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 2 

Abstract 23 

 24 

We address an unmet challenge in Parkinson’s disease: the lack of biomarkers to identify the 25 
right patients for the right therapy, which is a main reason clinical trials for disease modifying 26 
treatments have all failed. The gut microbiome is a new target for treatment of Parkinson’s 27 
disease, with potential to halt disease progression. Our aim was to develop microbiome-based 28 
biomarkers to guide patient selection for microbiome-based clinical trials. We used microbial 29 
taxa that have been robustly associated with Parkinson’s disease across studies and at high 30 
significance as dysbiotic features of Parkinson’s disease.  Using individual-level taxonomic 31 
relative abundance data, we classified patients according to their dysbiotic features, effectively 32 
defining microbiome-based subtypes of PD.  We show that not all persons with Parkinson’s 33 
disease have a dysbiotic microbiome, and not all dysbiotic Parkinson’s disease microbiomes 34 
have the same features. Grounded in robust and reproducible data from differential abundance 35 
studies, we propose an intuitive and easily modifiable method to identify the optimal candidates 36 
for microbiome-based clinical trials, and subsequently, for treatments that are personalized for 37 
each individual’s dysbiotic features. We demonstrate the method for Parkinson’s disease. The 38 
concept, and the method, is generalizable for any disease with a microbiome component. 39 
 40 
 41 

Introduction 42 

 43 
Parkinson’s disease (PD) is the fastest growing neurologic disease in the world 1. PD is a 44 

progressively debilitating disease 2. The earliest manifestations are often constipation, sleep 45 
disorder, and hyposmia, leading to the cardinal movement disorders, and as disease 46 
progresses, most patients develop psychosis and dementia. Treatments are symptomatic. 47 
There have been many clinical trials for disease modifying treatment aimed at stopping disease 48 
progression, and all have failed (clinicaltrials.gov). PD is a highly heterogenous disease. One 49 
treatment will not work for all patients. Biomarkers to guide selection of the right patients for the 50 
right drug has been a high-priority, unmet need.  51 
 52 
It has long been known that constipation, inflammation in the gut, and permeable gut membrane 53 
are common in PD and precede motor signs 2. Recent studies suggest some cases of PD start 54 
in the gut and spread to the brain, and in rodent models, PD pathologies are observed to spread 55 
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from gut to brain 3-7. The gut origin raised the possibility that the gut microbiome could be 56 
involved in the brain-gut-axis pathology of PD. A healthy gut microbiome controls metabolism of 57 
drugs, toxicants and food, synthesis of vitamins and neurotransmitters, keeps the lining of the 58 
gut intact, protects against pathogens, maintains the proper functioning of the immune and 59 
nervous systems, and modulates brain-gut communication 8.  60 
 61 
The gut microbiome is severely dysbiotic in PD, with characteristic features that are consistently 62 
observed in large-scale high-resolution shotgun metagenomic studies and meta-analysis of 63 
lower-resolution 16S studies 9-13. Differential abundance analyses, conducted in different 64 
geographic locations and with different methods, have converged on species and pathways that 65 
are commonly dysbiotic in PD, among them are the following which we chose for the present 66 
study: reduced levels of bacteria that degrade fiber and elevated levels of Bifidobacterium, 67 
Lactobacillus, opportunistic pathogens (e.g., Porphyromonas), Escherichia coli, and certain 68 
species of Streptococcus and Actinomyces 9-13. Functional analyses of these data suggest 69 
dysbiotic features of PD microbiome are relevant to multiple PD mechanisms, including 70 
increased abundance of pathogens and immunogens, decreased production of neuroactive 71 
molecules (dopamine, serotonin, glutamate and GABA), reduced capacity to degrade plant-72 
based fiber which leads to short chain fatty acids deficiency, increased inflammation and 73 
compromised gut barrier, and elevated curli 9. Curli is a bacterial amyloid produced by E.coli 74 
which, in mice, induces alpha-synuclein aggregation, the hallmark of PD pathology 14,15. Data 75 
from genetic and toxicant-induced models of PD also suggest gut microbiome can trigger or 76 
contribute to various PD pathologies and the manifestation of motor and non-motor phenotypes 77 
16-19, and that altering the microbiome via fecal microbiome transplantation (FMT)20,21, antibiotics 78 
treatments22-25, or high fiber diet26, each to some extent can reduce alpha-synuclein pathology, 79 
inflammation, and motor and non-motor dysfunction. 80 
 81 
The gut microbiome is an emerging target for PD therapies  27,28. Results of early clinical trials 82 
with fiber supplementation 29 and FMT 30-33 are promising. Next-generation targeted therapeutics 83 
are forthcoming. One example (https://www.axialtx.com/our-programs/parkinsons-disease/) is a 84 
small molecule that reduces curli and hence could potentially attenuate disease progression by 85 
stopping curli-induced alpha-synuclein aggregation in the gut.  The question is how to select 86 
patients to optimize success of microbiome-based clinical trials. Do all PD patients have 87 
elevated E. coli and curli? Is fiber supplementation sufficient to restore homeostasis to any 88 
dysbiotic microbiome? Are all persons with PD candidates for FMT?  Here, we show that not all 89 
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PD patients have a dysbiotic microbiome and not all dysbiotic microbiomes have the same 90 
features. We introduce microbiome-based biomarkers to guide patient selection for clinical trials, 91 
and upon success, as companion diagnostic for personalized treatment. 92 
 93 

