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Abstract 

 

Background: Large language models (LLMs) have shown promising performance in various healthcare domains, 

but their effectiveness in identifying specific clinical conditions in real medical records is less explored. This 

study evaluates LLMs for detecting signs of cognitive decline in real electronic health record (EHR) clinical notes, 

comparing their error profiles with traditional models. The insights gained will inform strategies for performance 

enhancement. 

 

Methods: This study, conducted at Mass General Brigham in Boston, MA, analyzed clinical notes from the four 

years prior to a 2019 diagnosis of mild cognitive impairment in patients aged 50 and older. We used a randomly 

annotated sample of 4,949 note sections, filtered with keywords related to cognitive functions, for model 

development. For testing, a random annotated sample of 1,996 note sections without keyword filtering was 

utilized. We developed prompts for two LLMs, Llama 2 and GPT-4, on HIPAA-compliant cloud-computing 

platforms using multiple approaches (e.g., both hard and soft prompting and error analysis-based instructions) to 

select the optimal LLM-based method. Baseline models included a hierarchical attention-based neural network 

and XGBoost. Subsequently, we constructed an ensemble of the three models using a majority vote approach.  

 

Results: GPT-4 demonstrated superior accuracy and efficiency compared to Llama 2, but did not outperform 

traditional models. The ensemble model outperformed the individual models, achieving a precision of 90.3%, a 

recall of 94.2%, and an F1-score of 92.2%. Notably, the ensemble model showed a significant improvement in 

precision, increasing from a range of 70%-79% to above 90%, compared to the best-performing single model. 

Error analysis revealed that 63 samples were incorrectly predicted by at least one model; however, only 2 cases 

(3.2%) were mutual errors across all models, indicating diverse error profiles among them. 

 

Conclusions: LLMs and traditional machine learning models trained using local EHR data exhibited diverse error 

profiles. The ensemble of these models was found to be complementary, enhancing diagnostic performance. 

Future research should investigate integrating LLMs with smaller, localized models and incorporating medical 

data and domain knowledge to enhance performance on specific tasks. 

 

Keywords: Cognitive Dysfunction, Natural Language Processing, Neurobehavioral Manifestations, Electronic 

Health Records, Early Diagnosis, Alzheimer Disease, Dementia 

  

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.04.03.24305298doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.03.24305298
http://creativecommons.org/licenses/by/4.0/


3 
 

1. Introduction 

 

Large Language Models (LLMs), neural models with billions of parameters trained on extensive, diverse text 

corpora, have exhibited remarkable capabilities in clinical language understanding tasks.1–5 They offer distinct 

advantages over traditional rule-based and machine learning approaches, which are often trained from scratch on 

narrower clinical datasets.6–8 Previous studies showed that LLMs achieved impressive performance in a variety 

of clinical natural language processing (NLP) tasks such as question answering, named entity recognition, and 

information extraction1,2. However, the effectiveness of LLMs in identifying specific clinical conditions within 

real medical records remains less explored. Their lack of explicit training on specific medical records may affect 

their accuracy.9 This study aims to evaluate LLMs’ performance in detecting signs of cognitive decline within 

clinical notes. We use this as a use case to explore their effectiveness and compare their error profiles with those 

of traditional models trained on a domain-specific corpus. The insights gained from this study will inform 

strategies for further enhancement. 

 

Alzheimer's disease (AD) and related dementias (ADRD) affect millions of Americans,10 significantly reducing 

patient quality of life and imposing substantial emotional and financial burdens,11 with care costs projected to 

reach $1.1 trillion by 2050.12 Existing treatments offer only temporary relief,13 underscoring the urgent need for 

breakthroughs in AD/ADRD therapy.14 Timely detection of cognitive decline signs can facilitate early 

interventions and clinical trial involvement for AD/ADRD.15–18 Electronic health records (EHRs), particularly 

clinical notes, are critical resources for identifying early indicators of disease, yet traditional diagnostic tools and 

variability in screening practices complicate detection.19–22 NLP offers a promising solution by efficiently 

analyzing large datasets and identifying subtle signs of decline not easily captured in traditional diagnostics.23 

Although studies have been conducted to identify cognitive decline using NLP,7,24–26 the effectiveness of LLMs 

specifically in identifying cognitive decline through EHRs remains under-explored.  

