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ABSTRACT 
 
The	transformative	integration	of	Machine	Learning	(ML)	for	Artificial	General	Intelligence	(AGI)-
enhanced	clinical	imaging	diagnostics,	is	itself	in	development.	In	brain	tumor	pathologies,	magnetic	
resonance	imaging	(MRI)	is	a	critical	step	that	impacts	the	decision	for	invasive	surgery,	yet	expert	
MRI	tumor	typing	is	inconsistent	and	misdiagnosis	can	reach	levels	as	high	as	85%.	Current	state-of-
the-art	(SOTA)	ML	brain	tumor	models	struggle	with	data	overfitting	and	susceptibility	to	shortcut	
learning,	further	exacerbated	in	large-sized	models	with	many	tunable	parameters.	In	a	comparison	
with	 multiple	 SOTA	 models,	 our	 deep	 ML	 brain	 tumor	 diagnostics	 model,	 SIENNA,	 surpassed	
limitations	 in	four	key	areas	of	prioritized	minimal	data	preprocessing,	an	optimized	architecture	
that	 reduces	 shortcut	 learning	 and	 overfitting,	 integrated	 inductive	 cross-validation	 method	 for	
generalizability,	and	smaller	neural	architecture.	SIENNA	is	applicable	across	MRI	machines	and	1.5	
and	3.0	Tesla,	and	achieves	high	average	accuracies	on	clinical	DICOM	MRI	data	across	three-way	
classification:	 92%	 (non-tumor),	 91%	 (GBM),	 and	93%	 (MET)	with	 retained	high	F1	 and	AUROC	
values	for	limited	false	positives/negatives.	SIENNA	is	a	 lightweight	clinical-ready	AGI	framework	
compatible	with	future	multimodal	expanded	data	integration.	
 
Keywords:  MRI,	 DICOM,	 clinical,	 convolutional	 neural	 network,	multi-classification,	 brain	 tumor,	
deep	learning,	artificial	general	intelligence	(AGI),	shortcut	learning,	overfitting,	generalizability.	
 
INTRODUCTION	
 

Artificial	intelligence	(AI)	in	medical	imaging	diagnostics	is	poised	to	revolutionize	patient	
care	 in	 the	 coming	 decades	 yet	 grapples	 with	 the	 challenge	 of	 handling	 data	 while	 preserving	
physiological	 complexity.	 This	 impact	 will	 be	 especially	 pronounced	 in	 the	 clinical	 diagnosis,	
monitoring,	and	treatment	of	brain	tumor	neoplasms.	Brain	tumors,	the	most	common	malignancy	
of	 the	central	nervous	system	(CNS),	rank	10th	globally	among	 leading	causes	of	death	[1,2].	The	
clinical	multi-classification	of	tumors	heavily	relies	on	diagnostic	expertise,	particularly	utilizing	MRI	
[4].	Since	its	clinical	introduction	for	brain	tumor	detection	in	1985	[3,4],	MRI	usage	has	surged,	with	
roughly	34	machines	per	million	people	 in	 the	United	States	 alone	by	2020,	 resulting	 in	over	30	
million	 images	 captured	 [5,6].	 However,	 accurately	 recognizing	 morphological	 features	 remains	
challenging	[7].	CNS	tumor	types	and	grades	exhibit	variability	influenced	by	factors	such	as	sex,	age,	
and	demographics	[2,8,9],	contributing	to	an	alarming	85%	misdiagnosis	rate	for	prominent	brain	
tumor	types	via	MRI,	as	revealed	by	retrospective	analyses	[10].	This	study	highlights	the	challenges	
with	obtaining	uniform	high	accuracy	in	diagnoses	across	clinicians	and	centers,	which	will	benefit	
from	 AI	 technologies.	 The	 intricate	 variability	 in	 data	 across	 pathologies	 and	 patients	 further	
underscores	 the	 necessity	 for	 new	AI	 platforms	 and	 the	 need	 to	 exercise	 particular	 care	 in	 data	
handling,	 advancing	 image	 comparability	 algorithms,	 and	 limiting	data	preprocessing.	Relying	on	
highly	preprocessed	public	datasets	creates	challenges	 for	generalizability	of	 the	AI	platforms	 for	
advancing	 towards	 AGI	 [11].	 Furthermore,	 shortcut	 learning	 [12,13]	 has	 recently	 emerged	 as	 a	
significant	drawback	in	various	ML	approaches,	alongside	the	well-known	issue	of	overfitting	[14].	
In	shortcut	learning,	ML	models	struggle	to	capture	the	desired	morphological	features	of	images	and	
instead	resort	 to	exploiting	undesired	patterns	 to	achieve	high	cross-validation	performance.	For	
instance,	Geirhos	et	al.	[12]	demonstrated	that	a	ML	model	trained	to	identify	pneumonia	from	lung	
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scans	achieves	high	performance	by	capitalizing	on	hospital	tokens	within	the	images	rather	than	
learning	the	morphological	patterns,	rendering	it	ineffective	in	real-world	scenarios.	Consequently,	
when	deployed	in	practical	settings,	these	models	struggle	to	generalize	to	new,	unseen	data	[15].	
Moreover,	larger	models	with	numerous	parameters	are	particularly	susceptible	to	overfitting	and	
shortcut	 learning.	 Recent	 studies	 emphasize	 the	 importance	 of	 smaller	 ML	 models	 with	 fewer	
parameters	 for	 enhanced	 generalization	 [16],	 a	 crucial	 step	 in	 the	 development	 of	 AGI	 [17].	
Furthermore,	traditional	cross-validation	techniques	merge	image	data	for	evaluating	performance	
irrespective	of	patient	information.	Thus,	this	form	of	test	performance	if	misleading	in	the	clinical	
setting	when	the	model	encounters	images	from	a	new	patient.		

	
For	AI	design	and	data	handling	to	achieve	greatest	impact	clinically	and	to	be	increasingly	

patient-informative	 the	 focus	 on	 generalizable	 platforms	 that	 can	 retrieve	 and	 learn	 from	 new	
diverse	morphological	information	in	clinical	data	is	essential	[7].	Retention	of	physiological	detail	in	
data	 handling	 will	 determine	 the	 extent	 to	 which	 AI	 can	 link	 mechanistic	 information	 to	 near	
imperceptible	 tissue	variations.	Metastasized	secondary	brain	neoplasms	(METs)	arise	 from	non-
brain	 primary	 cancers	 [10],	 whereas	 glioblastomas	 (GBMs)	 are	 prominent	 intracranial	 in	 origin	
tumors	[1,2,11,18].		A	multitude	of	primary	cancer	sites	that	contribute	to	brain	METs	include	the	
lung	 (39-56	 percent),	 breast	 (13-30	 percent),	 melanomas	 (8-11	 percent),	 gastrointestinal	 (6-9	
percent)	and	renal	(2-6	percent)	tissues	[10].	To	what	extent	METs	reflect	aspects	of	the	primary	
cancer	 tissue	 source	 is	 still	 being	 studied,	 but	 correlative	 data	 on	 brain	 tumor	morphology	 and	
distribution	patterns	suggest	some	physiological	links	[10,	19-22].	The	underlying	genetic	signatures	
of	 GBMs	may	 also	 impact	 physiologic	 heterogeneity	 and	 impact	 current	 survival	 beyond	 5	 years	
diagnosis	 [11,23].	Data	handling	 in	AGI	platforms	will	 be	 key	 to	 lay	 the	 framework	 for	 future	AI	
subtyping	studies	with	potential	to	expand	diagnostics	and	treatments.	 	The	current	challenges	in	
expert	multi-classification	 of	 normal	 physiology,	 GBM,	 or	MET	 tumors	 [9,24]	 are	 reflected	 in	 the	
reliance	on	a	range	of	additional	clinical	information	[25]	that	includes	a)	patient	history	of	systemic	
malignancy,	tumor	features,	cerebral	location,	positioning	near	gray	or	white	matter,	a	multiplicity	
of	cerebral	sites	[26],	b)	MR	tumor	morphology	[27],	c)	MR	perfusion	for	tumor	vascularity	[28,29],	
d)	use	of	multiple	MRI	modalities	[30]	and	e)	intraoperative	biopsies	for	biomarker	typing	of	tumors	
[31].	The	overwhelming	and	growing	need	for	MRI	diagnostics	with	expanded	associated	technology	
is	expected	to	continue	to	strain	clinical	diagnostic	accuracy.	Both	1.5	and	3.0	Tesla	MRI	images	are	
currently	dominant	in	clinical	practice	[32].	However	7.0	Tesla	MRI	is	approved	for	use	clinically	[33]	
and	includes	physiological	detail	beyond	the	training	of	most	clinicians.	 	Multiparameter	MRI	[34]	
and	portable	lower	Tesla	spectrums	[35]	are	also	increasing	demand	for	clinical	AGI	in	MRI	[36,	37].		
	

An	emerging	barrier	to	advancing	clinical	AGI	platforms	for	MRI	diagnostics	is	non-optimal	
data	preprocessing.	AI	models	that	employ	public	preprocessed	datasets,	such	as	the	BraTS	2018	and	
BraTS	 2020	 MRI	 datasets	 [38,39],	 exclusively	 in	 their	 development	 run	 the	 risk	 of	 being	
compromised	for	generalizability.	Misprioritization	of	features	will	reduce	accuracy	when	moving	
from	 public	 to	 minimally	 processed	 clinical	 datasets	 of	 Digital	 Imaging	 and	 Communications	 in	
Medicine	(DICOM)	origin	[40]	that	is	attributable	to	a	gap	in	ML	platforms	between	design	and	data	
preprocessing.	 Complex	 preprocessing	 operations	 such	 as	 skull	 stripping	 [41]	 and	MR	 bias	 field	
correction	[40]	can	increase	initial	accuracy	by	eliminating	noise	but	are	suboptimal	for	clinical	data	
diagnostics.	 	 Thus,	 while	 some	 studies	 on	 multi-classification	 models	 may	 seem	 promising	 as	
diagnostics	 across	 tumor	 types	 [43]	 or	 for	 subtypes	 of	 tumors,	 [44,45]	 their	 training	 on	 highly	
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processed	datasets	will	 limit	 their	generalizability	and	transferability	 to	new	patients	outside	 the	
training	set	in	a	clinical	setting.		Furthermore,	traditional	cross-validation	on	the	benchmark	datasets	
fails	to	report	a	model’s	ability	to	generalize	to	new	patients.	We	previously	developed	the	SCENIC	
[46]	 convolutional	 neural	 network	 (CNN)	 architecture	 for	 neoplasm	 identification	 and	 achieved	
98.3%	classification	accuracy	on	the	publicly	available	BraTS	Dataset.	SCENIC	outperforms	and	is	
competitive	 versus	multiple	 other	 tested	 approaches	 that	 include	 XceptionNet	 [47],	 InceptionV3	
[48],	ResNet-50	[49],	and	VGG-16	[50].	Although	SOTA	for	identifying	tumor	presence	across	MRI	
modalities,	SCENIC	design	is	not	immediately	generalizable	to	high	accuracy	multi-classification	of	
minimally	processed	clinical	data	for	GBM	and	MET	tumors.	Achieving	data	analysis	generalizability	
along	 with	 robust	 accuracy	 is	 of	 high	 priority	 to	 expand	 the	 applications	 possible	 for	 MRI	 AI	
architectures	and	their	ability	to	meet	clinical	diagnostic	challenges	and	keep	pace	with	advancing	
MRI	technologies.		

