Speed and Working Memory Performance 

  

Predictor B 

sd 

error β t p  

Confidence 

interval 95% 

Model DV Lower Upper 

1 WMI 

Θ M -493.4 190.7 -0.78 -2.59 .032* -933.1 -53.7 

Sex -12.9 9.8 -0.40 -1.33 .221 -35.6 9.6 

2 PSI 

Θ Eglob -79.7 233.5 -0.15 -0.34 .742 -618.2 458.8 

Sex 5.9 15.3 0.18 0.39 .705 -29.2 41.2 

3 PSI 

Θ Eloc 12.2 176.9 0.03 0.07 .947 -395.9 420.3 

Sex 2.3 13.8 0.07 0.17 .871 -29.4 34.05 

4 WMI 

δ M -164.7 273.9 -0.23 -0.60 .564 -791.4 476.1 

Sex -3.1 12.2 -0.10 -0.25 .805 -31.2 25.0 

5 PSI 

δ M -62.8 293.4 -0.08 -0.21 .836 -739.3 613.7 

Sex 1.7 13.0 0.05 0.13 .900 -28.4 31.7 

6 PSI 

δ E.Glob 99.9 190.0 0.19 0.53 .613 -338.3 539.2 

Sex 0.6 12.6 0.02 0.05 .963 -28.4 29.5 

7 PSI 

δ E.Loc -5.172 171.6 -0.014 -0.030 .977 -400.0 390.6 

Sex 3.057 15.43 0.089 0.198 .848 -32.53 38.64 

Note. DV = Dependant variable. WMI = Working Memory Index. PSI = Processing Speed Index. M = Modularity. 

Eglob = Global efficiency. Eloc = Local efficiency. Cognitive measures were the composite scores from the WISC-

V; * P < .05 (fdr corrected p = 0.224)
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Figure 1 Cognitive outcomes from the neuropsychological assessments across groups  

The AE group had a significantly lower average score in Processing Speed (t(21) = 2.463; *p 

= .023; Cohen’s d = 1.028); measures were obtained with the WISC-V44. AE = Auto-immune 

Encephalitis; PSI = Processing Speed Index; WMI = Working Memory Index;  

 

 

 

 

 
 

Figure 2 Cognitive scores categorised according to the normative WISC-V classification 

AE = Auto-immune Encephalitis. Classification categories and measures were obtained from 

the WISC-V37. 
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Figure 3 Comparison of delta network measures (1-4Hz) between AE and Control 

groups    

 Each graph depicts the network contrast of the AE group in reference to the Control group. 

The green dots are the maximum null t statistics of the 5000 permutations. Red dots are the 

observed t statistics. The dashed line is the critical null statistic (S.crit, top 95th percentile of 

the null distribution of maximum t statistics). The red shaded areas represent clusters of 

observed statistics above the critical value, whose area-under-the-curve (A.mtpc) is also greater 

than the mean areas-under-the-curve of the supracritical permuted statistics (A.crit). This means 

that a lower shaded red bar is a significantly lower network measure compared to the Control 

group (at p < .05). Non-shaded bars are non-significant. The reported effect size d is only that 

of the threshold with the largest difference. S.mtpc = maximum observed statistic; S.crit = 

critical value of the null max. statistic; A.crit = mean of the supra-critical null AUCs; A.mtpc 

= AUC value of supracritical cluster.  
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Figure 4  Comparison of theta network measures (5-8 Hz) between AE and Control groups 

Each graph depicts the network contrast of the AE group in reference to the Control group. The 

green dots are the maximum null t statistics of the 5000 permutations. Red dots are the observed 

t statistics. The dashed line is the critical null statistic (S.crit, top 95th percentile of the null 

distribution of maximum t statistics). The red shaded areas represent clusters of observed 

statistics above the critical value, whose area-under-the-curve (A.mtpc) is also greater than the 

mean areas-under-the-curve of the supracritical permuted statistics (A.crit). This means that a 

lower shaded red bar is a significantly lower network measure compared to the Control group 