 

This research utilizes LLMs within HIPAA-compliant computing environments for a pioneering exploration of 

EHR note analysis for cognitive decline detection. It evaluates the effectiveness and interpretability of LLMs 

compared to conventional machine learning methods and examines the synergy between LLMs and machine 

learning to enhance diagnostic accuracy. To the best of our knowledge, this initiative is the first of its kind to 

employ LLMs in this capacity, representing a significant innovation and contribution to the field. 
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2. Methods 

 

2.1. Setting and Datasets  

 

This study was conducted at Mass General Brigham (MGB), a large integrated healthcare system in 

Massachusetts, which has established secure, HIPAA-compliant cloud environments for deploying and evaluating 

LLMs with actual EHR data. Two LLMs were tested: the proprietary GPT-41 via Microsoft Azure OpenAI 

Service API, and the open-source Llama 2 (13B)2 via an Amazon Elastic Compute Cloud (EC2) instance. Details 

on the cloud environments are provided in Supplementary Material Section 1 and Table S1. 

 

We utilized the same definition of cognitive decline and annotated datasets from a previous study.19 Cognitive 

decline encompasses various progressive stages, from subjective cognitive decline (SCD) to mild cognitive 

impairment (MCI) to dementia. It can be identified through mentions of signs, symptoms, diagnostic evaluations, 

cognitive assessments, or treatment details in clinical notes. Transient cases, such as memory loss due to 

medication, were labeled as negative for cognitive decline.  

 

The annotated datasets comprised sections of clinical notes from the four years prior to the initial diagnosis of 

mild cognitive impairment (MCI, ICD-10-CM code G31.84) in 2019, for patients aged 50 years or older.19 Due 

to the low positive case rate across the sections, we used a list of expert-curated keywords (Table 1) to screen for 

sections likely indicating cognitive decline. Table 2 shows that Dataset I, consisting of 4,949 keyword-filtered 

sections, was used to train two baseline models. For prompt development and LLM selection, 200 random samples 

from Dataset I (Dataset I-S) were used for performance assessment, while the remaining samples (Dataset I-A) 

were utilized for sample selection in prompt augmentation. Dataset II, which includes 1,996 random sections not 

subjected to keyword filtering, served for final testing. 

  

The study received approval from the MGB Institutional Review Board, with a waiver of informed consent for 

study participants due to the secondary use of EHR data. 

 

2.2. LLMs and Prompting Methods 

 

Figure 1 (areas A and B) illustrates the two-step prompt engineering process: LLM selection and prompt 

improvement. Following previous studies, we divided the prompt into sections.27 Supplementary Figure S1 

shows the prompt structure, which includes a required task description and optional sections for prompt 

augmentation, error analysis-based instructions, and additional task guidance. We were cautious about the 

potential impact of longer prompts, which might overwhelm the model, negatively affecting performance, 

response speed, and cost efficiency.28–30. Therefore, as an initial step, we evaluated the performance of the two 

LLMs using manual template engineering and a smaller sample size. This approach enabled us to select the 

superior model and its corresponding prompt template for further analysis.31 The selection criterion was 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑡𝑢𝑟𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑎𝑙𝑙 𝑐𝑎𝑠𝑒𝑠
 , based on Dataset I-S. Using this metric and guided by the accuracy from 

Dataset I-S, we explored whether common prompt augmentation methods (both hard and soft prompting)31 and 

error analysis-based instructions32 could improve model performance. To ensure control over randomness and 

creativity, we adjusted the LLM’s temperature hyperparameter to 0, providing a deterministic solution.32 

 

2.2.1. LLMs Comparison and Selection 

 

We utilized an intuitive manual template engineering approach to fine-tune the task description and additional 

task guidance for each LLM.31 During the iterative refinement process, we focused on the following task 

descriptions for each LLM: 1) identifying evidence of cognitive decline in clinical notes; 2) displaying which 

keywords in the clinical notes informed its judgment on the assigned task; and 3) requiring LLM responses in 
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JSON format to facilitate straightforward parsing. Furthermore, we explored the possibility of adding additional 

task guidance to assist the LLM in its reasoning and enhance performance. Specifically, we considered two 

approaches: 1) requesting the LLM to provide reasoning for its judgments, and 2) incorporating our definition of 

cognitive decline directly into the prompt. 