Method 94 

 95 
Overview 96 
 97 
We explored the possibility of subtyping PD patients based on the dysbiotic features of the 98 
microbiome; and using the microbiome profile of an individual to gauge their suitability for 99 
microbiome-based drug trials.  The premise requires that disease associated features are 100 
already well established, i.e., reproduced across studies, using multiple differential abundance 101 
test methods controlling for confounders, at high statistical significance 9-13, and that the drug 102 
targeting a feature has undergone proper pre-clinical processes. The present paper describes a 103 
method to match patients to a treatment.   104 
 105 
The overview of the method is shown in Figure 1. The concept and method are generalizable to 106 
any disorder with a microbiome component with well-established dysbiotic features, here, we 107 
focus on PD. The method requires a metagenomics reference dataset from a non-disease 108 
population. The reference dataset should be from the same population as the patients to be 109 
studied or treated (such reference datasets will soon be available for several populations).  For 110 
demonstration, we select several features of PD as potential targets for treatment. (In reality, the 111 
feature can be a single gene or metabolite, a species, a cluster of related species, or multiple 112 
polymicrobial clusters that a drug has been developed to target.) We then calculate the mean 113 
relative abundance and confidence intervals (CI) of the features in the metagenomics dataset of 114 
non-disease population. We have now created the reference dataset. We define dysbiosis by 115 
setting thresholds for relative abundances in reference dataset (e.g., outside 95% CI). (We are 116 
cognoscente that “normal” and dysbiotic” microbiome are yet to be defined. Here, we use a 117 
working definition of dysbiotic to refer to abnormal levels of a well-established feature of PD 118 
microbiome).  Patients can now be screened for dysbiotic features, which entails obtaining a 119 
stool sample, metagenomic sequencing and comparing the relative abundance of the features 120 
in the patient to the reference dataset and the thresholds that define dysbiosis.   121 
 122 
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Species-level data and a step-by-step protocol to reproduce the current work are in the 123 
Supplement as well as on ASAP-ZENODO Workplace (https://zenodo.org/records/11126860). 124 
The source data we used is public, available for download as raw data from SRA or processed 125 
data from Zenodo. Metagenomic sequences (raw data) are available at NCBI SRA under 126 
BioProject ID PRJNA834801. The full taxonomic profiling data (processed data) is available at 127 
Zenodo (https://zenodo.org/records/7246185).  128 
 129 
Foundation of the method 130 
 131 
Here, we use the data from the largest high-resolution metagenomic study of PD, published by 132 
Wallen et al. 9. The Wallen et al. study was compliant with all relevant ethical regulations and 133 
was approved by Institutional Review Boards at University of Alabama at Birmingham and by 134 
the Human Research Protection Office of United States Department of Defense (funding 135 
agency). All subjects signed informed consent, including granting permission to share and use 136 
their de-identified data in subsequent studies.  137 
 138 
The dataset is composed of deep-shotgun next-generation metagenome sequences of microbial 139 
DNA, extracted from stool samples of 490 individuals with PD and 234 neurologically healthy 140 
controls (NHC). Each metagenome (data point) represents one sample taken from one 141 
individual. Wallen et al. conducted differential abundance test via a metagenome-wide 142 
association study (MWAS) and identified species, genes and pathways that are depleted or 143 
overly abundant in PD. The feature we use here have been reproduced in other metagenomics 144 
and meta-analyses 9-13.  We also conducted correlations network analysis  and identified 145 
polymicrobial clusters of species whose abundances grow or shrink together 9. The visual of PD 146 
microbiome in Wallen et al data is depicted in correlation network (Figure 2). Species are 147 
plotted according to correlation in their abundances, forming clusters of correlated species, 148 
using SparCC (RRID:SCR_022734, https://web.mit.edu/almlab/sparcc.html).  149 
 150 
The concept 151 
 152 
The published studies have been microbiome-centric, i.e., they identified dysbiotic features in 153 