	
In	recent	literature,	various	ML	models	have	been	developed	to	address	different	facets	of	

brain	 tumor	 classification.	 NeuroXAI	 [51],	 for	 instance,	 integrates	 seven	 explanation	 methods,	
including	attention-based	explanations,	to	enhance	the	interpretability	of	ML	predictions.	Sturgeon's	
approach	 [52]	 utilizes	 simulated	 nanopore	 sequencing	 data	 derived	 from	 readily	 available	
methylation	array	data,	 enabling	accurate	 classification	of	 tumor	 types	based	on	 intraoperatively	
generated	sequence	data.	OpenSRH	[53]	employs	optical	histology	data	 to	 train	a	 self-supervised	
model	for	brain	tumor	diagnostics.	VUNO	Med-DeepBrain	AD	(DBAD)	[54]	leverages	deep	learning	
algorithms,	 serving	 as	 a	 decision	 support	 service	 for	 Alzheimer's	 disease	 diagnosis.	 Additionally,	
Richardson	et	al.	[55]	conducted	a	genome-wide	analysis	of	glioblastoma	patients	with	unexpectedly	
long	survival.	Despite	the	proliferation	of	ML	and	non-ML	approaches	in	brain	tumor	diagnostics,	the	
literature	 often	 neglects	 to	 emphasize	 either	 generalizability	 or	 real-time	 deployability	 of	 these	
models	 in	 clinical	 settings.	 This	 oversight	 is	 particularly	 associated	with	 the	 size	 and	 fine-tuning	
requirements	of	these	models.	
	

Here	we	introduce	SIENNA,	a	light-weight	multilayer	CNN	deep	learning	architecture	with	
minimal	preprocessing	of	clinical	MR	DICOM	images.	We	demonstrate	SIENNA’s	generalizability	to	
new	patients,	 robustness,	 and	high	 accuracy	 in	 clinical	 brain	 tumor	diagnostics.	 SIENNA	exhibits	
minimal	 misdiagnosis	 risk	 by	 use	 of	 a	 non-inter-dependent	 multi-classification	 approach	 that	
separately	 evaluates	 normal	 physiology	 and	 GBM	 and	 MET	 tumor	 pathophysiologies.	 SIENNA	
outperforms	other	ML	technologies	developed	on	highly	processed	public	datasets	in	inducive	tests.	
We	identify	and	describe	key	challenges	and	strategies	for	retaining	spatial	and	depth	dimensional	
physiological	 features	 in	 working	 with	 data	 extraction	 from	 clinical	 MR	 DICOM	 images	 while	
reducing	variability	 that	 interferes	with	comparability	and	can	arise	during	data	acquisition.	This	
includes	 patient	 movement,	 scan	 acquisition	 parameters/conditions,	 and	 MRI	 Tesla	 levels,	 that	
impact	 image	quality	 and	 scan	 intensities.	 SIENNA	data	handling	 includes	 the	use	 of	 an	 in-house	
custom	histogram	equalization	tool,	PREMO,	inspired	by	existing	algorithms,	[56].	PREMO	applies	
pixel	 redistribution	 across	 intensity	 levels,	 enhancement	 of	 equalization	 by	 masking,	 and	
optimization	by	Gamma	fine-tuning	brightness	and	contrast.	SIENNA’s	ability	to	identify	meaningful	
patterns	and	attributes	is	further	enriched	by	adversarial	training,	[57,58]	using	images	with	subtle	
parameter	 distortion	 to	 exploit	 the	 model's	 vulnerabilities	 and	 decision	 boundaries	 for	 re-
optimization.	 Finally,	 we	 apply	 hyperparameter	 tuning	 [59,60]	 to	 SIENNA	 for	 robustness	 in	
diagnostic	output,	as	has	been	demonstrated	for	CNN	analysis	applied	in	genetics	[59],	vision	[61],	
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histopathology	[62]	and	with	biomedical	imaging	[63].		SIENNA	demonstrates	on	average	accuracy	
on	clinical	DICOM	MRI	data	across	3	tasks	of	92%	(Non-Tumor,	SD=5.5%),	91%	(GBM,	SD	=	3.2%),	
and	93%	(MET,	SD	=	2.6%),	with	the	distribution	of	accuracies	skewed	higher	to	100%	and	a	lower	
bound	at	75%.	SIENNA’s	demonstrated	generalizability	and	ability	to	outperform	other	AI	platforms	
on	 clinical	 DICOM	 and	 publicly	 processed	 clinical	 data,	 is	 expected	 to	 accelerate	 companion	
diagnostic	AI	resources	for	clinical	settings.	
	
RESULTS	
	
Co-development	of	SIENNA	Deep	Learning	Architecture	with	Minimal	Preprocessing	of	DICOM	
MRI	data.	 	 	We	previously	developed	SCENIC	 [46]	a	deep	 learning	architecture	 for	robust	 tumor	
detection	 across	 MRI	 modalities	 of	 Fluid	 Attenuated	 Inversion	 Recovery	 (FLAIR),	 T1-	 and	 T2-	
weighted	(T1-w;	T2-w),	and	T1-contrast	enhanced	(T1-ce).	SCENIC	applied	the	BraTS	2017	dataset	
[38,39]	 of	 1.5T	 MRI	 images	 from	 Gliomas,	 Meningioma	 and	 Pituitary	 tumors,	 or	 healthy	 tissue,	
achieving	overall	accuracy	of	98.3	percent.	Our	de	novo	development	of	SIENNA	ML	architecture	in	
this	study	was	motivated	by	our	inability	to	sufficiently	generalize	the	SCENIC	architecture	to	achieve	
similar	high	accuracy	analysis	of	minimally	processed	MRI	DICOM	clinical	 images.	The	SIENNA	AI	
architecture	 is	 developed	 along	 with	 strategies	 for	 minimal	 DICOM	 data	 preprocessing	 for	
comparability	(Fig1)	and	avoids	overprocessing	of	MRI	data	that	is	present	in	current	public	datasets	
and	 which	 limits	 generalizability	 to	 the	 clinic	 (Fig.1a)	 [64].	 SIENNA	 incorporates	 a	 robust	 non-
interdependent	 three-class	multi-classification	 to	discriminate	between	healthy	 tissue,	or	GBM	or	
MET	tumor	pathology	(Fig.1b).	To	reduce	noise	in	our	dataset	with	minimal	processing	we	remove	
edge	of	scan	outlier	 images	of	patient	Z-stacks	(Fig.1c).	 In	Fig.1d	we	summarize	 features	of	data	
handling,	including	use	of	our	custom	histogram	equalization	software,	PREMO,	to	correct	images	for	
variation	in	pixel	intensity	distribution	from	data	acquisition,	and	adversarial	training	to	challenge	
data	 feature	 learning,	 and	 ensure	 class	 balance.	 The	 SIENNA	 CNN	 architecture	 (Fig.1e)	 includes	
multiple	feature	extraction	layers	designed	to	map	local	and	high-order	spatial	detail	of	the	brain	
image,	that	are	flattened	and	connected	by	dense/fully	connected	layers.	The	design	enables	the	CNN	
network	to	learn	and	differentiate	between	different	tumor	types,	resulting	in	a	final	layer	that	maps	
input	 to	 class	 probabilities.	 Shallow	 (inner)	 layers	 of	 the	 SIENNA	 CNN	 architecture	 are	 used	 to	
capture	 low-level	 features	 such	 as	 edges	 and	 local	 patterns	of	 the	brain,	while	 the	deeper	 layers	
extract	 more	 complex	 information	 such	 as	 global	 contrast	 relationships	 of	 the	 tumor.	 The	
performance	 of	 the	 native	 model	 is	 further	 optimized	 by	 tuning	 different	 combinations	 of	
hyperparameters	for	task-specific	implementations.	HYPERAS	and	the	HYPEROPT	library	[49]	are	
used	 to	 rapidly	 explore	 a	 range	 of	 user-defined	 search	 spaces,	 determined	 through	 data-driven	
experimentation	and	insights	from	prior	literature	[59-63].	Details	are	presented	in	Methods	and	the	
following	specific	analysis.	
	
Multistep	Preparation	of	De-identified	Patient	DICOM	Data	 for	Deep	Learning	Analysis.	To	
address	 image	 quality	 and	 data	 comparability	 we	 generated	 a	 custom	 histogram	 equalizaiton	
platform,	addressed	class	imbalance	and	class	discrimination,	and	applied	hyperparameter	training	
for	CNN	optimization	 (Fig.2	 and	Methods).	We	avoided	commonly	used	extensive	preprocessing	
techniques,	including	reorientation	to	LPS/RAI	[65],	skull-stripping	[41],	and	N4	Bias	correction	[42],	
frequently	applied	in	publicly	available	data.	In	our	study,	we	assess	a	de-identified	clinical	sample	
database	of	17	patient	files	(Fig.3a),	including	9	GBM	and	8	MET	patients	pre-validated	by	expert	
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multifactorial	clinical	diagnostic	standards	[25]	and	obtained	through	IRB-approved	collaboration	
(see	Methods).	We	focus	on	MR	fluid-attenuated	inversion	recovery	(FLAIR)	images,	given	the	high	
dimensionality	of	that	data	and	its	ability	in	early	testing	to	effectively	distinguish	tumor	physiology	
in	 MR	 diagnostics	 [18].	 To	 decrease	 the	 impact	 of	 noise	 interference	 in	 a	 small	 dataset,	 while	
retaining	maximum	information,	we	chose	 to	remove	a	 limited	number	of	horizontal	axial	Z-slice	
scans,	 at	 the	 uppermost	 Z-scan	 that	 predominantly	 shows	 the	 skull	 area	 and	 lowermost	 scans	
containing	primarily	non-brain	neck	region	 tissues	 (Fig.1c).	The	 final	MRI	DICOM	clinical	patient	
dataset	comprised	386	scans,	including	153	GBM	and	125	MET	clinically	identified	brain	tumors,	and	
108	non-tumor	scans.			
	

