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3National Center for Supercomputing Applications, University of Illinois
Urbana-Champaign, Urbana, IL, USA.

*Corresponding author(s). E-mail(s): maikol.solis@ucr.ac.cr;
https://orcid.org/0000-0002-8776-6142;

Contributing authors: https://orcid.org/0000-0003-0778-5800;
https://orcid.org/0000-0003-4342-6223;

Abstract

The COVID-19 pandemic underscored the importance of mass testing in mitigating
the spread of the virus. This study presents mass testing strategies developed
through machine learning models, which predict the risk of COVID-19 contagion
based on health determinants. Using the data from the 2021 ”Actualidades”
survey in Costa Rica, we trained models to classify individuals by contagion risk.
After theorize four possible strategies, we evaluated these using Monte Carlo
simulations, analyzing the distribution functions for the number of tests, positive
cases detected, tests per person, and total costs. Additionally, we introduced
the metrics, efficiency and stock capacity, to assess the performance of different
strategies. Our classifier achieved an AUC-ROC of 0.80 and an AUC-PR of 0.59,
considering a disease prevalence of 0.26. The fourth strategy, which integrates
RT-qPCR, antigen, and RT-LAMP tests, emerged as a cost-effective approach for
mass testing, offering insights into scalable and adaptable testing mechanisms for
pandemic response.
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1 Introduction

During the SARS-Cov-2 pandemic, local and global authorities underscored the impor-
tance of mass testing as a non-pharmacological measure to control the spread of the
disease. In this article, we propose population-level strategies of disease mass testing
that leverage mechanisms for predicting individual contagion risk. We hypothesize that
the infection status depends on a prior set of individual and collective factors (Kelly,
2021; Shahbazi et al., 2020; Gesesew et al., 2021; Abate et al., 2020).

Approximately between 5 and 10 days is the latent period between the infection/in-
cubation, and spreading phases for COVID-19 (Tindale et al., 2020). Any mass testing
strategies must consider the presence of pre-symptomatic and asymptomatic indi-
viduals (Oran and Topol, 2021, 2020; Slifka and Gao, 2020). It includes additional
factors must be considered, such as clinical history, population behavior, and geography,
transforming the optimization problem into a non-linear resource allocation problem
with memory (Kırkızlar et al., 2010; Du et al., 2021). Therefore, the efforts to control
the spread of the disease must focus on detecting and isolating these populations to
effectively curb disease spread before solutions like vaccines become available.

In the shortage of resources during the pandemic, health institutions required
reliable testing at scale technologies (Mercer and Salit, 2021). The gold standard
for COVID-19 testing, RT-qPCR, proved the most reliable with its high sensitivity
and specificity (Yang and Rothman, 2004). However, clinical centers reliance on
specialized laboratories and trained staff, as well as reagent availability, hampers its
global applicationWiencek et al. (2020). Antigen-based tests offer a less expensive,
rapid alternative but suffer from lower sensitivity (Mercer and Salit, 2021; Peeling
et al., 2021; CDC, 2020). Another molecular testing technology, RT-LAMP, provides
sensitivity and specificity comparable to RT-qPCR, with lower biosafety requirements
and faster results Mautner et al. (2020); Amaral et al. (2021).

In Costa Rica, COVID-19 testing predominantly relied on RT-qPCR, despite its
limitations and high costs Segura-Ulate et al. (2022). The 7-day average positivity rate
reached up to 60% in September 2020, with testing capacity remaining constant until
December 2020 (Núñez-Corrales and de Camino, 2021). In September 2020, regulations
for antigen-based testing were introduced (MINSA, 2021b), but their use only began
in December 2021. Despite increased RT-qPCR testing capacity in the private sector,
the positivity rate remained above 10%. Costa Rica did not implement a mass testing
strategy against COVID-19, even though it could help control the pandemic at a lower
societal and economic cost compared to mobility restrictions.

A more balanced approach partitions the population into high-risk and low-risk
groups based on their exposure risk, tailoring testing strategies accordingly. The
high-risk group includes symptomatic individuals, healthcare workers, and essential
workers (Haley et al., 2023). RT-qPCR or similar technologies like RT-LAMP testing
is crucial for this group to prevent superspreading events. The low-risk group consists
of individuals with limited exposure, such as those who telecommute or practice social
distancing. This group is the target for mass testing campaigns to capture all the events
in batches (Millioni and Mortarino, 2021). We propose two strategies for the low-risk
group: a pooling technique and a multiple testing scheme. The pooling technique divides
the total number of individuals into different pools, testing each group to maximize
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the number of tests with reduced time, money, and chemical reagent costs (Millioni
and Mortarino, 2021). The multiple testing scheme involves weekly or biweekly tests,
which has been shown to reduce positivity rates and sick leaves (Plantes et al., 2021;
Haigh and Gandhi, 2021; Larremore et al., 2021).