aggregates of patients as compared to controls. We now turn the approach around and make it 154 
individual-centric, i.e., what does the microbiome of one patient look like? Is the microbiome 155 
dysbiotic in every PD patient? Are all dysbiotic features present together, or are some features 156 
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present in a subset of patients, and if so, what percentage of patients has a given dysbiotic 157 
feature? The answers to these questions are fundamental to any microbiome-based 158 
therapeutic. To answer these questions, we had to (a) select features of interest that could 159 
potentially be a target of treatment and (b) create an operational definition of dysbiosis. The 160 
concept is generalizable to any disease and any microbiome in the body, and the method, both 161 
feature selection and definition of dysbiosis, can be modified to accommodate study design. 162 
 163 
Features of PD gut microbiome 164 
 165 
For feature selection, we used the data reported in Wallen et al 9 and selected species that were 166 
significantly associated with PD (i.e., their relative abundance was elevated or reduced in PD 167 
not only in Wallen et al but reproduced across studies 9-13), plus the cluster of rare opportunistic 168 
pathogens were too rare to be tested individually but form a polymicrobial cluster that was 169 
shown in two independent datasets to be elevated in PD 9,35. We grouped the selected PD-170 
associated species into six features based on the correlation in their abundances (|r|>0.2, 171 
P<0.05) and taxonomic relatedness (members of same genus). The six dysbiotic features 172 
(Table 1, Figure 2) are as follows: (1) the cluster of opportunistic pathogens (elevated in PD), 173 
(2) species of Bifidobacteria (elevated in PD), (3) species of Lactobacillus (elevated in PD), (4) 174 
Streptococcus and Actinomyces species that are elevated in PD, (5) E. coli and Klebsiella 175 
species that are elevated in PD, and (6) fiber-degrading bacteria (reduced in PD). There is more 176 
to the dysbiosis of PD gut than these six features. Here, the aim being demonstrating the 177 
method, we strived for a balance between minimizing complexity while capturing the most 178 
robust and biologically relevant features. 179 
 180 
Definition of dysbiotic and non-dysbiotic 181 
 182 
Defining healthy and dysbiotic microbiome has been a challenge.  For this project, we limited 183 
the definition of dysbiotic to a metagenome that has very high or very low relative abundance of 184 
a feature that is already well-established to be elevated or reduced in PD.  To define very high 185 
and very low, we set extreme thresholds to maximize the odds that the patient being enrolled in 186 
trial is an optimal candidate. These thresholds can be changed to accommodate study design, 187 
or relaxed when a drug is approved, and the biomarker becomes a companion diagnostic for 188 
treatment.   189 
 190 
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For each feature, and per person, we calculated total relative abundance of each feature by 191 
summing the relative abundances of the species within it. We then calculated the mean relative 192 
abundance and its 95% CI in NHC (reference dataset). Next, we turned to individual-level PD 193 
data. Considering each feature separately, we called a PD person’s metagenome dysbiotic if the 194 
relative abundance of the feature was outside the 95% CI of NHC.  For features that are 195 
elevated in PD in aggregate data, a PD individual’s gut was called dysbiotic if the relative 196 
abundance of the feature in that person was greater than the upper bound of 95% CI of NHC. 197 
For the feature that is reduced in PD, a PD individual’s microbiome was called dysbiotic if the 198 
relative abundance of the feature in that person was less than the lower bound of 95% CI of 199 
NHC (Table 2). 200 
 201 
A key question was whether all individuals with PD have a dysbiotic gut microbiome. To answer 202 
this question, we needed an operational definition of non-dysbiotic.  We defined non-dysbiotic 203 
per feature as being well within the norm of NHC range, i.e., below the mean of NHC if the 204 
feature is elevated in PD, and above the mean if a feature is reduced in PD. When considering 205 
all six features, a PD person was designated as not having a dysbiotic microbiome only if their 206 
relative abundance for the five elevated features were all at or below the mean of NHC, and 207 
their relative abundance for reduced fiber degrading feature was at or greater than the mean in 208 
NHC.  209 
 210 