SIENNA	 training,	 validation,	 and	 testing	 are	 done	 on	 shuffled	 individual	 Z-stacks	 from	
combined	patient	datasets,	analyzing	386	patients'	Z-stack	horizontal	MRI	scans.	The	variable	sizes	
of	brain	tumors	among	the	17	patients’	data	examined	impact	the	number	of	tumor	and	non-tumor	
data	images	within	a	given	patient	horizontal	Z-stack	and	GBM	or	MET	tumor	slices.	A	large	tumor	
will	constitute	most	horizontal	slices	in	a	patient	dataset	and	the	non-tumor	scan	becomes	a	minority	
class.	To	avoid	class	imbalance	during	training	that	can	lead	to	biased	models	in	small	datasets	that	
favor	the	majority	class	and	fail	to	adequately	learn	the	patterns	and	features	of	the	minority	class,	
we	 applied	 the	 Synthetic	Minority	Over-Sampling	Technique	 (SMOTE)	 [66].	By	 SMOTE,	 synthetic	
samples	are	generated	by	interpolating	between	minority	class	examples	(Fig.1d	(scatter	plot)).	The	
MET	 and	 non-tumor	 classes	 were	 under-represented	 and	 deemed	 minority	 classes.	 For	 each	
minority	instance	chosen,	its	k	(k=8	in	our	case)	nearest	neighbors	are	pinpointed	based	on	Euclidean	
Distance.	Interpolation	then	occurs	between	the	feature	vectors	of	this	chosen	instance	and	each	of	
its	k	neighbors,	resulting	in	the	creation	of	synthetic	instances.	This	procedure	not	only	ensures	that	
these	 newly	 minted	 samples	 align	 well	 with	 the	 original	 data's	 distribution	 but	 also	 effectively	
balances	 the	 representation	 of	 minority	 classes.	 The	 scatter	 plot	 in	 Fig.1d	 provides	 a	 visual	
representation,	demonstrating	the	equilibrium	achieved	between	MET	and	GBM	points	before	and	
after	the	application	of	SMOTE.	

	
		 Comparability	of	data	requires	addressing	variability	arising	during	scan	acquisition	across	
different	MRI	 systems	 including	 intensities	 and	DICOM	 image	 quality	 across	 a	 diverse	 variety	 of	
patients	and	resources	[41].	We	conducted	a	comparative	analysis	of	mulitple	histogram	equalization	
algorithms	 (Fig.2a),	 including	 Traditional	 Histogram	 Equalization	 [67],	 Adaptive	 Histogram	
Equalization	 [56],	 Contrast	 Histogram	 Equalization,	 and	 Contrast	 Limited	 Adaptive	 Histogram	
Equalization	 (CLAHE)	 [68]	 using	 the	 Structural	 Similarity	 Index	 (SSIM)	 [69].	 These	 existing	
algorithms	 lacked	 the	 flexibility	we	 desired	 to	 selectively	 apply	 enhancements	 based	 on	 specific	
regions	 of	 interest	 and	 resulted	 in	 off-target	 over-enhancement,	 loss	 of	 important	 details,	 and	
diminished	 diagnostic	 accuracy.	 To	 overcome	 these	 challenges,	 we	 generated	 a	 novel	 histogram	
equalization	method	that	is	inspired	by	existing	algorithms	but	addresses	brain	regions	of	interest,	
Gamma	 correction,	 and	 other	 enhancements,	 that	 we	 refer	 to	 here	 as	 “Pixel	 Redistribution	
Enhancement,	Masking,	Optimization”	or	PREMO	(see	Methods).	The	PREMO	algorithm	uniformly	
redistributes	 pixel	 frequencies	 across	 intensity	 levels	 (Fig.	 2a	 rightmost	 image),	 addressing	 the	
concentration	of	frequencies	in	dark	pixels	(Fig.	2b).	It	utilizes	a	binary	mask	to	segment	out	non-
brain	regions	and	selectively	apply	enhancements.	Furthermore,	we	introduced	the	adjustment	of	
the	 Gamma	 value	 in	 PREMO	 to	 fine-tune	 brightness	 and	 contrast.	 This	 allowed	 for	 optimized	
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visualization	 of	 subtle	 details	 and	 fine	 structures	 within	 the	 brain	 slices,	 enabling	 improved	
recognition	of	tumor-specific	distinctive	features	by	the	SIENNA	algorithm.		
	
	 To	avoid	data	overfitting	that	can	occur	with	small	datasets	and	to	enhance	SIENNA’s	ability	
for	 class	 discrimination,	 to	 differentiate	 between	 relevant	 and	 irrelevant	 features,	 we	 applied	
adversarial	 training	 samples	 [57,58]	 generated	 using	 the	 Fast	 Gradient	 Sign	 Method	 (FGSM)	
algorithm	(see	Methods).	In	short,	the	process	involves	calculating	the	gradients	of	the	loss	between	
the	model's	prediction	and	the	true	value	for	a	test	case.	Perturbations	are	then	applied	to	the	clean	
samples	in	the	direction	of	the	gradient,	aiming	to	increase	the	loss,	generating	adversarial	examples	
as	shown	(Fig.	2c).	The	adversarial	training	samples	are	crafted	in	a	manner	to	exploit	the	model's	
vulnerabilities	and	decision	boundaries	while	minimizing	noticeable	visual	alterations	that	can	add	
excessive	 noise	 and	 instead	 undermine	 the	 model's	 ability	 to	 identify	 meaningful	 patterns	 and	
attributes.	SIENNA's	optimal	performance	strikes	the	necessary	balance	between	the	quantity	and	
characteristics	 of	 noise	 introduced	 into	 the	 training	 dataset	 and	 hyperparameter	 tuning	 during	
analysis	(Fig.2d).		
	
SIENNA	is	a	Generalizable	Framework	for	Robust	Multi-Classification	of	MRI	Data.	SIENNA’s	
co-development	 with	 minimally	 processed	 MRI	 DICOM	 data	 strengthens	 its	 generalizability	 and	
diagnostic	capabilities	relevant	to	clinical	implementation.	We	analyzed	de-identified	patient	data,	8	
MET	and	9	GBM-typed	individuals,	including	similar	numbers	of	male	and	female	patients,	(Fig.3a)	
showcasing	a	distribution	of	patient	demographics,	detailing	aspects	for	age,	sex,	weight,	and	MRI	
machine	 manufacturer	 and	 magnetic	 field	 (1.5T	 -	 3.0T)	 utilized.	 Patient	 ethnicity	 in	 the	 Albany	
Medical	College	data	sampling	was	primarily	Caucasian	with	one	Black	patient.	The	channelization	
of	 MRI	 patient	 data	 into	 the	 SIENNA	 workflow	 is	 summarized	 in	 Fig.3b	 and	 encompasses	 data	
histogram	equalization	by	PREMO,	the	contribution	of	SMOTE	and	adversarial	samples	to	training,	
hyperparameter	tuning	of	training/validation/testing	to	achieve	optimized	performance	metrics	and	
final	evaluation	metrics.	SIENNA's	objective	and	numerical	assessments	were	cross-validated	using	
a	 100	 repeated	 random	 sub-sampling	method	 in	 non-interdependent	multi-subtask	 classification	
analysis	(Fig.3c).	SIENNA's	results	on	clinical	DICOM	MRI	data	across	3	tasks	have	average	accuracies	
of	92	percent	 (Non-Tumor,	SD=5.5	percent),	91	percent	 (GBM,	SD	=	3.2	percent),	and	93	percent	
(MET,	SD	=	2.6	percent).	SIENNA’s	non-interdependent	subtasks	allow	additional	 identification	of	
True	Positive	(TP)	and	True	Negative	(TN)	and	misclassifications	of	False	Positive	(FP)	and	False	
Negative	 (FN)	 for	minimization.	Metrics	such	as	accuracy,	F1	score,	and	Area	Under	 the	Receiver	
Operating	Characteristic	Curve	(AUROC)	[70]	are	used	to	further	track	performance	improvement.	
The	 use	 of	 diverse	 quantitative	metrics	 in	 the	 confusion	matrix	 that	 align	 with	 relevant	 clinical	
performance	metrics	gives	the	model	user	greater	information	for	diagnostic	decisions	and	potential	
health	outcomes.	
	