 

Manual Template Engineering: We fed each prompt to GPT-4 and Llama 2 separately. The responses from 

these LLM were classified into three categories (Supplementary Table S2): 1) effective and parseable: the LLM’s 

response provides answers to both questions—whether cognitive decline was identified and which keywords were 

used for the decision—using a standard JSON format; 2) effective but not parseable: the LLM’s response answers 

both questions, but does not adhere to the standard JSON format; 3) not effective: the LLM’s response fails to 

answer either of the two questions. We assessed model effectiveness using 10 random samples from Dataset I. 

Our observations indicated that this sample size was sufficient for a meaningful comparison. If the effective 

response rate did not reach 100%, we manually adjusted the prompt template by paraphrasing or modifying 

optional content. This tuning process continued until no further improvement in the effective response rate was 

achieved after three consecutive attempts. Finally, we selected the prompt template that yielded the highest 

effective response rate for GPT-4 and Llama 2 separately. 

 

Performance Comparison with Manually Crafted Templates: To select the optimal LLM, we compared the 

accuracy of GPT-4 and Llama 2 on Dataset I-S by providing the LLMs with manually crafted task descriptions 

and guidance. 

 

2.2.2. Prompt Improvement 

 

Prompt Augmentation: We explored prompt augmentation to determine if including five examples (five-shot 

prompting) enhances performance. We adopted five-shot prompting due to the maximum token limitation of 

GPT-4. Since the selection of examples for few-shot prompting can significantly affect model performance31,33, 

we tested four different strategies, including both hard and soft prompting. To select the best strategy, we chose 

examples from Dataset I-A and evaluated model performance on Dataset I-S. The four example selection 

strategies were: 1) Hard Prompting - Random Selection: This strategy involves randomly selecting five samples. 

2) Hard Prompting - Targeted Selection: We selected examples where the model had previously performed poorly, 

aiming to directly address its weaknesses. 3) Hard Prompting - K-Means Clustering-Aided Selection: This 

strategy involves selecting five samples from that are the centers of five clusters generated by k-means clustering. 

We utilized OpenAI’s embedding model, text-embedding-ada-00233, as features to ensure the examples are 

diverse and representative, which could be crucial for performance improvement. 4) Soft Prompting - Dynamic 

Selection: For each case in Dataset I-S, we automatically identified the top five most similar samples from Dataset 

I-A using OpenAI’s embedding model, text-embedding-ada-002,33 based on the k-nearest-neighbors algorithm. 

This process enabled us to provide the LLM with five samples that most closely resemble the current case, thereby 

guiding its decision-making. 

 

Error Analysis-Based Instructions: We tested whether incorporating error analysis-based instruction into the 

prompt could improve performance.32 To achieve this, we first conducted an error analysis of the LLM on Dataset 

I-S. Subsequently, we added a paragraph describing common errors that the LLM made and instructed it to pay 

attention to those errors when generating its response. 
 

2.3. Baseline Machine Learning Models 

 

We compared the performance of the LLM with two baseline machine learning models developed from our 

previous study: XGBoost34 and a four-layer attention-based deep neural network (DNN),7,35 which incorporated 

elements of a convolutional neural network, a bidirectional long-short term memory (LSTM) network, and an 

 . CC-BY 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted May 6, 2024. ; https://doi.org/10.1101/2024.04.03.24305298doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.03.24305298
http://creativecommons.org/licenses/by/4.0/


6 
 

attention model. These two models were the top performers compared to other traditional models in identifying 

cognitive decline in clinical notes.19 

 

2.4.Ensemble Model 

 

Finally, we investigated whether an ensemble model that combines predictions from both the LLM and traditional 

machine learning models could achieve better performance. The ensemble learning, which involves combining 

several different predictions from various models to formulate the final prediction, has proven to be an effective 

approach for enhancing performance.36,37 To create the ensemble model, we determined the label by taking the 

majority vote from the LLM, the attention-based DNN, and XGBoost. The high diversity of the models included 

may enable the ensemble to correct errors made by individual models.38 

 

2.5.Model Evaluation 

 

We evaluated and compared the selected LLM, traditional models and the ensemble model on Dataset II using 

standard metrics: 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒
, 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒+𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒
, and 𝑓1 − 𝑠𝑐𝑜𝑟𝑒 =

2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
. We used 0.5 as the cutoff point for calculating precision, recall, and F1 score for the baseline 

models. 