Results 211 

 212 
Not all PD metagenomes are dysbiotic, and not all dysbiotic microbiomes have the same 213 
features. 214 
 215 
In Wallen et al data, among the 490 individuals with PD studied, 392 (80%) had at least one 216 
dysbiotic feature (Figure 3a).  98 (20%) did not have any dysbiotic feature defined as being 217 
outside the 95% CI of NHC. Using the more cautious definition of non-dysbiotic, i.e. elevated 218 
features being at or below the NHC mean and reduced features at or above the NHC mean, 76 219 
(16%) of PD microbiomes were not dysbiotic. The patients without a dysbiotic microbiome can 220 
be identified and excluded from microbiome-based therapeutics; doing so will boost power and 221 
odds of success of clinical trials, and in clinical setting, will spare these patients unnecessary 222 
trial and error in finding the right treatment. 223 
 224 
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Severe reduction in fiber-degrading bacteria was seen in 333 of 490 of PD patients (68%)  225 
(Figure 3a). Among the 333 low fiber-degraders, only 96 had no other dysbiotic features 226 
(Figure 3b), hence 71% (=(333-96)/333) of patients with low fiber-degraders had high levels of 227 
at least one other dysbiotic feature. Thus, while deficiency of fiber degraders is very common, 228 
only 20% (=96/490) of PD patients had low fiber-degraders as their sole feature.  This suggests 229 
that while fiber treatment would be beneficial for majority of patients, a subset would stand to 230 
benefit the most from fiber, while others may need treatment for their other dysbiotic features as 231 
well.  232 
 233 
Features that are elevated in PD were found in subsets of patients: high levels of opportunistic 234 
pathogens was detected in 66 (13%) of the 490 PD, Bifidobacterium in 161 (33%), Lactobacillus 235 
in 103 (21%), Streptococcus and Actinomyces in 94 (19%), and E. coli and Klebsiella in 86 236 
(18%). To demonstrate utility of the biomarker, consider E. coli which has been linked to 237 
pathobiology of PD. E. coli encodes curli, an amyloid that induces alpha-synuclein aggregation 238 
in mice 14,15. Alpha-synuclein aggregation is a pathogenic hallmark of PD. Moreover, E. coli and 239 
genes that encode and regulate curli production are elevated in PD gut 9.  A drug developed 240 
against E. coli or curli will likely have a better odds of success in clinical trial if patients were 241 
chosen from the 18% that have high levels of E. coli and curli. 242 
 243 
There is some overlap across the groups shown in Figure 3a, because these features are not 244 
mutually exclusive. For example, as shown in Figure 3b, among the 66 patients with high 245 
opportunistic pathogens, 33 (50%) also had high Bifidobacteria, 15 (23%) had high 246 
Lactobacillus, 18 (27%) had high Streptococcus and Actinomyces, 13 (20%) had E. coli and 247 
Klebsiella, and 57 (86%) had low fiber degraders. These data suggest that at the present time, 248 
with fiber and FMT being the only microbiome-based treatments, the most rational option for 249 
treating the patients who have a severely dysbiotic microbiome is cleansing the microbiome with 250 
antibiotics followed by FMT, excluding those without dysbiosis and those with only low fiber-251 
degraders. We are not advocating for FMT or any treatment modality per se, rather, pointing out 252 
the utility of biomarkers in designing a study as well as choosing the patients to study and treat.  253 
 254 
Application of the biomarker tool 255 
 256 
Defining the features of interest and setting abundance thresholds to define dysbiotic/non-257 
dysbiotic in a healthy population will constitute the reference dataset for this biomarker tool. To 258 
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determine the composition of the metagenome of a patient will entail obtaining a stool sample, 259 
extracting the DNA, sequencing, bioinformatic processing and taxonomic assignment of 260 
sequences, and calculating relative abundances of the microbial features in the individual’s 261 
metagenome. The patient’s relative abundances for the features of interest are then compared 262 
to the reference dataset to determine if they are dysbiotic (Figure 1).  263 
 264 