The partition of the high and low risk group are defined through a machine learning
algorithms (Escobar et al., 2022; Park et al., 2022). The classifier allows optimizing
each strategy for each group reducing the overall number of tests applied and costs. The
machine learning will use the data from the “Actualidades 2021” survey (Escuela de
Estad́ıstica, 2021), which has socioeconomic and demographic information of a sample
of people living in Costa Rica in the month of October 2021. Also, it has evaluations
about the self-infections, perception of the disease and other broader topics.

This paper is organized as follows. Section 2 describes the determinants of health
and the conceptual framework for testing strategies. Section 3 describes the data
collection process, data wrangling, and the machine learning models used to predict
COVID-19 contagion risk. Section 4 presents the results of the machine learning models
and the proposed mass testing strategies. Finally, Section 5 presents the conclusions
and future work.

2 Related work

2.1 Determinants of health

The World Health Organization (WHO) conceptual framework for health determinants
guides the selection of variables used in this study (World Health Organization, 2010).
The framework broadly categorizes health determinants into two groups: structural
determinants and intermediate determinants. Structural determinants encompass the
social, economic, and environmental conditions that influence health, while intermediate
determinants directly affect health outcomes.

The circumstances in which individuals are born, live, and grow, known as the
determinants of health, can result in health inequalities and inequities, leading to
vulnerable populations or groups at risk of poor physical, psychological, or social
health. Vulnerable populations often face greater health risks and disparities, especially
during pandemics like COVID-19. The COVID-19 pandemic highlighted the significant
challenges and disruptions faced by vulnerable populations. Social determinants of
health, such as poverty, unemployment, poor housing conditions, and lack of access to
healthcare services, exacerbated the impact of the pandemic, resulting in increased
risks of disease, mortality, and long-term health consequences (Lima-Serrano, 2022).

From the literature, we can identify the following determinants of health that are
relevant to the spread and severity of COVID-19:
Socioeconomic Factors: Ethnicity, low socioeconomic status, low educational attain-

ment, low income, and unemployment have been associated with higher risks of
COVID-19 infection, hospitalization, and mortality (Oppenheimer-Lewin et al.,
2022; Abrams et al., 2022). Poverty is strongly linked to COVID-19 risk and
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adverse outcomes, compounded by life stage, poor housing conditions, and lack of
access to healthcare (Abrams et al., 2022).

Age and Resilience: Older adults have been disproportionately affected by COVID-
19, experiencing higher mortality rates (Oppenheimer-Lewin et al., 2022). However,
they may experience less psychological distress compared to other groups due
to resilience and effective coping strategies (Oppenheimer-Lewin et al., 2022).
Resilience, influenced by social determinants of health, plays a vital role in adapting
to adversity during the pandemic (Oppenheimer-Lewin et al., 2022).

Mental Health: Mental health disorders increase vulnerability to COVID-19, exac-
erbating symptom severity and leading to increased suicide rates during the
pandemic (Lima-Serrano, 2022). High loneliness, social isolation, and depres-
sive symptoms are associated with lower resilience and risk factors for chronic
diseases (Oppenheimer-Lewin et al., 2022).

Housing and Homelessness: Overcrowded housing, poor building conditions, lack
of access to clean water and sanitation, and inadequate infrastructure contribute to
the spread and severity of COVID-19 (Galanis and Hanieh, 2021). Homeless pop-
ulations face challenges in accessing healthcare, hygiene supplies, and vaccination
services (Abrams et al., 2022).

Food Insecurity and School Closures: Food insecurity increased during the pan-
demic, affecting access to balanced meals, especially among children (Abrams
et al., 2022). School closures exacerbated this issue, and food delivery measures
were implemented to address the need (Abrams et al., 2022). Furthermore, school
closures had a detrimental impact on educational achievement, particularly for
children facing adverse social determinants (Abrams et al., 2022).

Other hidden factors can contribute as well to the infection and spreading of Sars-
Cov-2. In the next sections we will describe the determinants of health defined in our
dataset.