SIENNA	was	compared	to	SOTA	AI	tumor	detection	models	generated	on	public	BraTS	to	see	
if	they	are	generalizable	to	our	clinical	dataset.	BraTS	MRI	high-quality	dataset	is	prominently	used	
in	 developing	 MRI	 AI	 platforms	 but	 has	 applied	 extensive	 pre-processing	 techniques	 like	 skull	
stripping,	bias	field	correction,	and	noise	reduction.	The	tumor	dataset	consists	of	NIfTI	files	divided	
into	four	different	MRI	modalities,	each	containing	155	sliced	images	of	dimension	240×240×3.	To	
best	compare	SIENNA	versus	other	MRI	SOTA	AI	models,	either	in	binary	or	multi-classification,	we	
first	 retrained	 all	models	 to	 the	 new	 data	 and	 then	 ran	 our	 analysis.	 This	 allows	 us	 to	 evaluate	
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whether	 the	architecture	 itself	 is	underperforming.	 SIENNA’s	ability	 to	determine	 the	absence	or	
presence	 of	 tumors	 versus	 other	MRI	AI	 platforms	was	 evaluated	 on	 a	 subset	 of	 the	 BraTS2020	
dataset	consisting	of	skull-stripped	data	from	20	patients.	SIENNA,	SCENIC,	and	NeuroXAI	notably	
excelled	in	accuracy	and	AUROC,	with	values	reaching	up	to	0.99,	significantly	surpassing	CNN-SVM's	
[44]	peak	accuracy	of	0.78.	(Fig.3d).	Having	compared	the	performance	of	models	on	processed	data,	
we	now	evaluated	models	on	our	clinical	data	(GBM-MET).	A	contrast	in	performance	emerged	as	
SIENNA	 retained	 a	 high	 degree	 of	 accuracy,	 only	 slightly	 reduced	 from	 its	 performance	 on	 the	
processed	data.	On	the	other	hand,	SCENIC	experienced	a	notable	decline,	and	Xception's	metrics	
plummeted	dramatically,	 suggesting	potential	 overfitting	 to	 their	original	 training	datasets.	 CNN-
SVM,	although	not	 the	 frontrunner	on	processed	data,	displayed	a	consistent	performance	across	
both	datasets	(as	summarized	in	Fig.3e).	To	further	challenge	the	capabilities	of	SOTA	models,	we	
evaluated	their	performance	in	a	more	clinical	tumor	typing	task,	distinguishing	between	GBM,	MET,	
and	non-tumor	classifications	 (as	 shown	 in	Fig.3f).	 In	evaluations,	SIENNA,	 calibrated	 for	 clinical	
datasets	 registered	an	accuracy	of	0.91.	Conversely,	Xception,	 originally	 trained	on	 the	 ImageNet	
corpus,	demonstrated	diminished	proficiency,	and	CNN-SVM,	notwithstanding	its	adeptness	with	the	
BraTS	 dataset,	 yielded	 a	 modest	 accuracy	 of	 0.50	 within	 the	 clinical	 paradigm,	 all	 highlighting	
SIENNA’s	high	accuracy	of	up	to	91	percent	and	demonstrated	the	inability	of	other	SOTA	models	to	
generalize	to	this	more	complex	clinical	dataset.	As	evident	in	the	histogram	comparisons,	SIENNA	
outperforms	other	compared	AI	models	and	demonstrates	the	greatest	stability,	that	is	its	ability	to	
evaluate	across	different	datasets	and	processing,	reflected	in	a	low	SD.		

	
Generalizability	 of	 SIENNA	 for	 New	 Patients	 and	 Interpretability	 of	 Predictions.	 SIENNA’s	
development	 on	 a	 small	 DICOM	 dataset	 increases	 the	 challenges	 with	 complex	 physiology.	 This	
includes	features	such	as	white	matter	lesions,	faint	presence	of	tumors,	and	high	presence	of	non-
brain	tissue,	which	are	more	likely	to	be	misdiagnosed	in	small	datasets.	To	better	evaluate	SIENNA	
data	handling,	we	identified	the	most	frequently	occurring	MR	images	across	the	100	runs	for	TP,	TN,	
FP,	and	FN	outcomes	(Fig.	4a).	We	next	performed	a	patient-personalized	assessment	of	the	model's	
performance	on	individual	cases	(Fig.	4b)	typical	in	clinical	practice.	A	detailed	breakdown	of	the	
model's	performance	on	a	patient-specific	level	to	correctly	classify	GBM	and	MET	cases	is	provided	
in	the	evaluation	metrics.	In	Fig.	4b	(left),	the	distribution	of	TP,	TN,	FP,	and	FN	metrics	specific	to	
patients	within	each	bar	is	shown.		In	some	patients	when	slices	with	tumors	represent	the	bulk	of	
data,	no	TN	will	be	present,	and	if	no	FP	or	FN	are	detected	then	only	TP	is	indicated.	We	further	
output	SIENNA’s	diagnostics	on	the	complete	set	of	Z-slices	within	a	patient	data	profile	(Fig.4c).	
This	highlights	more	challenging	regions	for	SIENNA	diagnostics.	The	analysis	of	patient	MRI	tumor	
data	 by	 non-interdependent	 analysis	 of	 2D	 axial	 slices	 from	 intermixed	 Z-sections	 provides	 the	
greatest	opportunity	for	robust	analysis.		
	

To	understand	class	prediction	by	SIENNA,	for	tumor	pathology	features	in	GBM	and	MET	
diagnostics,	we	used	Grad-CAM	[71]	analysis	(Fig.	5a).	This	allows	us	to	visualize	gradients	of	the	
target	 class	 output	 concerning	 the	 feature	 maps	 of	 the	 last	 convolutional	 layer.	 Discriminative	
features	were	interpretably	visualized	by	generating	a	heat	map	that	 identifies	regions	where	the	
model	may	be	over-relying	or	under-relying	for	the	decision-making	process	for	GBM	(Fig.	5b)	and	
MET	(Fig.	5c)	tumors.	The	presence	of	certain	factors,	pattern	of	spread,	multiplicity,	distinct	signal	
characteristics,	 tumor	 size,	 and	 concentration	 in	 a	 particular	 area	 are	 indicative	 of	 a	 positive	
correlation	with	 the	occurrence	or	prediction	of	pathologies.	 In	Fig.	5b,	 heat	maps	of	GBM	slices	
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exhibit	 concentrated	 regions	 of	 interest.	 Misclassified	 GBM	 slices	 either	 fail	 to	 detect	 these	
pathologies	 or,	 when	 they	 do,	 often	misclassify	 them	 as	metastatic	 due	 to	 the	 presence	 of	 skull	
cavities	or	white	matter,	which	may	resemble	tumors.	Conversely,	in	Fig.	5c,	MET	Grad-CAMs	tend	
to	display	a	more	spatial	representation,	accounting	for	tumor	multiplicity	in	the	decision-making	
process.	Consistent	with	these	observations,	Grad-CAM	analysis	of	MET	slices	that	are	 incorrectly	
classified	as	GBM,	show	patterns	 that	are	 tightly	 focused	around	specific	brain	 instances,	and	the	
opposite	also	holds	for	GBMs	misclassified	as	MET.	Such	analysis	allows	continued	optimization	of	
SIENNA	through	adversarial	training	and	on	expanded	datasets.	

	
SIENNA	was	next	examined	in	regard	to	the	number	of	trainable	parameters	versus	various	

other	MRI-based	ML	models	developed	over	 the	past	decade	that	reveal	significant	differences	 in	
model	sizes	(Fig.	6a;	see	also	Table	S1).	We	observe	that	SCENIC	developed	by	our	group	in	2023	
and	 SIENNA	 in	 2024	 in	 this	 study	 have	 significantly	 lower	 model	 size	 compared	 to	 other	
contemporary	models.	We	next	 examined	 inductive	 classification	performance	of	 various	models	
(Fig.	6b)	and	show	that	SIENNA	achieves	the	highest	performance	while	having	the	least	number	of	
parameters,	i.e.,	being	the	smallest	model.	Hence,	we	establish	the	AGI	hypothesis	of	small	models	
achieving	better	generalizability	[16]	in	image	classification	with	a	focus	here	on	MRI-based	tumor	
diagnostics.		

	
DISCUSSION	
	

AI	is	emerging	as	a	companion	diagnostic	for	clinical	medical	imaging,	but	challenges	remain	
to	mitigate	shortcut	learning,	improve	generalizability	to	new	patients,	enhance	explainability,	and	
evaluate	challenging	pathologies.	Here	we	focus	on	addressing	these	challenges	in	the	development	
of	SIENNA,	with	particular	attention	to	clinical	MRI	data	handling,	designing	inductive	TTV	(train-
test-validation)	for	improving	generalizability,	and	reducing	errors	that	are	evident	in	brain	tumor	
pathology	diagnostics	[9,	24,	25].		MRI	ability	to	capture	increasingly	high-resolution	physiological	
detail	 and	 incorporate	 continuing	 technological	 advancements	 make	 it	 indispensable	 to	 patient	
diagnostics	and	 long-term	care.	We	demonstrate	via	SOTA	comparisons	 that	SIENNA’s	ML	 tumor	
diagnostics	platform	can	generalize	to	new	patients	while	trained	on	limited	data.	SIENNA	output	
includes	advances	in	multiple	areas,	summarized	in	Fig.	6c	that	are	1)	improved	clinical	DICOM	data	
handling	 that	captures	detailed	brain	neurophysiology	 features	 for	ML	training	and	validation,	2)	
capability	 to	work	with	small	clinical	datasets,	3)	generalizability	 to	handle	complex	clinical	data,	
over	 processed	 data,	 and	 new	patients,	 4)	 non-interdependent	multi-classification	 of	 tumor	 type	
pathophysiology	and	tracking	of	FP,	FN,	TP,	TN	outcomes,		5)	a	computationally	light,	low	memory	
consumption,	 and	 portable	 design	 to	 benefit	 clinical	 integration	 and	 team	 communication,	 6)	 a	
buildable	AGI	 framework	 for	brain	 tumor	diagnostics	as	well	as	an	ensemble	of	 future	diagnostic	
pipelines,	and	7)	AI-enhanced	learning	and	training	for	clinical	practitioners.		
	