Discussion 265 

 266 
Meta-analyses and large metagenomic studies have converged on certain microbial features 267 
that consistently and significantly are altered in PD microbiome, independent of geography, 268 
confounding covariates, and methodology.  These well-established disease-associated taxa are 269 
pre-requisite to, and the foundation of biomarkers described here. Here, we used these robust 270 
associations to define subtypes of PD based on dysbiotic features of microbiome.  We 271 
introduced a microbiome-based biomarker tool to guide patient selection for clinical trials and to 272 
serve as companion diagnostic for personalized treatments. With this tool, we can “see” if and 273 
what is dysbiotic in an individual and act accordingly. The method is applicable for any patient at 274 
any stage of disease. The tool can be easily modified (by redefining features and adjusting 275 
thresholds) as the field advances, and to meet varying needs of different studies. Here, we 276 
demonstrated the development and the potential utility of the tool for identifying subtypes of PD 277 
based on their microbiome features.  The concept is generalizable to any disease with a 278 
microbiome component. 279 
 280 
Treating a dysbiotic microbiome can potentially be disease modifying, which has been an 281 
elusive goal in PD field. Functional inference of human data and experiments in mice indicate 282 
dysbiotic features of PD microbiome contribute to several disease mechanisms, including alpha-283 
synuclein aggregation which is at the core of PD pathology, disrupted neuro-signaling, and 284 
inflammation 9,15,16. It is therefore reasonable to work towards microbiome-based therapies that 285 
could halt disease progression. As we learn which features are causal and which result from 286 
disease (an active area of research), microbiome-based biomarkers will be useful for identifying 287 
pathogenic dysbiosis early to prevent disease before onset. 288 
 289 
Microbiome-based treatments under consideration for PD include prebiotics (e.g., fiber 290 
supplements), probiotics (beneficial bacteria packaged and marketed direct to consumer), FMT, 291 
and next generation therapeutics that are targeted to a specific feature (e.g., small molecules, 292 
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phage, CRSPR-Cas9). The microbiome-based biomarkers described here can serve as 293 
companion diagnostic for all treatment modalities. Take fiber supplementation for example, 294 
which is safe and likely beneficial for everyone. We show here that indeed, the majority of PD 295 
patients have severely depleted levels of fiber-degrading bacteria. Increasing fiber intake is 296 
effectively feeding these bacteria and causing them to grow and multiply, and it has shown 297 
promise in an early clinical trial with newly diagnosed PD patients 29. The value of coupling 298 
biomarkers with fiber treatment is in identifying patients who, in addition to being low on fiber-299 
degraders, have elevated levels of harmful pathogenic bacteria, which is an important 300 
consideration both for patient selections for clinical trials and for treating the individuals. As for 301 
probiotics on the market, most are composed of “beneficial” species of Bifidobacteria and/or 302 
Lactobacillus, which ironically, are highly elevated in PD. The value of the biomarker in this case 303 
is to avoid supplementation that is counter indicated. FMT is showing promise for PD 30, but it 304 
carries risks concerning safety and compatibility of donor sample with host environment. Using 305 
biomarkers, unnecessary FMT can be avoided, sparing the patients who do not have a dysbiotic 306 
microbiome and those whose only problem is low fiber-degraders. Targeted treatments could 307 
replace the need for FMT, and they too would benefit from a companion diagnostic. For 308 
example, for a treatment targeted to abolish the opportunistic pathogens, the biomarker can 309 
identify the 13% of patients who would be the best candidates. 310 
 311 
Currently, we do not know if alleviating one dysbiotic feature would restore homeostasis to the 312 
rest of the microbiome, and what that central feature might be. Consumption of fiber is the 313 
safest and simplest treatment. In a clinical trial performed on 20 newly diagnosed PD patients, 314 
treatment with fiber increased the abundance of fiber-degrading bacteria and production of short 315 
chain fatty acids and resulted in shifts in the microbiome community 29. Fiber-degrading species 316 
are in the center of the correlation network with tight positive and negative correlations to 317 
several PD-associated species (Figure 2). It is therefore plausible that fiber treatment, aimed to 318 
increase the abundance of fiber-degrading bacteria, may restore equilibrium to PD-associated 319 
species that map to the center of network and are either positively or negatively correlated with 320 
fiber-degraders.  However, while possible, it is less likely that fiber treatment alone would 321 
eliminate overabundance of opportunistic pathogens, for example, considering that opportunistic 322 
pathogens are a dense isolated cluster with no connection to fiber-degrading species.  323 
 324 
Profiling the patients’ metagenome and comparing them to the reference dataset will show 325 
where they fall in the spectrum of dysbiosis. This concept, and the proposed method, holds true 326 
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regardless of feature, disease, or dataset. However, the relative abundances of the features and 327 
therefore the range and thresholds for defining dysbiosis may differ across populations. Hence, 328 
it is important that the reference dataset is from the same source population as patients. Here, 329 
we used a cohort of neurologically healthy older adults from Birmingham, Alabama in United 330 
States for our reference dataset, as our patients are also from Birmingham. There are regional 331 
variation in microbiome, reflecting cultural, dietary, socioeconomic, and geographic influences.  332 
Despite regional variations, the main PD-associated features are robust and reproducible 333 
9,11,12,35. Even so, the relative abundances, and hence the thresholds for defining dysbiosis, may 334 
still vary across populations. Not every investigator can amass hundreds of controls to 335 
investigate population-specific abundances to set their thresholds.  This impediment will be 336 
overcome soon by current efforts to collect all data generated and made public. These 337 
collaborative global efforts are aimed at meta-analyses, a by-product of which will be open-338 
access to well-curated datasets from across the world that can be used as reference datasets to 339 
generate population-specific thresholds for biomarkers and companion diagnostics. 340 
 341 
Data availability  342 
The dataset used for biomarker development is publicly available, open access with no 343 
restrictions, as described in detail in Wallen et al 2022 9. The dataset is available on 344 
two repositories to enable the investigators to download the data in either the raw or 345 
processed form. The raw metagenomic sequences and accompanying metadata are on NCBI 346 
SRA under BioProject ID PRJNA834801 [https://www.ncbi.nlm.nih.gov/bioproject/834801]. The 347 
post-QC and post taxonomic profiling data are on Zenodo [https://zenodo.org/record/7246185]. 348 
Here we used species-level data (presented in Supplement) that was extracted from the 349 
taxonomic profiling data downloaded from Zenodo in January 2024. 350 
 351 
Code and software 352 
Algorithm was developed using Microsoft Excel v.16.84 (RRID:SCR_016137) 353 
https://www.microsoft.com/en-gb/. Numbers were double checked using R v4.3.3.      354 
(RRID:SCR_001905) https://www.r-project.org/. Both Excel and R code are provided in the 355 
Supplement, as well as in ASAP-ZENODO Workplace (https://zenodo.org/records/11126860). 356 
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Table 1. Six main dysbiotic features of PD gut microbiome 
 