 

2.6.Interpretation 

 

Regarding interpretation, we listed keywords from the LLM's output that appeared more frequently than the 

average appearance time plus two standard deviations. We also identified keywords whose deep learning attention 

weights exceeded the mean weights by more than two standard deviations within individual sections, and 

keywords with an XGBoost information gain higher than the average value plus two standard deviations. 

Additionally, we included expert-curated keywords developed in our previous study as a reference.19 

 

2.7.Error Analysis 

 

We conducted two levels of error analyses. The first analysis assessed the selected LLM using various prompting 

strategies, including zero-shot, the best few-shot method, and the prompt with error analysis-based instructions. 

The second analysis evaluated the best-performing LLM with its optimal prompt, alongside the attention-based 

DNN, and XGBoost. Errors made by each model were analyzed and discussed by two biomedical informaticians 

and a physician. We quantified unique and overlapping errors made by each model using a Venn diagram. 
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3. Results 

 

Dataset characteristics are illustrated in Table 2. The average length of the Dataset I sections was 850 characters 

(range: 26-9393), and that of the Dataset II sections was 464 characters (range: 26-14740). Dataset I contained 

29.4% positive cases and Dataset II contained 3.5% positive cases. 

 

3.1.LLM Selection and Prompt Selection 

 

The effective response rate varied for each LLM using five different prompt templates (Figure 2). For GPT-4, 

Template 1, which includes a task description section and additional task guidance section as shown in 

Supplementary Figure S1, achieved a 100% effective response rate. Llama achieved its highest effectiveness at 

80% when using Template 2, which only includes the task description section. GPT-4 and Llama 2, with their 

most effective prompts, achieved accuracies of 86.5% and 52.0% respectively on Dataset I-S. We therefore chose 

GPT-4 for subsequent analysis. 

 

Prompt improvement result on Dataset I-S shows that the best prompt augmentation approach (Template 6) was 

soft prompting – dynamic five-shot, which had an 85% accuracy. However, adding error analysis-based 

instructions (Template 7) surpassed this, reaching an accuracy of 93%. Therefore, we decided to adopt error 

analysis-based instructions as our prompting strategy for subsequent analyses. 

 

3.2.Performance Evaluation 

 

GPT-4 achieved a precision of 71.6%, a recall of 91.3%, and an F1 score of 80.3%. Optimized hyperparameters 

for attention-based DNN and XGBoost are illustrated in Supplementary Table S8. Attention-based DNN 

achieved a precision of 77.1%, recall of 92.8, and F1 score of 84.2%. XGBoost model achieved a precision of 

79.0%, recall of 92.8%, and F1 score of 85.3%. Notably, the ensemble model significantly improved overall 

performance, achieving a precision of 90.3%, a recall of 94.2%, and an F1 score of 92.2%. 

 

3.3.Interpretation   

 

Table 1 contains keywords identified through expert curation and exported by GPT-4, the attention-based DNN, 

and XGBoost. These keywords encompass a range of topics, including memory-related issues such as recall and 

forgetfulness, cognitive impairments, and dementia, with terms like "dementia" and "Alzheimer's." They also 

cover evaluation and assessment methods, referencing tools like the MoCA and MMSE. Compared to traditional 

AI models and expert-selected keywords, GPT-4 highlighted specific treatment options, notably "Aricept" and 

"donepezil," (Supplementary Table S9) which are important in managing dementia and Alzheimer's disease. 