2.2 Conceptual framework for testing strategies

Let us first define some common notations used across the whole study. Denote as DP

be the condition of having the disease (i.e. infected) and DN the condition of being no
infected. The prevalence is estimated by P(DP ) such that P(DN ) = 1−P(DP ). Let also
N be the total population to undergo testing. Thus, N × P(DP ) are the true infected
and N×(1−P(DP )) the true healthy people. Denote as Rj

P and Rj
N the results positive

and negative of each test, respectively. In addition, let j = PCR, Ag or LAMP denote
each available testing technology, RT-qPCR, Antigen or RT-LAMP respectively. We
can thus define sensitivity the proportion of people infected who are correctly identified
as positive in the test, or P(Rj

P |DP ). Specificity constitutes the proportion of people

not infected who are correctly identified as negative in the test, or P(Rj
N |DN ).

According to the literature, we use RT-qPCR (sensitivity ≥ 90%, specificity ≥
90%), Antigen (sensitivity ≈ 80%, specificity ≥ 90%), and RT-LAMP (sensitivity ≥
90%, specificity ≥ 95%).

We can improve the mass testing effectiveness by using techniques like pooling or
multiple testings Pooling strategies, like the one-dimensional (1D) protocol, involve
mixing samples taken in batches and analyzing them together (Dorfman, 1943). This
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method is useful only at low prevalence levels and may suffer from limitations such as
loss of sensitivity due to dilution or sample collection artifacts Millioni and Mortarino
(2021); Mercer and Salit (2021). Multiple testing, on the other hand, offers an alternative
when pooling is infeasible. The optimal testing frequency and isolation periods are
influenced by factors like transmission rates and disease prevalence, which are often
unpredictable Du et al. (2021); Sandmann et al. (2020).

During the pandemic, the Costa Rican Ministry of Health followed CDC recommen-
dations and defined guidelines for antigen-based testing as an alternative to RT-qPCR
in both public and private health services (MINSA, 2021b; CDC, 2020). A key distinc-
tion between the two systems is the requirement of a confirmatory RT-qPCR test for
negative antigen-based results in the public sector, while the private sector is exempt
from this. High-risk patients are classified based on the presence of symptoms and
epidemiological nexus, and are directed to the public healthcare system, while low-risk
patients are directed to the private system.

A successful mass testing strategy should rapidly screen individuals while minimizing
false negatives and positives. We propose a two-step strategy that first classifies patients
into high and low risk categories, and then applies a suitable adaptive mass testing
strategy per group. The strategy relies on patient data to predict risk categories, with
symptomatic patients or those with an epidemiological nexus automatically classified
as high-risk. Based on the predicted risk category, different testing strategies are
applied to high and low-risk groups. The effectiveness of each strategy depends on
the prevalence, sensitivity, specificity, positive predictive value (PPV), and negative
predictive value (NPV) of each test, as well as the accuracy of the predictive model.

3 Methods

This section describes the data collection process, data wrangling, and the machine
learning models used to predict COVID-19 contagion risk. We also describe the
proposed mass testing strategies and the simulation framework used to evaluate their
effectiveness.

3.1 Dataset

The Department of Statistics in the Universidad de Costa Rica, in collaboration
with senior students, conducted a national survey on COVID-19 and other related
socioeconomic and opinion in Costa Rica. They performed the survey on October
2021. They included a probabilistic sample of 2003 adults who are mobile phone users.
Due to the ongoing COVID-19 pandemic, traditional face-to-face interviews were not
feasible. Therefore, the survey relied on institutional resources, such as random digit
dialing, a random mobile phone number generator, and the use of 60 VPNs (Virtual
Private Networks) to enable IP (Internet Protocol) telephony for personnel to conduct
interviews from their personal computers at home. The survey was designed in Spanish
and took approximately 15 minutes to complete.

The survey collected information to risk exposure towards COVID-19, diverse
opinions about the pandemic, and socioeconomic information. The survey design,
refinement, interview execution, coding and tabulation took four-month to complete.

5

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24305223doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.02.24305223
http://creativecommons.org/licenses/by-nc-nd/4.0/


3.2 Data Wrangling

For processing the data in the survey, we used the pandas library in Python. The
original set consisted of 129 columns with 2003 observations. We removed columns that
were not relevant to the analysis such as date or survey identification. We removed
variables related opinions about the country situation, hypothetical situations or
possible biases around mental health and COVID-19. Due to the relevance of the study,
we prefer to focus on a actual risk factors related to the disease.

We prefixed all the variables with sd_ or id_ representing the structural and
intermediate determinants of the health respectively. Then, after the prefix we added a
code representing the determinant of health. Table 1 shows all the coded variables.

Table 1: Prefixes for determinants of health
used in the variables.