SIENNA	 is	 novel	 in	 its	 generalizability	 to	 analyze	 data	 via	 a	 neural	 architecture	 that	 is	
integrated	 with	 minimal	 DICOM	 data	 preprocessing.	 This	 includes	 development	 of	 a	 histogram	
equalization	algorithm,	PREMO,	optimized	to	retain	feature	details	while	minimizing	noise.	Attention	
to	data	handling	in	our	design	was	critical	to	achieve	a	high	inductive	accuracy	(91-93%)	for	unseen	
patients	in	multiclass	typing	of	tumor	presence,	GBM,	and	MET	neuropathologies	in	a	small	clinical	
dataset.	By	comparative	studies	we	demonstrate	that	this	approach	uniquely	allows	SIENNA	to	be	
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transferable,	retaining	high	accuracy	when	tested	with	an	alternate	highly	processed	BraTS	dataset.	
In	contrast,	 the	state-of-the-art	ML	models	 trained,	and	validated	on	highly	processed	MRI	tumor	
data	were	not	generalizable	to	our	clinical	dataset,	resulting	in	significantly	reduced	accuracy,	F1	and	
AUROC	values.	SIENNA	also	demonstrates	greater	statistical	stability	in	decisions	with	extremely	low	
standard	deviations.	Development	of	SIENNA’s	generalizable	capabilities	is	a	first	step	in	the	planned	
future	expansion	of	SIENNA	to	subtype	tumors,	such	as	GBMs	with	genetic	signatures	in	a	multimodal	
setting	and	MET	analysis	that	informs	on	primary	tumor	source	(Fig.	6c).		By	GradCam	analysis	(Fig.	
5)	SIENNA	recognizes	different	features	in	MRI	tumor	GBM	data	versus	METs	as	expected	for	detail	
oriented	multi-classification.	While	NeuroXAI	 [51]	 uses	 visual	 attention	maps	 for	 explaining	MRI	
analysis	of	brain	tumors,	SIENNA	can	achieve	similar	explainability	by	identifying	similar	locations	
on	the	images	via	GradCam.	We	anticipate	that	increased	training	of	SIENNA,	particularly	with	METs	
of	more	complex	physiology,	will	generate	even	higher	accuracy	for	tumor	multi-classification.	To	
generate	data	outputs	useful	to	neurosurgeons	and	radiologists	we	provide	information	on	TP,	TN	
and	FP,	FN	outcomes	per	patient	diagnosis.	Prediction	outcomes	are	performed	per	slice	for	Z-stack	
axial	scans,	that	provide	the	clinical	expert	the	ability	to	understand	diagnostic	decisions	made	by	
SIENNA.	 Our	 choice	 to	work	with	 2D	 axial	 images	 versus	 generated	 3D	 images	 enables	 SIENNA	
broader	use,	such	as	the	small	clinical	dataset	used	here	or	integrated	diagnostics	during	real	time	
MRI	data	capture.	Furthermore,	the	use	of	2D	axial	images	helps	in	reducing	the	model	size	and	eases	
the	deployment	of	the	model	in	the	clinical	setting.		

	
Our	 training	 and	 analysis	with	 SIENNA	used	 intermixed	 1.5	 and	 3.0	 T	 data	 from	General	

Electric	and	Philips	MRI	machines	respectively.	Significantly	this	indicates	that	an	AGI	architecture	
enhanced	by	retaining	dataset	features	that	are	critical	to	object	representations	need	not	be	specific	
to	 proprietary	 algorithms	 that	 define	 raw	MRI	 data.	 SIENNA	 architecture	 is	 focused	 on	 building	
algorithms	that	better	understand	the	visual	task	differentiations	needed	in	complex	clinical	data.	
SIENNA	 tumor	multi-classification	 in	 small	 datasets	 does	 reveal	 challenges	 surrounding	 distinct	
pathology	features	such	as	white	matter	lesions,	faint	presence	of	tumor,	high	presence	of	non-brain	
tissue,	 and	 low	 resolution.	 These	 were	minimized	 in	 our	 design	 and	 are	 expected	 to	 be	 further	
reduced	with	 larger	 training	 sets	 to	 account	 for	 the	 patient-wise	 data	 variability.	 SIENNA’s	 non-
interdependent	multi-classification	supports	expanded	subtyping	classification	to	bring	 in	genetic	
information	 on	 tumor	 types,	 such	 as	 glioblastomas,	 or	 potentially	 training	 SIENNA	 to	 recognize	
features	that	are	indicative	of	metastasized	tumor	primary	site.	For	the	latter,	MET	studies	indicate	
such	physiologic	correlations	appear	to	exist	[10,19-22].	Changes	to	magnetic	power	alone	either	to	
vastly	increase	feature	detail	as	in	7.0	T	data	or	use	of	lower	Tesla	MRI	systems	for	more	frequent	
monitoring	will	also	increase	demand	for	AGI	companion	diagnostics.	Such	data	will	be	inherently	
noisier	 in	 detail	 or	 lack	 thereof	 emphasizing	 the	 continued	demands	on	data	handling.	 SIENNA’s	
ability	to	work	with	small	clinical	MRI	DICOM	datasets	and	data	handling	methodologies	highlight	an	
AI	architecture	poised	to	expand	further	in	medical	imaging	diagnostic	applications.	

	
	
METHODS		
	
Clinical	Dataset	Description	
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The	de-identified	clinical	data	used	in	this	study	for	training,	validation,	and	testing	of	SIENNA	
were	obtained	as	part	of	an	IRB-approved	collaboration	with	Dr.	Pilitsis		(Albany	Medical	College	IRB	
6127)	 and	 includes	 17	 patients	 (for	 complete	 dataset	 description	 see	 Fig	 3a).	 The	 MRI	 files	
encompass	Tesla	magnetic	field	strengths	of	1.5T	and	3T,	generated	by	General	Electric	SIGNAHDxT	
1.5T,	GE	SIGNA	Artist	1.5T,	and	Philips	Ingenia	3T	MRI	Machines.	Thus,	our	cross-validation	assesses	
SIENNA's	 generalizability	 across	 a	 patient	 cohort	 of	 males/females	 spanning	 middle	 to	 older	
adulthood	 for	GBM	and	MET,	while	encompassing	different	magnetic	strengths	and	MRI	machine	
manufacturers.	All	radiographs	are	axial	plane	slices	and	were	provided	in	the	Digital	Imaging	and	
Communications	in	Medicine,	DICOM,	format.	The	patient	files	were	expert-typed	as	MET	or	GBM	
classes	 and	 included	 multiple	 2D	 image	 scans	 (slices)	 within	 a	 3D	 Z-plane	 series.	 To	 simplify	
metadata	complexities	and	reduce	image	storage	demands,	we	converted	individual	DICOM	files	to	
the	Portable	Network	Graphics	(.png)	format	and	the	DICOM	metadata	was	re-annotated	to	adhere	
to	 a	uniform	 labeling	 format	 for	 all	 17	patients.	The	 format	 includes	 information	 such	as	patient	
number,	 tumor	 presence	 (TUM	 for	 tumor	 and	 NON	 for	 non-tumor),	 tumor	 type	 (MET	 for	
metastasized	 and	 GBM	 for	 Glioma),	 modality	 type	 (FLA	 for	 FLAIR),	 and	 the	 slice	 number	
[P8TUMMETFLA(3)].	 These	 identifiers	 are	 utilized	 post-analysis	 to	 re-align	 data	 outcomes	 from	
individual	2D	images	to	the	original	patient	files	to	benefit	patient-specific	analysis.			
	

To	reduce	noise	in	a	small	dataset,	we	excluded	from	training	and	analysis	the	most	outlying	
scans	in	a	3D	axial	patient	Z-stack.	This	includes	the	uppermost	scans	which	predominantly	contain	
a	 portion	 of	 the	 cranial	 structure,	 and	 the	 lowermost	 scans	which	 include	 the	 neck	 region.	 Such	
images	 were	 outside	 of	 the	 tumor	 identification	 regions.	 	 This	 was	 sufficient	 to	 reduce	 spatial	
intensity	differences	between	skull	and/or	brain	tissues	in	these	regions	that	can	mislead	the	model	
into	learning	incorrect	patterns	that	can	result	in	overfitting	irrelevant	features	[72].	For	example,	
the	distinctive	appearance	of	a	fraction	of	the	skull	that	has	no	or	minimal	brain	tissue	in	one	axial	
slice	versus	a	midbrain	axial	slice	can	impede	generalizability.	This	method	is	preferred	versus	over-
processing	methods	such	as	skull-stripping	of	all	data	seen	in	public	datasets.	A	total	of	386	scans	
from	17	patients	were	sampled	 for	SIENNA	analysis	 including	153	GBM,	125	MET,	and	108	non-
pathological	(non-tumor)	slices.	Slices	of	diverse	dimensions	(ranging	from	356	x	356	to	528	x	528)	
were	standardized	by	resizing	to	240	x	240	pixels	before	being	used	as	input	for	SIENNA	using	the	
OpenCV	library	[73].	The	resizing	ensures	uniformity	in	size	across	all	scans,	which	is	essential	for	
batch	processing	and	memory	management	considerations.	Although	it	may	introduce	aspect	ratio	
distortion	and	smoothing,	we	did	not	observe	a	substantial	reduction	in	downstream	performance	
due	to	resizing.	
	
Model	Training,	Validation,	and	Testing	
	

Evaluation	 of	 training	 performance	 and	 generalizability	 are	 both	 required	 in	 assessing	
machine	 learning	 (ML)	models	 [74,	75]	 to	 ensure	 that	 a	high	 training	performance	does	not	 just	
reflect	a	model’s	ability	to	memorize	specific	training	data	that	may	limit	its	ability	to	generalize	to	
unseen	data.	Our	validation	set	during	SIENNA	training	measures	the	model's	accuracy	on	a	dataset	
different	from	the	training	data	and	includes	an	inductive	validation	set	that	helps	to	tune	the	model	
parameters	and	hyperparameters	for	unseen	data,	avoiding	overfitting	[76].	We	randomly	split	the	
clinical	data	into	training	(60	percent),	validation	(20	percent),	and	test	(20	percent)	datasets	and	
shuffled	 the	 MRI	 scan	 slices	 between	 these	 image	 datasets	 to	 minimize	 the	 chance	 of	 SIENNA	
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unintentionally	 capturing	 a	 subset	 of	 patient-specific	 characteristics	 or	 becoming	 dependent	 on	
select	images	or	sequential	patterns	linked	to	the	patients,	thus	aiding	generalizability.		
	

For	 SIENNA	 training,	 the	 original	 MRI	 dataset	 consists	 of	 233	 slices,	 with	 an	 average	
distribution	of	class	labels	across	100	random	iterative	splits	71	non-tumor,	88	GBM,	and	74	MET	
slices.	 To	mitigate	 the	 class	 imbalance,	we	 employed	 SMOTE	 augmentation	 [66]	 to	 resample	 the	
under-represented	 MET	 and	 non-tumor	 classes,	 applied	 to	 40%	 of	 minority	 class	 samples,	 and	
generated	new	 synthetic	 data.	 SMOTE	 rebalances	 classes	by	 generating	new	data	 examples	 from	
original	data	by	interpolation	of	feature	space	unique	to	minority	classes.	In	a	k-nearest	neighbor	
(KNN),	 ML	 approach	 (KNN)	 Euclidean	 Distance	 is	 used	 to	 represent	 regional	 features	 in	 n-
dimensional	space,	such	that	the	value	of	a	feature	is	dependent	on	KNN	with	k=8	nearest	neighbors	
in	 our	 process.	 For	 each	 pair	 between	 the	 original	 point	 and	 its	 neighbor,	 we	 interpolate	 the	
intensities	to	create	synthetic	images.	These	images	are	inserted	randomly	within	the	minority	class	
data	 to	 restore	 class	 balance	 for	 SIENNA	 during	 training	 and	 testing,	 followed	 by	 performance	
validation	across	100	non-interdependent	data	splits	(Fig.	3d).		