Feature  Species composition  
of feature PD association Number of 

connections 
Opp pathogens Actinomyces turicensis Increased as cluster 8 
Opp pathogens Anaerococcus octavius Increased as cluster 4 
Opp pathogens Anaerococcus vaginalis Increased as cluster 5 
Opp pathogens Atopobium minutum Increased as cluster 8 
Opp pathogens Corynebacterium amycolatum Increased as cluster 2 
Opp pathogens Corynebacterium aurimucosum Increased as cluster 2 
Opp pathogens Finegoldia magna Increased as cluster 7 
Opp pathogens Gemella asaccharolytica Increased as cluster 2 
Opp pathogens Peptoniphilus harei Increased as cluster 1 
Opp pathogens Peptoniphilus lacrimalis Increased as cluster 3 
Opp pathogens Peptoniphilus sp HMSC062D09 Increased as cluster 7 
Opp pathogens Porphyromonas asaccharolytica Increased 6 
Opp pathogens Porphyromonas sp HMSC065F10 Increased as cluster 11 
Opp pathogens Porphyromonas uenonis Increased as cluster 6 
Opp pathogens Prevotella bergensis Increased as cluster 1 
Opp pathogens Prevotella buccalis Increased as cluster 10 
Opp pathogens Prevotella disiens Increased as cluster 1 
Opp pathogens Prevotella timonensis Increased as cluster 8 
Opp pathogens Varibaculum cambriense Increased as cluster 10 
Bifidobacteria Bifidobacterium dentium Increased 12 
Bifidobacteria Bifidobacterium bifidum Increased 3 
Bifidobacteria Bifidobacterium breve Increased 24 
Bifidobacteria Bifidobacterium gallinarum Increased 14 
Bifidobacteria Bifidobacterium longum Increased 5 
Bifidobacteria Bifidobacterium pullorum Increased 12 
Bifidobacteria Bifidobacterium saeculare Increased 13 
Lactobacillus Lactobacillus fermentum Increased 14 
Lactobacillus Lactobacillus gasseri Increased 10 
Lactobacillus Lactobacillus paragasseri Increased 9 
Lactobacillus Lactobacillus salivarius Increased 9 
Lactobacillus Lactobacillus reuteri Increased 1 
Lactobacillus Lactobacillus rhamnosus Increased 11 
Strepto / Actino Actinomyces naeslundii Increased 4 
Strepto / Actino Actinomyces oris Increased 16 
Strepto / Actino Actinomyces sp HPA0247 Increased 3 
Strepto / Actino Actinomyces sp oral taxon 448 Increased 3 
Strepto / Actino Streptococcus anginosus group Increased 10 
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Strepto / Actino Streptococcus mutans Increased 13 
Strepto / Actino Streptococcus vestibularis Increased 15 
Strepto / Actino Streptococcus lutetiensis Increased 3 
E. coli / klebsiella Escherichia coli Increased 5 
E. coli / klebsiella Klebsiella pneumoniae Increased 3 
E. coli / klebsiella Klebsiella quasipneumoniae Increased 3 
Fiber-degraders Blautia wexlerae Decreased 17 
Fiber-degraders Blautia hansenii Decreased 17 
Fiber-degraders Anaerostipes hadrus Decreased 48 
Fiber-degraders Clostridium sp CAG 58 Decreased 27 
Fiber-degraders Eubacterium eligens Decreased 47 
Fiber-degraders Eubacterium hallii Decreased 52 
Fiber-degraders Eubacterium ramulus Decreased 25 
Fiber-degraders Eubacterium rectale Decreased 21 
Fiber-degraders Eubacterium sp CAG 38 Decreased 22 
Fiber-degraders Faecalibacterium prausnitzii Decreased 59 
Fiber-degraders Fusicatenibacter saccharivorans Decreased 45 
Fiber-degraders Roseburia faecis Decreased 21 
Fiber-degraders Roseburia intestinalis Decreased 21 
Fiber-degraders Roseburia inulinivorans Decreased 27 
Fiber-degraders Ruminococcus bicirculans Decreased 33 
Fiber-degraders Ruminococcus lactaris Decreased 12 