Structural Intermediate

sd_edu: Education id_beh: Behavioral
sd_eco: Economic id_bio: Biological
sd_occ: Occupation id_psy: Psychosocial
sd_inc: Income id_mat: Material
sd_eth: Ethnicity
sd_gen: Gender
sd_cul: Cultural

In the survey, the variable rp_1 was used to identify if the respondent had COVID-
19. We recorded into the new variable covid19 as True, if rp_1 is “Si, lo tuvo” (“Yes,
I had it”), “Si, lo tiene” (“Yes, I have it”). Otherwise, False if rp_1 is “No”. The
variable collects the disease condition given by the respondent, and it is not a medical
diagnosis.

The next step was to clean inconsistencies, re-leveling and re-coding variables.
To re-level the variables we use 2 (High risk), 1 (Moderate risk) and 0 (Low risk).
Binary variables were re-coded as 1 (True) in the presence of risk or condition and 0
(False) otherwise. The pre-processing merged almost all variables due to they presented
questions around a specific topic. In those cases, we used the rounded median of the
values to create a new variable. After this, we finished with 29 variables related with
the health and environmental status, socioeconomic status, behavioral attitude towards
the pandemic and cultural aspects like religion. The pre-processing pipeline imputed
the missing variables with the mean for the numeric variables: weight (15.38%), height
(6.64%), member in a household with 18+ years old (3.2%) and total members in the
household (4.24%). Only two categorical needed imputation using the most frequent
value: Perception of contagion (3.25%) and anxiety symptoms (0.25%). The complete
set of variables and their meaning used in the study are in the supplementary Appendix
in Table A1.
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3.3 Machine learning models

We used AutoML library from H2O (LeDell and Poirier, 2020), to automatically adjust
the classification model. The hyperparameters pipeline tuning used Random grid search.
We split the dataset into 80% for training and 20% for testing stratified by the variable
covid19. The pipeline included Distributed Random Forest (including Extremely
Randomized Trees), Generalized Linear Models, XGBoost, Gradient Boosting Machines
and Stacked Ensembles1. We excluded Deep Learning models because the relative
small size of the dataset, and the high computational cost of the training process for
little gains in the accuracy.

The pipeline generated, optimized and tested the mentioned models for predicting
the condition of having COVID-19, the remaining variables are the features (Table A1).
It used a five-fold cross-validation, followed by a testing with held-out dataset. These
variables have 1464 negatives and 539 positives indicating a 26.90% of prevalence.
Given the imbalanced proportion of positive, we used the Precision-Recall area under
the curve (AUC-PR) as criteria to select the best model. The AUC-PR is a metric
that combines the precision and recall of a model, and it is more robust on these cases.

3.4 A Proposal for Mass Testing Strategy

Following the technical details from Soĺıs et al. (2022) we denote a high-risk classification
outcome by H, and a low-risk one by L. The model’s sensitivity P(H|RP ) and specificity
P(L|RN )

In the context of antigen-based testing, we denote as S−5 the event of a patient
having less than 5 days since symptom onset and S+5 otherwise. We assume that S−5

and S+5 are independent of high-risk conditions or test results. In our computational
experiments, we set P(S+5) with values of 25%, 50%, and 75%. We define P(S−5) =
1 − P(S+5). A greater proportion of RT-qPCR tests are used directly on high-risk
patients when P(S+5) increases, and the number of antigen-based tests used at the
group level increases when P (S−5) increases.

Table 2 summarizes the four strategies considered in this study. The first strategy
is a baseline used by The Costa Rica government during the pandemic. The second
strategy is using a pooling technique over the low risk population to maximize coverage
and reduce costs. The third strategy is a consecutive antigen testing, which was a
common practice in the private sector. The fourth strategy is a saliva testing with
RT-LAMP, which is a promising alternative to RT-qPCR.

1The list of hyperparameter optimized for each algorithm is available in the H2O website https://docs.
h2o.ai/h2o/latest-stable/h2o-docs/automl.html
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Table 2: Strategies settings in the simulation framework.

Risk level

Low (L) High (H)

Strategy 1:
antigen-based testing

No testing � Patients in S−5 are
tested with an Antigen
test.
– Positive results RAg

P |H
go to quarantine.
– Negative results
RAg

N |H are tested with a
RT-qPCR test.

� Patients in S+5 are
tested with a RT-qPCR
test.

Strategy 2:
pooling

Dorfman pooling tech-
nique with 5 samples.
Both negatives and posi-
tives are declared as is.

Same as Strategy 1.

Strategy 3:
consecutive antigen
testing

All patients are tested
with an Antigen test:

� Negative results RAg
N |L

are accepted as is.

� Positive results RAg
P |L

are retested again within
one or two weeks.