Furthermore, GPT-4 explicitly identified specific diagnoses or conditions more than other models, with terms 

such as "mild neurocognitive disorder," "major neurocognitive disorder," and "vascular dementia." Additionally, 

GPT-4 exported keywords regarding the emotional and psychological effects of cognitive disorders, such as 

"anxiety," thus addressing aspects sometimes overlooked by other models. 

 

3.4.Error Analysis 

 

As illustrated in Supplementary Figure S2, when using different prompting strategies with GPT-4, some errors 

may be mitigated, while new ones could emerge that were not previously observed.  Notably, adding error 

analysis-based instructions to the prompt yielded the best performance, with only 31 wrongly predicted cases in 

Dataset II. In contrast, the error profiles of GPT-4, attention-based DNN, and XGBoost exhibited much higher 

diversity (Figure 3). We found that 63 cases were wrongly predicted by one or more models. GPT-4 accounted 

for 31 incorrect predictions, the attention-based DNN made 23 wrong predictions, and XGBoost was responsible 
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for 22 incorrect predictions. However, only 2 (3.2%) cases were wrongly predicted by all models. Four errors 

were common between GPT-4 and the attention-based DNN, three were common between GPT-4 and XGBoost, 

and eight were shared between the attention-based DNN and XGBoost. 

All models were susceptible to misinterpreting signs or symptoms as indicative of unrelated clinical conditions. 

GPT-4 excelled in handling ambiguous terms and interpreting nuanced information, a frequent challenge for 

traditional AI. Unlike traditional AI, GPT-4 was not confused by negations and contextual details. However, it 

could sometimes overinterpret nuanced information or be overly conservative, failing to recognize cognitive 

decline despite strong evidence. It might also overlook underlying causes of clinical events like treatments or 

visits related to cognitive decline. Both GPT-4 and attention-based DNNs occasionally misread clinical testing 

results. 
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4. Discussion 

 

Recently, LLMs have demonstrated remarkable performance on various NLP tasks, yet their ability to analyze 

clinical notes from EHR data remains underexplored, partly due to data privacy concerns. In this study, we 

established HIPAA-compliant secure environments for LLMs and used cognitive decline identification as a use 

case to test LLMs' capabilities in clinical note classification, thereby enhancing diagnostic tasks. Our 

contributions are threefold: 1) This study is the first to set up a secure cloud environment for GPT-4 and tested 

its ability to identify cognitive decline from clinical notes in EHR data; 2) We introduced a novel method for 

implementing NLP models for cognitive decline identification, achieving state-of-the-art performance with a 

significant lead over existing methods; 3) We discovered that although existing LLMs may not outperform 

traditional AI methods trained on a local medical dataset, their error profile differs distinctly, underscoring the 

significant potential of combining LLM with traditional AI models. 

 

Our research demonstrated that prompt engineering using error analysis-based instructions significantly enhanced 

performance compared to zero-shot and prompt augmentation approaches, as it directly targeted the LLM's 

weaknesses. Nevertheless, the LLM did not surpass traditional AI in identifying cognitive decline, primarily 

because it was not specifically trained for this task.9,39 While the LLM can generate a range of responses, it is 

prone to producing plausible but incorrect hallucinations. Nonetheless, it is valuable for its ability to operate 

without task-specific training, thereby complementing traditional AI, which requires specific training but often 

does not suffer from hallucinations.40 In terms of interpretation, the LLM identified keywords overlooked by 

experts and traditional AI models, such as medications related to cognitive decline. Error analysis revealed that 

the LLM demonstrated superior handling of ambiguous or contextually complex information due to its 

transformer architecture.3,4 However, LLMs misinterpreted or overlooked certain domain-specific medical tests 

and treatments. Future research should explore the integration of the LLM with smaller, localized models and 

knowledge bases to enhance performance on specific tasks.  