 

We selected species that individually, or as a cluster, were significantly elevated or reduced in PD 9-13, 

and assigned them to a “feature” according to the correlation in their abundances (connectivity, see 

Figure 2) and their taxonomic relatedness (members of same genus). Here, our aim was to demonstrate 

the method, for which we strived for a balance between capturing the most robust association with PD 
and reducing the complexity.  Features can be redefined to accommodate the aims of the investigation. 
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Table 2. A working definition of dysbiotic for identifying microbiome-based subtypes of PD 
 

Feature 

Relative abundance of feature 
in 234 NHC 

 
Relative abundance of feature 

in 490 PD 

 
N among 
490 PD 
outside 

95% CI of 
NHC  Mean Upper 

95% CI 
Lower 

95% CI  Mean Upper 
95% CI 

Lower 
95% CI 

 

Opp. pathogens 0.01% 0.01% 0.00%  0.10% 0.20% 0.00%  66 (13%) 

Bifidobacteria 2.06% 2.66% 1.47%  5.07% 5.98% 4.17%  161 (33%) 

Lactobacillus 0.11% 0.19% 0.04%  0.55% 0.74% 0.36%  103 (21%) 

Streptococcus / 
Actinomyces 0.19% 0.33% 0.06%  0.39% 0.54% 0.25%  94 (19%) 

E. coli / Klebsiella 1.47% 2.23% 0.72%  1.94% 2.44% 1.43%  86 (18%) 

Fiber-degraders 22.35% 23.88% 20.81%  15.29% 16.36% 14.22%  333 (68%) 

 
In this context, the term dysbiotic refers to a microbiome in which the relative abundance of a well-

established PD-associated feature is very high (for features that are elevated in PD) or very low (if 
reduced in PD). Here, each feature is composed of several PD-associated species, as shown in Table 1. 

The relative abundance of each species in each individual was calculated as reported before 9 and can be 

found here https://zenodo.org/record/7246185.  We calculated relative abundance of each feature in each 

neurologically healthy control (NHC) and individual with PD by summing the relative abundances of the 

species within the feature for that individual. We then calculated the mean and 95% confidence interval 

(CI) of the mean in the NHC and PD separately. We set the threshold for defining dysbiotic at the upper 

95% CI of NHC for features that are elevated in PD, and at lower 95% CI of NHC for fiber-degraders that 

are reduced in PD. Last column is the number of PD patients, among 490 total, who were called dysbiotic 
for each feature. For example, in 161 of 490 PD patients, the relative abundance of Bifidobacteria was 

higher than 2.66% which was the upper 95% CI limit of NHC. Similarly, in 333 of 490 patients, the relative 

abundance of fiber-degrading bacteria was lower than 20.81% which was the lower 95% CI limit in NHC.  