(at p < .05). Non-shaded bars are non-significant. The reported effect size d is only that of the 

threshold with the largest difference. S.mtpc = maximum observed statistic; S.crit = critical 

value of the null max. statistic; A.crit = mean of the supra-critical null AUCs; A.mtpc = AUC 

value of supracritical cluster.  
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Figure 5 Average delta networks in Autoimmune Encephalitis and Control groups   The 

figures were produced using the NeuroMArVL web app69. 3D surfaces are based on the 

fsaverage FreeSurfer template. Node size and brightness  represent the group average local 

efficiency per region, and edge thickness and brightness represent the group average strength 

of the  connectivity (not relatively to the other group, on the same scale). The network was 

thresholded at 14%. AE= Autoimmune encephalitis; C = Controls.  
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Supplementary material 

Methods 

Supplementary Figure 1 Delta connectivity matrix estimated in a participant AEC = 

Amplitude Envelope Correlation. The figure was produced with Brainstorm44. The matrix 

depicts the level of connectivity between each of the 68 brain regions parcellated with the 

Desikan-Killiany atlas. 
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Results 

Network associations with cognition without the sex covariate 

To investigate the effect of the graph metrics on the WISC measures on their own, separate 

models were also tested excluding sex as a control variable (Supplementary Table 1). The 

regression model for theta modularity was not significantly associated with Working memory 

performance (F(1,9)= 4.552; p = .062; adjusted R² = 0.262). The regression models for theta 

global efficiency (F(1,9)= 0.017; p = .898; adjusted R² = -0.109) and theta local efficiency 

(F(1,9)= 0.033; p = .861; adjusted R² = -0.107) did not significantly predict processing speed 

performance. The regression models for delta modularity did not significantly predict working 

memory performance (F(1,9)= 0.332; p = . 579; adjusted R² = -0.071) or processing speed 

performance (F(1,9)= 0.092; p = .769; adjusted R² = -0.100). The regression model for delta 

global efficiency (F(1,9)= 0.370; p = .558; adjusted R² = -0.067) and delta local efficiency did 

not significantly predict processing speed performance (F(1,9)= 0.016; p = .901; adjusted R² = 

-0.109).  

 

Supplementary Table 1  

Individual effects of delta and theta graph measures on Processing Speed and Working Memory Performance 

without sex as a control variable  

PSI processing speed index WMI working memory index 

 

 

 

    

Predictor  B  sd error  β  t  p   

Confidence interval 95%  

Model  DV  Lower  Upper  

1 WMI Θ M -366.36 171.71 -0.579 -2.134 .062 -754.80 22.08 

2 PSI Θ Eglob -22.82 174.43 -0.043 -0.131 .898 -417.40 371.75 

3 PSI Θ Eloc 26.55 146.40 0.060 0.181 .861 -304.62 357.72 

4 WMI δ M -137.85 239.22 -0.189 -0.576 .579 -678.99 403.29 

5 PSI δ M -77.48 255.42     -0.101 -0.303   .769 -655.28 500.33 

6 PSI δ E.Glob 102.91      169.20 0.199 0.608     .558 -279.86 485.67 

7 PSI δ E.Loc 16.06 126.68 0.042 0.127 .902 -270.52 302.63 
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Supplementary Table 2 

Exploratory analysis of relationships between predictor variables and dependent variables that could not be tested 

in the regression, using Spearman correlation (linear relationship not assumed). 

Relationship S p-value rho 

Theta modularity + PSI 263.1 0.563 -0.196 

Theta global efficiency + WMI 234.1 0.851 -0.064 

Theta local efficiency + WMI 195.7 0.747 0.110 

Delta global efficiency + WMI 218 0.979 0.009 

Delta local efficiency + WMI 94.6 0.067 0.570 

PSI processing speed index WMI working memory index 
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