 

Although our study has many strengths—for instance, it is the first to employ LLMs on unstructured EHR data 

for detecting cognitive decline—the results should be considered in light of several limitations. The LLMs used 

may not represent the most recent advancements (e.g., the recently released Llama 3 model) due to the rapid 

evolution of LLM technologies. While utilizing LLMs with a larger number of parameters (e.g., Llama 2-70 

billion) may lead to better performance, this improvement comes with trade-offs, including higher computational 

demands and greater memory needs, posing challenges due to resource constraints. Additionally, our data are 

record-based and not patient-based (i.e., longitudinal), thus, the developed model may struggle to distinguish 

between reversible and progressive cognitive decline, and it remains unclear if patients recovered later based 

solely on a note from one time point. Therefore, developing an LLM-based early warning system for cognitive 

decline using longitudinal data would be a valuable direction for future research. 
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5. Conclusion 

 

This study is among the first to utilize LLM within HIPAA-compliant cloud environments, leveraging real EHR 

notes for detecting cognitive decline. Our findings indicate that LLMs and traditional models exhibit diverse error 

profiles. The ensemble of LLMs and locally trained machine learning models on EHR data was found to be 

complementary, significantly enhancing performance and improving diagnostic accuracy. Future research could 

investigate methods for incorporating domain-specific medical knowledge and data to enhance the capabilities of 

LLMs in healthcare-related tasks. 
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Tables 

 

Table 1. Keywords Contributing to the Identification of Positive Cognitive Decline Cases, Curated by 

Domain Experts and Extracted from AI Models.*  

Model Keywords 

Expert Curated Memory, agitat-, alter, alzheimer, attention, cognit-, confus-, decline, delirium, deme

ntia, difficult, disorientation, drive, evaluat-, exam, forget-, function, impairment, los

s, mental, mild, mmse, moca, montreal, mood, neuro-, orientation, psych-, question, 

recall, remember, score, sleep, speech, word, worse 

XGBoost Cognitive, dementia, forgetful, memory 

Attention-Based DNN BNT, FTD, HOH, LBD, MCI, MMSE, Memory, MoCA, abstraction, aforementioned, 

age, alzheimer, alzheimers, amnestic, amyloid, aphasa, attention, attentional, 

auditory, behavioral, category, challenges, clock, cog, cognition, cognitive, dementia, 

comprehension, correctly, cube, decline, deficit, deficits, delay, delayed, 

developmental, died, difficulties, encoding, errors, executive, expressive, falls, 

finding, fluency, forgetful, forgetfulness, forgets, forgetting, frailty, functional, 

functioning, global, hearing, immediate, impaired, impairment, insight, items, 

language, lapses, learning, linguistic, moderately, multidomain, names, naming, 

neurocognitive, neurodegenerative, perseveration, personality, phonemic, processing, 

recall, recalling, remember, remembering, repetition, retrieval, semantic, solving, 

span, spatial, speech, trails, visual, visuospatial, word, words, years 

GPT4-8K Altered mental status, Aricept, Impaired, MCI, MOCA, altered mental status, anxiety, 

attention, battery of neuropsychological tests, cognition, cognitive changes, cognitive 

concerns, cognitive decline, cognitive deficits, cognitive difficulties, cognitive 

impairment, cognitive issues, cognitive symptoms, cognitive-linguistic therapy, 

concerns, confused, confusion, current level of cognitive functioning, deficits, 

delayed recall, delirium, dementia, donepezil, executive function, executive 

functioning, forgetful, forgetfulness, language, major neurocognitive disorder, 

memory, memory complaints, memory concerns, memory difficulties, memory 

impairment, memory issues, memory loss, memory problems, mild cognitive 

impairment, mild dementia, mild neurocognitive disorder, neurocognitive disorder, 

neurocognitive status, neurodegenerative process, neuropsych testing, 

neuropsychological evaluation, neuropsychological testing, neuropsychological tests, 

poor safety awareness, problem solving, processing speed, short term memory loss, 

vascular dementia, verbal fluency, weakness, word finding difficulties, word-finding 

difficulties, working memory 

*The table lists keywords that had a high frequency of appearance in the LLM's output (i.e., the number of 

appearances is higher than the average appearance time plus two standard deviations); keywords whose 

attention weights (from the attention-based DNN) exceeded the mean weights plus two standard deviations 

within individual sections; and keywords with an information gain (XGBoost) higher than the average value 

plus two standard deviations. We found that keywords identified by AI models could significantly enrich the 

expert-curated keyword set. Notably, only GPT-4 identified keywords related to medications for cognitive 

decline. 
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Table 2. Dataset Characteristics. 