See Figure 3 for overlaps.   
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Figure 1. The method.  
For Parkinson’s disease, several disease-associated microbial features have already been well 

established, i.e., reproduced across studies at high statistical significance using multiple differential 

abundance test methods and including covariates and confounders 9-13. Clinical trials of microbiome-

based treatments are underway.  The present paper describes a method to match patients to treatments, 

excluding patients who do not have the feature of interest, and enriching the trial with patients with high 
abundance of the feature being targeted.   

A reference dataset is built by obtaining the metagenomic profiles of a non-disease cohort that represents 

the same population as the persons to be studied or treated.  Once this infrastructure is in place, one can 

pick any feature (from a microbial gene to species to polymicrobial clusters), calculate its relative 

abundance and confidence interval (CI) in the non-disease group, and set thresholds for defining 

dysbiotic and non-dysbiotic.  Application entails obtaining the metagenomic profile of the individual of 

interest and comparing it to the non-disease population. Here, we selected 6 PD-associated features 
(each a polymicrobial cluster), 5 of which are elevated in PD, and one reduced in PD 9. We set the 

threshold at 95%CI of the non-disease reference dataset. A person would be marked as dysbiotic for a 

feature if their relative abundance of that feature is above (for features that are elevated in PD) or below 

(for feature that are reduced) the 95%CI in non-disease population.  
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Figure 2. Polymicrobial clusters of species in PD gut microbiome. 
Pairwise correlation in relative abundances of all species detected in 490 unique PD gut 

metagenomes (i.e. 490 individuals with PD) was calculated and plotted (methods are described 

in Wallen et al 9).  Each circle (node) represents one species and the curved lines (edges) 

connect species whose relative abundance correlate with each other (at correlation |r|>0.2, 

permuted P<0.05). Here, we have highlighted PD-associated species that were selected for this 

study, denoting by color the 6 dysbiotic features (species within each feature are listed in Table 
1):  

Blue: Opportunistic pathogens (elevated in PD) 

Red: fiber-degraders (reduced in PD) 

Yellow: E. coli and Klebsiella (elevated in PD)  

Green: Bifidobacteria (elevated in PD) 

Orange: Lactobacillus (elevated in PD) 

Purple: Streptococcus and Actinomyces (elevated in PD) 

Grey: associated with PD, not selected as feature 

Empty circle: not associated with PD 
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Figure 3. Subtyping PD by the dysbiotic features of the gut microbiome. 
The total number of patients is 490. The total number of patients with a dysbiotic feature is 392 (=490-98). The number of patients 

with a given dysbiotic feature are given in a-c. Actual numbers are given so that percentages can be calculated with the desired 

denominator.  

(a) Proportion of PD patients with different dysbiotic features.  
§ Elevated features: number of PD persons, among the 490, who had an abundance higher than upper limit of the 95% CI of 

the abundance in neurologically healthy control (NHC). 

§ Reduced feature: number of PD persons, among the 490, who had an abundance lower than the lower limit of 95% CI of the 

abundance in NHC.  

§ No detectable dysbiosis: 98 of 490 (20%) did not fall outside 95% CI of NHC for any feature.  76 of 490 (16%) of PD persons 

fit the more cautious definition of non-dysbiotic, whose abundances for every elevated feature (opportunistic pathogens, 

Bifidobacteria, Lactobacillus, Streptococcus and Actinomyces (Strepto/Actino), and E. coli/Klebsiella) was below the NHC 

mean, and their abundance for reduced fiber-degrading bacteria was above the NHC mean. 

(b) Pairwise overlap in features, n=number of patients, from 490, who have the two specified features. The total for six features (the 

diagonal) is 843, nearly double the number of 490 subjects, because features do co-occur in an individual.  For example, 66 of 490 

subjects had elevated (>95%CI of NHC) levels of opportunistic pathogens, among them, 33 (50%) also had elevated Bifidobacteria. 

Or the example in the text, 71% (=(333-96)/333) of low fiber-degraders had high level of at least one other feature. 

(c) Overlap across the 5 features that are elevated in PD (fiber-reducers not included for legibility). For example, 19 subjects have 

elevated levels (>95%CI of NHC) of Streptococcus and Actinomyces only, another 2 subjects have high Streptococcus and 

Actinomyces and high opportunistic pathogens, another 3 have high Streptococcus and Actinomyces, high opportunistic pathogens, 

and high Lactobacillus, etc. 
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