	
To	enhance	SIENNA’s	performance,	we	implemented	a	targeted	augmentation	feedback	loop,	

which	includes	the	iterative	identification	of	frequently	misclassified	MRI	scans	and	their	subsequent	
incorporation	into	the	training	data.	An	FP-FN	occurrence	count	is	kept	for	each	scan	ID,	and	once	it	
surpasses	a	predefined	threshold	of	15,	we	permanently	incorporate	these	scans	into	the	training	
process.	Targeted	augmentation	ensures	that	SIENNA,	observing	4.2	percent	of	images	drawn	from	
a	distribution	different	from	the	training	data,	can	generalize	well	to	unseen	and	unique	pathology	
test	 cases.	 Adapting	 the	 model's	 learning	 process	 to	 accommodate	 these	 distinctive	 data	 points	
enhances	SIENNA's	robustness,	transferability,	and	generalizability	to	new	patients.	

	
Intensity	normalization	across	patient	data	
	

Comparability	 of	 data	 is	 critical	 and	 to	 what	 degree	 MRI	 machine	 source	 that	 includes	
proprietary	algorithms	to	convert	raw	data	of	MR	into	images,	acquisition	expertise	and	parameters	
(slice	thickness,	echo	time),	and	tesla	intensity	variations	(1.5-3.0)	impact	comparability	is	not	fully	
known	[77].	Intrinsic	variations	in	pixel	intensities	for	the	same	tumor	pathologies	and	within	the	
same	modality	across	patients	are	common.		This	variation	can	create	challenges	for	deep	learning	
models	 in	 generalizability	 for	pathology	 companion	diagnostics.	To	address	 these	 challenges	and	
determine	 the	 most	 robust	 method	 for	 data	 harmonization	 in	 MRI	 image	 datasets	 for	 SIENNA	
analysis	we	incorporated	histogram	equalization	[56,	67]	which	is	known	to	benefit	model	accuracy	
and	generalizability	[78,	79].	In	this	study,	we	applied	and	validated	several	histogram	equalization	
techniques	 before	 developing	 our	 own	 improved	 method,	 referred	 to	 as	 PREMO	 (Fig.	 2a).	 This	
includes	Adaptive	Histogram	Equalization	(AHE)	[56],	Contrast	Histogram	Equalization	(CHE)	[68],	
and	 Contrast	 Limited	 Adaptive	 Histogram	 Equalization	 (CLAHE)	 [68]	 which	 were	 tested	 and	
compared	using	the	Structural	Similarity	Index	(SSIM).	In	use	with	SIENNA,	these	approaches	exhibit	
limitations	that	hinder	their	effectiveness	in	improving	image	quality	and	accurately	detecting	and	
characterizing	 tumors.	 A	 key	 limitation	 of	 traditional	 histogram	 equalization	 methods	 is	 their	
insufficient	preservation	of	brain	structure	[80].	These	methods	tend	to	enhance	the	entire	 image	
uniformly,	including	non-brain	regions,	which	compromises	the	visibility	of	critical	brain	structures	
(as	 seen	 in	 Fig	 2a).	 Further,	 the	 existing	 algorithms	demonstrate	 ineffective	 handling	 of	 variable	
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intensity	distributions.	AHE	and	CHE	algorithms	are	designed	 to	enhance	 local	contrast	based	on	
local	 intensity	 distributions	 and	 do	 not	 adequately	 adapt	 to	 the	 variable	 intensity	 distributions	
present	 in	brain	MRI	scans.	These	 limitations	 lead	 to	 inconsistent	and	suboptimal	enhancements,	
further	 impacting	 the	 quality	 of	 the	 images.	 Moreover,	 the	 existing	 algorithms	 lacked	 sufficient	
control	over	enhancement	parameters.	Although	CLAHE,	a	variation	of	AHE	[56],	does	address	some	
of	the	limitations	of	traditional	methods	by	limiting	contrast	enhancement,	it	still	lacks	the	flexibility	
to	selectively	apply	enhancements	based	on	specific	regions	of	interest.	Building	upon	these	existing	
algorithms	 and	 inspired	 by	 CLAHE	 improvements,	 we	 introduce	 PREMO,	 a	 method	 tailored	 for	
redistributing	pixels	across	intensity	levels,	improving	equalization	through	masking,	and	optimizing	
brightness	 and	 contrast	 via	 Gamma	 fine-tuning	 in	 clinical	 MRI	 datasets.	 Specifically,	 PREMO	 is	
designed	to	efficiently	isolate	the	region	of	interest	from	the	background,	applying	adaptive	contrast	
enhancement	between	tumor	pathology	and	tissue.	This	process	enables	control	over	brightness	and	
intensity	redistribution,	effectively	scaling	the	image	to	an	intensity	range	of	0-255.	We	consider	an	
MR	 image,	 represented	as	M(p,	 k),	where	p	would	 typically	be	 represented	as	 a	 tuple	 (𝑥!,	𝑦!),	 p	
belongs	 to	 𝑅2,	 representing	 the	 2D	 spatial	 coordinate	 of	 the	 image,	 denotes	 the	 pixel	 position	
coordinates	 and	 k	 represents	 the	 color	 channel.	 Since	MR	 images	 are	 typically	 grayscale,	 Otsu's	
thresholding	 [81]	 technique	 is	 applied	 to	 convert	 the	 grayscale	 input	 image	 into	 a	 binary	 image.	
Otsu's	method	determines	an	optimal	 threshold	value	by	maximizing	 the	between-class	variance.	
That	 value	 is	 used	 for	 binary	 thresholding	 operation,	which	 can	 be	 expressed	mathematically	 as	
follows:	
	

𝑏(𝑝) = 	 {0, 𝑖𝑓	𝑀(𝑝, 𝑘) < 𝑇"		𝑎𝑛𝑑	255, 𝑖𝑓	𝑀(𝑝, 𝑘) ≥ 𝑇}			 (1)	
	
where	b(p)	denotes	 the	binary	 image	pixel	value	at	position	coordinates	p	and	𝑇"	 represents	 the	
threshold	 value	 determined	 by	 Otsu's	 method,	 which	 selects	 a	 threshold	 in	 such	 a	 way	 that	 it	
minimizes	 intraclass	 variance	 between	 the	 foreground	 and	 background	 of	 the	 scan.	 Following	
thresholding,	morphological	opening	is	performed	on	b(p)	using	a	5x5	kernel,	which	suits	a	balance	
between	noise	removal	and	preserving	brain	area	to	further	refine	the	image	and	eliminate	noise,	
which	 is	 used	 to	 create	 a	 mask	 of	 the	 scan	 to	 distinguish	 the	 background	 and	 brain	 area.	 The	
morphological	opening	operation	can	be	mathematically	represented	as:	
	

𝑚𝑎𝑠𝑘	(𝑝) = (𝑏	 ⊖ 𝐾)⊚ 	𝐾	 ⊚ 	𝐾	 ⊚	. . .⊚ 	𝐾	(𝑛	𝑡𝑖𝑚𝑒𝑠	)		 	 	(2)	
	

Here,	mask(p)	represents	the	resulting	mask	image,	b	denotes	the	binary	image	obtained	through	
thresholding,	K	represents	the	5x5	kernel,	and	n	denotes	the	number	of	 iterations	(in	this	case,	3	
iterations)	for	the	morphological	opening	operation.	The	morphological	opening	operation	involves	
erosion	 (⊖)	 followed	 by	 dilation	 (⊚),	 which	 removes	 small	 noise	 elements	 and	 smoothens	 the	
regions	of	 interest.	Erosion	erodes	the	boundaries	of	 the	 foreground	regions	 in	 the	binary	 image,	
while	dilation	expands	the	boundaries	back	using	the	same	kernel,	eliminating	small	gaps	or	holes.	
	

Variations	in	pixel	intensity	range	can	occur	due	to	differences	in	MRI	machine	software	or	
other	parameters	[82],	where	the	intensity	range	is	represented	as		[𝐺#	, (𝐺% − 1)]	,	where		𝐺#	is	the	
minimum	intensity	value	and	𝐺% − 1	is	the	maximum	intensity	value.	The	probability	density	function	
(PDF)	 of	 intensity	 i	 (Eqn.	 3)	 provides	 details	 about	 the	 distribution	 and	 occurrence	 patterns	 of	
various	pixel	intensity	levels	within	and	across	the	MRI	images.	The	cumulative	probability	function	
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(CDF)	 generates	 a	 comprehensive	 measure	 of	 the	 accumulated	 probabilities	 associated	 with	
observing	 different	 intensity	 levels	 across	 the	 entire	 range	 of	 the	MR	 image	 (Eqn.	 4)	 [83].	 	 The	
traditional	histogram	equalization	transformation	function	T	(Eqn.	5)	maps	the	CDF	of	each	pixel	of	
M	(i,	k)	to	a	uniform	distribution	to	produce	the	equalized	scan	𝐸𝑄&'(	(Eqn.	6).			
	
																																					𝑃𝐷𝐹	𝑀(𝑖, 𝑘) = )!