Dataset Description Mean (range), 

characters 

Positive 

Rate 

Dataset I 4,949 note sections filtered with cognitive decline-related 

keywords 

850 (26-9323) 29.4% 

Dataset I-A A random subset of Dataset I, containing 4,749 samples 848.8 (26-9323) 29.6% 

Dataset I-S A random subset of Dataset I, comprising 200 samples 

that do not overlap with Dataset I-A 

870.7 (34-8353) 23.5% 

Dataset II 1,996 random note sections without keyword filtering 464 (26-14740) 3.5% 
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Figures 

 

 

  

Figure 1. Study Design Overview. 

The workflow consists of five parts: A) LLM Selection: We fed prompts, which contain task descriptions and 

may also include additional task guidance as illustrated in Supplementary Figure S1, to GPT-4 and Llama 2 

separately. We used 10 random samples from Dataset I to select the most suitable template for each LLM. During 

this process, if the effective response rate (i.e., the rate at which the response answered the questions in the prompt) 

was not 100%, we manually adjusted the template for each model. If the effective response rate did not improve 

after three consecutive attempts, we ceased tuning and used the template that led to the highest effective response 

rate. We then selected the best LLM based on their accuracy on Dataset I-S. B) Prompt Improvement: This step 

includes two sub-steps: prompt augmentation and adding error analysis-based instructions. During prompt 

augmentation, we tested whether five-shot prompting could improve accuracy. We then assessed whether 

incorporating instructions following an error analysis of the LLM’s output on Dataset I-S could enhance accuracy. 

C) Model Evaluation: We evaluated the selected LLM and two traditional machine learning models. We also 

tested the performance of an ensemble model, which took the majority vote of the three models as the predictive 

label. D) Interpretation and Error Analysis: For interpretation, we examined and compared keywords used by 

each model for prediction, in conjunction with those curated by domain experts. Lastly, we analyzed and 

compared errors made by each model. 
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Figure 2. Evaluation Results Summary. 

During the prompt template selection, Template 1 was selected for the GPT-4 model due to a 100% effective 

response rate; Template 2 was selected for the Llama 2 model as the effective response rate (80%) did not improve 

after three tuning attempts. Subsequently, we compared the two combinations with 200 samples from Dataset I-

S and found that GPT-4 and Template 1 combination achieved significantly better accuracy (86.0%). We also 

discovered that five-shot prompting did not lead to improved performance; however, adding error analysis-based 

instructions (i.e., GPT-4 and Template 7 combination) increased the accuracy to 93% on Dataset I-S. 

Consequently, we opted to use Template 7 as the prompt template and GPT-4 as the LLM. In tests, we evaluated 

the performance of the XGBoost, the attention-based DNN, and the LLM. We found that XGBoost performed 

better: precision – 79.01%, recall – 92.75%, and F1 score – 85.33%. Notably, after assembling the three models 

using a majority vote, the ensemble model demonstrated significantly improved performance: precision – 90.11% 

(an 11.1% improvement), recall – 94.20% (a 1.45% improvement), and F1 score – 92.20% (a 6.87% 

improvement). 
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Figure 3. Venn Diagram Highlighting Unique and Overlapping Mistakes Made by Different 

Models. 

 

√: correct prediction; X: incorrect prediction. Some important findings include: 1) All models 

were susceptible to misinterpreting signs or symptoms as indicative of unrelated clinical 

conditions. 2) GPT-4 excelled in handling ambiguous terms and interpreting nuanced information, 

challenges that traditional AI frequently encounters. 3) Unlike traditional models, GPT-4 handles 

negations and contextual details more efficiently. 4) However, GPT-4 could sometimes 

overinterpret nuanced information or be overly conservative, failing to recognize whether a patient 

has cognitive decline despite strong evidence. 5) GPT-4 might also overlook certain medical 

domain knowledge, such as treatments or visits related to cognitive decline. 6) Both GPT-4 and 

attention-based DNNs occasionally misread clinical testing results, highlighting an opportunity 

for further improvement. 
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