)
		𝑤ℎ𝑒𝑟𝑒		𝐺# ≤ 𝑖 ≤ 	 (𝐺% − 1)				 	 (3)	

	
𝐶𝐷𝐹	𝑀(𝑖, 𝑘) 	= 	∑*"#1&+*$ 𝑃𝐷𝐹	𝑥(𝑖)												 	 	 (4)	

	
𝑇	 = 	𝐺# 	+ (	(𝐺% − 1) − 𝐺#) × 𝐶𝐷𝐹	𝑥(𝑖)			 	 (5)	

	
		𝐸𝑄&'( = {𝑇(𝑀(𝑖, 𝑘)	|	∀	𝑀(𝑖, 𝑘)	𝜖	𝐺}					 	 (6)	

	
where,	
𝑛& 	represents	the	total	number	of	pixels	with	intensity	value	i	in	M(i,	k)	
n	is	the	total	number	of	pixels	
G	represents	a	set	of	possible	values	for	M(i,	k),	which	are	the	pixel	intensity	values	in	the	image	
	
Subsequently,	 a	 contrast	 stretching	 operation	 is	 applied	 to	normalize	 the	pixel	 values	within	 the	
range	of	0	to	255,	thereby	enhancing	the	image	contrast	[84].	This	operation	aims	to	optimize	the	
visual	appearance	of	the	image	by	adjusting	the	pixel	intensities.	The	contrast	stretching	operation	
is	expressed	by	the	following	equation:	
	

𝐶𝑆&'(	(𝑝, 𝑘) = X ,-!%&(!,0)2'&)(!&345.785)
'83(!&345.785)	2'&)	(!&345.785)

Y × 255				 (7)	

where,	min(pixel.	val)	and	max(pixel.	val)	represent	the	darkest	and	brightest	pixel	intensity	values,	
respectively,	in	the	equalized	image	after	applying	the	histogram	equalization	process.	
	
Here,	 𝐶𝑆&'((𝑝, 𝑘)	 in	 Eqn.	 7	 denotes	 the	 contrast	 stretched	 pixel	 value	 in	 the	 output	 image.	
Furthermore,	to	improve	the	overall	brightness	of	the	image	and	achieve	fine	control	over	its	visual	
appearance,	we	apply	a	Gamma	correction	[74].	Gamma	correction	in	PREMO	involves	raising	each	
pixel	value	to	the	power	of	the	specified	𝛾	value.	Gamma	correction	is	expressed	by	the	equation:	

											𝑜𝑢𝑡(𝑝, 𝑘) = 	 X9:!%&	(!,0)
;<<

Y
	=		
× 255			(8)	

In	Eqn.	8,	𝑜𝑢𝑡(𝑝, 𝑘))	represents	the	pixel	value	in	the	output	image	and	𝛾	signifies	the	value	used	for	
the	correction,	set	𝛾	to	3.	By	incorporating	the	contrast	stretching	and	Gamma	correction	technique	
used	in	PREMO,	we	can	enhance	the	contrast	and	adjust	the	overall	brightness	of	the	MRI	image.		
To	confirm	the	retained	quality	of	processed	images	after	histogram	equalization,	we	have	utilized	
the	Structural	Similarity	Index	(SSIM)	[57]	to	evaluate	the	structural	similarity	between	the	original	
scans	(M(p,k))	and	the	corresponding	enhanced	scans	(out(i,	j)).	SSIM	Index	is	computed	as.	
	

																							𝑆𝑆𝐼𝑀(𝑀, 𝑜𝑢𝑡) = [𝑙(𝑀, 𝑜𝑢𝑡)]> 	. [𝑐(𝑀, 𝑜𝑢𝑡)]? . [𝑠(𝑀, 𝑜𝑢𝑡)]г			(9)	
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where	 l(M,	 out),	 c(M,	 out),	 and	 s(M,	 out)	 represent	 the	 luminance,	 contrast,	 and	 structure	
components,	 respectively,	 and	 α,	 β,	 and	 г	 are	 weighting	 parameters	 that	 determine	 the	 relative	
importance	of	each	component.	SSIM	index	of	PREMO	enhanced	scan	is	found	to	be	0.86	(Fig.	2a).	
SSIM	values	range	from	-1	to	1,	with	a	value	of	1	indicating	perfect	structural	similarity	between	two	
images.	 An	 SSIM	 of	 0.86	 suggests	 a	 substantial	 degree	 of	 structural	 congruence	 between	 the	
processed	and	reference	images.	However,	it	is	imperative	to	note	that	this	metric	neither	conveys	a	
linear	percentage	similarity	nor	provides	insight	into	the	image's	smoothness	or	sharpness.	Instead,	
it	focuses	on	structural	information	preservation.		
	
SIENNA	Architecture	

SIENNA	is	a	portable	and	computationally	efficient	platform	capable	of	1)	processing	clinical	
data	 on	 par	 with	 high-accuracy	 and	 low	 FP/FN	 standards	 necessary	 in	 clinical	 companion	
diagnostics,	 and	2)	accurately	detecting	 tumor	presence	and	categorizing	 the	pathology	as	either	
GBM	or	MET.	The	architecture	of	SIENNA	is	outlined	in	Fig.	1e	and	the	workflow	is	detailed	in	Fig.	3b.		
Data	preprocessing	has	been	described	and	includes	exclusion	of	outlying	slices,	PREMO	histogram	
equalization,	and	SMOTE	augmentation	to	restore	class	balance.	SIENNA	employs	a	multilayer-linear	
CNN	architecture	for	feature	extraction,	constructed	using	the	Sequential	API	in	TensorFlow/Keras.	
This	 architecture	 comprises	 12	 feature	 extraction	 layers,	 encompassing	 convolutional	 layers,	
activation	 layers,	 max-pooling	 layers,	 and	 dropout	 layers.	 Additionally,	 it	 comprises	 four	
classification	layers,	including	flattened,	dense,	dropout,	and	output	layers.	The	SoftMax	activation	
function	is	applied	to	produce	class	probabilities,	estimating	the	class-specific	probability	for	each	
input	MRI	scan	slice.	These	layers	and	feature	parameters	are	tuned	using	hyperas	[60]		(Fig.	2d)	and	
demonstrate	an	efficient	exploration-exploitation	tradeoff	[75].	

Given	SIENNA's	multi-class	functional	nature,	categorical	cross-entropy	is	chosen	as	the	primary	loss	
function	for	error	estimation.	Moreover,	we	have	incorporated	false	positive	(FP)	and	false	negative	
(FN)	metrics	as	auxiliary	loss	functions	during	the	tuning	process.	This	is	especially	pertinent	in	the	
realm	of	medical	diagnostics,	where	the	consequences	of	FP	and	FN	outcomes	can	be	of	substantial	
risk	to	the	patient’s	health	[76].	The	composite	training	loss	function	(𝐶AB8&))	is	formulated	as	follows	
for	an	n-class	classification	task:	

𝐶!"#$% =	𝐶&'()"*+$,!*+,!".*)	 + 𝐹𝑃	()"*+$,!*+1!.23",			!".*1%3%4!.23") + 𝐹𝑁()"*+$,!*+1%3%4!.23",			!".*1!.23")			(10)	

	

(11)	

	

(12)	

	

	

where	N	is	the	number	of	samples	in	the	MRI	dataset,	n	is	the	number	of	classes,	𝑦!B4C&DA4C,E& 	is	the	
true	label	of	the	class	𝑗	of	the	𝑖A"sample.				

Eqn.	(11)	and	Eqn.	(12)	represent	the	binary	cross-entropy	and	categorical	cross-entropy	used	for	
tumor	detection	(binary	classification)	and	typing	(multi-type	classification),	respectively.			
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We	apply	the	Adam	stochastic	gradient	descent	[88]	algorithm	for	iterative	parameter	optimization.	
This	choice	of	 the	optimizer	 is	made	 through	an	exhaustive	exploration	across	various	stochastic	
optimizers	 [88]	 such	 as	 stochastic	 gradient	 descent	 (SGD)	 [90],	 Root	 Mean	 Square	 Propagation	
(RMSprop)	[91],	Adaptive	gradient	descent	(adagrad)	[92].	We	implement	early	stopping	[93]	for	
each	 training	 instance	 during	 hyperparameter	 tuning	 to	 terminate	 the	 training	 process	 if	 the	
validation	 performance	 remains	 unchanged	 or	 degrades	 in	 15	 consecutive	 epochs.	 The	 training	
process	is	conducted	on	a	Microsoft	Windows	11	workstation	equipped	with	an	Intel(R)	Core	(TM)	
i7-10750H	six-core	CPU,	16	GB	of	system	RAM,	and	a	single	NVIDIA	GTX	1650	GPU	boasting	4	GB	of	
GPU	RAM.	

Mitigating	Overfitting	in	Small	Datasets	Using	Adversarial	Examples	

To	enhance	and	optimize	SIENNA	generalizable	diagnostics	across	diverse	patients’	 image	
datasets,	we	tackle	the	issue	of	overfitting	[94]	by	introducing	adversarial	training	[95].		This	method	
introduces	perturbations	in	the	training	data,	which	enables	SIENNA	to	handle	small	variations	in	
feature	input	and	perform	effectively	with	new	MRI	data.	We	use	the	variable	ℎF 	to	represent	the	
neural	network	model,	𝑥8C7		represent	the	generated	adversarial	example,	and	𝑦ABG4 	represent	the	
true	label.	The	goal	is	to	maximize	the	loss	function	via	generated	adversarial	examples	that	improve	
SIENNA’s	performance.	 	Here	we	utilize	the	Fast	Gradient	Sign	Method	(FGSM).	By	calculating	the	
loss	gradient	of	 the	model,	we	produce	perturbations	 in	 the	direction	of	 this	 gradient,	which	are	
intended	to	maximize	the	loss,	and	then	apply	these	over	MRI	data	samples.	Randomly	selected	seed	
samples	from	a	shuffled	dataset	are	used	for	a	forward	pass	to	obtain	the	predicted	labels.	This	can	
be	represented	as:	

															𝑦(!B4C	|	8C7) 	= 	 ℎF(𝑥8C7	)																														(13)	

The	 loss	 function	 (Eqn.	 13)	 which	 quantifies	 the	 discrepancy	 between	 the	 true	 labels	 and	 the	
predicted	𝑦!B4C	|	8C7	,	varies	based	on	the	classification	type,	as	calculated	by	(11)	and	(12).		

Given	this	loss	function	(Eqn.	13),	the	gradient	which	pinpoints	the	direction	where	𝑥8C7	should	be	
modified	 to	 maximize	 the	 discrepancy	 between	 the	 true	 label	 and	𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠		 (Eqn.	 14)	 can	 be	
represented	as:	

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠 = 	 I%(J,	J'()*)
I3+*,

																	(14)	

To	ensure	consistent	perturbation	magnitudes,	we	normalize	these	gradients	using	a	small	constant,	
(𝜖K),	to	prevent	division	by	zero	and	is	represented	(Eqn.	15)	as:		

																																																							𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)LB' =	 (B8C&4)AM
MAC((B8C&4)AM)N	O-

,	where		𝜖K	=		102P			(15)	

Following	this,	the	adversarial	example	𝑥8C7	is	updated	by	adding	the	element-wise	product	of	the	
gradient	gradients	and	the	perturbation	strength	𝜖.	This	can	be	represented	mathematically	in	Eqn.	
16	as:	

										𝑥8C7 	← 	 𝑥8C7 +	𝜖;. 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡𝑠)LB'		(16)	

where	 𝜖;represents	 the	 perturbation	 strength,	 with	 the	 value	 set	 to	 0.1.	 This	 step	 allows	 us	 to	
manipulate	the	MR	image	data	input	in	a	targeted	manner	to	produce	perturbed	examples	that	are	
designed	to	purposefully	mislead	the	SIENNA's	predictions.	By	applying	this	perturbation,	we	not	
only	explore	SIENNA’s	sensitivity	to	small	changes	in	the	MR	image	data	but	also	focus	on	the	key	
identifiable,	discriminative	features,	ignoring	irrelevant	noise,	and	ensuring	that	SIENNA	is	robust	
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against	types	of	noise	 it	might	misclassify	 in	the	test	of	 the	MRI	data	set.	Although	this	technique	
improves	the	generalization	ability	of	the	CNN	model	in	SIENNA,	a	trade-off	is	mandatorily	needed	
between	the	robustness	and	the	accuracy,	where	an	overly	robust	model	may	decrease	accuracy	on	
normal	MR	image	data	input	[96].		

	

DATA	AVAILABILITY	
Access	to	clinical	data	is	restricted	to	ensure	patient	privacy	and	confidentiality.	The	BraTS	dataset	
is	available	at	https://www.med.upenn.edu/cbica/brats2020/registration.html	.	
	
CODE	AVAILABILITY	
Access	to	the	complete	source	code	for	SIENNA	is	restricted	due	to	existing	patents.	A	Python	script	
outlining	essential	pre-processing	steps	for	MRI	test	slices	(including	PREMO,	which	is	patented)	and	
pre-trained	weights	of	SIENNA	is	available	at	https://github.com/ITrakNeuro/SIENNA-Nature.git.		
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FIGURE	LEGENDS	
Fig.	 1	Overview	of	 SIENNA	Data	Handling	 and	 CNN	Deep	 Learning	Architecture	 for	Tumor	
Diagnostic	Multi-classification.	a.	Clinical	diagnostics	requires	generalizability	that	is	lost	by	over-
processing	 data	 and	 restricts	 future	 applications.	 b.	 SIENNA	 applies	 non-interdependent	 multi-
classification	to	detect	tumors,	and	GBM	or	MET	types.	The	confidence	percentage	representing	the	
level	of	certainty	is	obtained	across	these	three	classes	for	each	2D	MRI	scan	of	a	dataset.	Patient	
diagnostics	is	spatially	detailed	since	each	slice	of	the	MRI	data	receives	a	probability	assignment.	c.	
Small	dataset	analysis	benefits	by	removal	of	low	information	flanking	Z-stacks.	d.	Data	modification	
techniques	utilized	 for	model	 robustness.	 (top	 to	bottom)	Histogram	plot	 comparison	before	and	
after	 equalization	 of	 pixel	 intensities	 and	 contrast	 sharpening	 using	 PREMO;	 adversarial	
perturbation	with	magnitude	0.1	 imperceptible	 to	human	eyes.	e.	SIENNA	architecture	 is	a	multi-
layer	linear	CNN	deep	learning	model	optimized	via	hyperparameter	tuning.	The	architecture	layer	
roles	incorporate	both	spatial	and	depth	dimensions	and	are	color-coded.	
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Fig.	2	Contrast	Enhancement	and	Performance	Optimization	of	SIENNA.	a.	SSIM	index	of	PREMO	
compared	 with	 pre-existing	 traditional	 histogram-based	 equalization	 algorithms	 show	 an	
approximate	 increase	of	 78	percent,	 indicating	higher	 retention	of	 scan	 complexities.	 SSIM	 index	
takes	into	consideration	structural	and	textural	information	to	quantify	the	similarity	between	un-
processed	scans	and	equalized	scans.	b.	PREMO	contrasts	equalized	MRI	scan	examples,	with	plots	
showing	redistribution	of	otherwise	imbalanced	intensities.	c.	Original	scans	alongside	adversarial	
counterparts	 produced	 through	 normalized	 gradient	 perturbations	 scaled	 by	 a	 factor	 of	 𝜖.	 	 The	
magnitude	of	the	perturbation	was	chosen	to	be	0.1,	convolved	with	the	gradient	of	the	categorical	
cross-entropy	loss	of	input	image	to	produce	each	adversarial	example.		d.	Parameter	search	spaces	
are	pruned	using	HYPERAS.	
	
Fig.	3		Clinical	Data	Study	and	Comparative	Analysis	of	SIENNA	with	State	of	the	Art.	SIENNA	
outperforms	 state-of-the-art	 with	 high-accuracy	 multi-classification	 tumor	 analysis	 on	
multiple	dataset	types.	a.	Summary	of	clinical	data	used	 for	analysis	of	SIENNA.	All	patients	are	
Caucasian,	age	categorized	into	non-overlapping	five	year	brackets,	and	weight	is	in	kilograms,	1.5	
or	 3.0	 Tesla	 acquired	 on	 clinical	 General	 Electric	 and	 Philip's	MRI	machines.	 b.	 The	workflow	of	
SIENNA	integrates	minimal	data	pre-processing,	histogram	equalization,	and	adversarial	training	in	
a	hyper-parameter-tuned	network	to	generate	a	range	of	useful	performance	metrics.	c.	SIENNA’s	
ability	to	detect	GBM	and	MET	in	our	minimally	processed	clinical	dataset	with	an	accuracy	of	91	
percent	and	93	percent	cross-validated	across	100-fold.	 	d.	Performance	comparison	using	5-fold	
cross-validation	for	tumor	detection	of	the	BraTS	dataset	shows	that	SIENNA	performs	comparably	
with	SCENIC	and	Xception	and	outperforms	CNN-SVM	(N=5).	e.	Performance	comparison	using	5-
fold	 cross-validation	 for	 clinical	 binary	 classification	 reveals	 SIENNA's	 strong	 accuracy,	 while	
SCENIC’s	 performance	 declines	 and	 Xception	 overfits	 to	 data.	 NeuroXAI	 performs	 decently	 but	
struggles	with	generalization.		f.	Performance	Comparison	of	multi-classification	using	5-fold	cross-
validation:	 SIENNA	 achieved	 91	 percent	 accuracy	 in	 clinical	 tumor	 typing,	while	 Xception	 shows	
reduced	proficiency,	and	NeuroXAI	demonstrates	decent	performance	with	an	unstable	accuracy	of	
80	percent	(N=5).	
	
Fig.	4	Personalized	Evaluation	of	SIENNA’s	Performance	True	 to	Clinical	Setting.	 a.	Analysis	
reveals	that	a	limited	set	of	false	positive	(FP)	and	false	negative	(FN)	images	with	unique	pathology	
characteristics	 and	 overbearing	 traces	 of	 the	 skull	 remain	 challenging	 for	 diagnostics.	 Extended	
training	 of	 SIENNA	 to	 larger	 datasets	 is	 expected	 to	 reduce	 these	 occurrences.	 	 b.	 Performance	
metrics	are	evaluated	across	patient-specific	cases	and	organized	based	on	accuracy.	Stacked	bars	
identify	the	proportion	of	accurate	and	misdiagnosed	classifications,	represented	as	TP	(successful	
identification	of	positive	class),	TN	(successful	identification	of	negative	class),	FP	(incorrect	positive	
identification),	 and	 FN	 (incorrect	 negative	 identification).	 Patient-wise	 accuracy	 for	 GBM	 lies	
between	0.8-1.0	percent	 and	 for	MET	between	0.75-1.0	percent,	where	 the	 accuracy	 is	1.0	when	
SIENNA	detects	no	FP	or	FN.		c.	Confidence	percentages	mapped	across	all	scans	of	a	patient	Z-stack	
with	selected	images	shown	above	for	three	each	representative	MET	(MP1,	MP3,	MP5)	and	GBM	
(GP3,	GP5	and	GP8)	patients.	
	
Fig.	 5	 SIENNA	 Captures	 Discriminative	 Tumor	 Classification	 Features	 to	 Expedite	 Clinical	
Workflow.		a.	Grad-CAM	architecture	for	explainability.	Grad-CAM	analysis	reveals	feature	maps	of	
the	last	convolutional	layer	to	identify	discriminative	features.	In	terms	of	FP	or	FN,	these	regions	
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inform	on	where	the	model	may	over-rely	in	decision	output.	Early	decision	capabilities	for	GBM	and	
MET	classification	can	alert	pathologists	to	scan	for	primary	cancers.		Normally	this	action	is	delayed	
due	 to	poor	or	unreliable	MRI	data	and	 the	need	 for	 additional	diagnostics.	b.	Heat	map	analysis	
diagrams	for	GBM.	c.		Heat	map	analysis	diagrams	for	MET.	
	
Fig.	6	SIENNA	AGI	Integrates	Data	Handling	and	Multiclass	Diagnostics.		a.	Trends	in	learnable	
parameter	count	 from	2015	 to	2024,	across	brain	 tumor	and	non-tumor	related	medical	 imaging	
applications	b.	Plot	visualizes	correlation	between	parameter	count	and	accuracies	of	state-of-the-
art	models	used	for	our	comparative	analysis.	Line	chart	overlay	visualizes	F1	score	and	accuracy	
metrics.	SIENNA	demonstrates	superior	efficiency	with	fewer	parameters.	Conversely,	Xception	and	
CNN-SVM,	despite	their	higher	parameter	counts,	exhibit	inferior	performance	compared	to	SIENNA.			
c.	Overview	of	the	current	and	expandable	potential	of	SIENNA	in	diagnostic	pipelines.	SIENNA	is	a	
high-accuracy	companion	diagnostic	for	tumor	multiclass	classification.	SIENNA’s	ML	architecture	
and	integrated	optimized	data	handling	are	optimal	for	the	analysis	of	clinical	DICOM	MRI	data	and	
adaptability	to	different	datasets	and	diagnostic	pipelines.	SIENNA	also	offers	AI	enhanced	learning	
and	training	for	clinical	practitioners.	
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