Same as Strategy 1.
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Risk level

Low (L) High (H)

Strategy 4:
saliva testing using RT-
LAMP

Same as Strategy 3. Split the High risk group
into: Regular High risk
(H) and the Essential
workers (E) (medics,
police, etc.).

� The Essential workers
all are tested with RT-
qPCR

All the regular High risk
group is tested with RT-
LAMP:

� Positive results
RLAMP

P |H go to quaran-
tine.

� Negative results
RLAMP

N |H need a
confirmatory with
RT-LAMP.

3.5 Mathematical formulation for massive testing strategy
simulation

The first element to consider is the number of high-risk and low-risk patients, NH and
NL respectively. We assume that the number of patients is a random variable with a
Binomial distribution. Thus, we can define:

NH =

N∑
n=1

bern(P(H))

NL =

N∑
n=1

bern(P(L)).

where bern(p) represents the outcome of Bernoulli random variable with probability p.
We will denote the number of tests applied for each technology as T j

i , where j stands
for the testing technology to use or any indication about the variable, and i = 1, 2, 3, 4
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stands for the strategy. The same notation applies for the number of positive cases
reported, P j

i , and the cost, Cj
i .

3.6 Number of tests

For the number of tests for each strategy we can estimate the following:

Strategy 1

In the high-risk group, we need to separate the number of Antigen and RT-qPCR test
given they belongs to S−5 or S+5.

TAg
1 =

NH∑
n=1

bern(P(S−5)) (1)

TPCR
1 = (NH − TAg

1 ) +

TAg
1∑

n=1

bern(P(RAg
N |H)). (2)

Strategy 2

Antigen-based tests remain unchanged at TAg
1 as Equation (1). We divide the RT-qPCR

tests in this strategy into TPCR
1 as Equation (2) and tests for the pooling strategy.

The prevalence in the low-risk group is the false omission rate pL = 1− P(RN | L).
With an assumed constant sensitivity of RT-qPCR tests P(RPCR

P | DP ), the number
of positive groups is calculated as:

P groups
2 =

NL∑
n=1

bern
([

1− (1− P(RPCR
P |DP ) pL)

g
])

The total number of tests required for pooling is:

TPooling
2 = g

(
1

NL
+ P groups

2

)
Thus, the overall number of RT-qPCR tests is:

TPCR
2 = TPCR

1 + TPooling
2

Strategy 3

The antigen-based test count, considering re-testing, has two distinct parts. In the
case of the high-risk group, we adopt the Strategy 1, denoted as TAg

1 . Conversely, for
the low-risk group, an initial test is applied to all. Those testing positive are then
subjected to a second test. Consequently, the aggregate antigen-based test count for
re-testing is represented by:

TRetest
3 =

NL∑
n=1

(
1 + bern

(
P(RAg

P |L)
))

10
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Here, P(RAg
P |L) is the probability of being positive given a member of the low-risk

group. The total count for antigen-based tests is obtained as:

TAg
3 = TAg

1 + TRetest
3 (3)

Strategy 4

In this strategy we introduce a new testing technology, RT-LAMP, which is applied to
the essential workers like doctors, nurses, police officers, etc.

Define the number of Essential workers as NE as

NE =

N∑
n=1

bern(P(E)),

where P(E) is the probability of being an essential worker. For simulation purposes, we
set as 1%. The value is a conservative estimate based on the 1.25% of total healthcare
workers in Costa Rica: 2470 in the Ministry of Health, 62814 in the public social
security from a total population of 5213374 inhabitants (MINSA, 2021a; CCSS, 2021;
Brenes Camacho et al., 2013). Therefore we define

NH =

N−NE∑
n=1

bern(P(H))

NL = N −NE −NH

The number of Antigen-based tests are estimated with Equation (3) as Strategy 3.
The other estimates per technology are:

TPCR
4 = NE

TLAMP
4 = NH +

NH∑
n=1

bern(P
(
RLAMP

N |H
)
)

3.7 Positive detection

The second key element is the number of positive cases detected by each strategy. As
before we split the models per strategy and risk level.

Strategy 1

We simulate the number of negative individuals with antigen-based given they were
classified as high-risk as
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NRAg
N |H =

TAg
1∑

n=1

bern(P(RAG
N |H)).

The number of cases reported is given by:

P Reported
1 = (NH − TAg

1 )

+

N
R

Ag
N

|H∑
n=1

bern(P(RPCR
P |H))

+

NH−TAg
1∑

n=1

bern(P(RPCR
P |H))

Strategy 2

According to Dorfman (1943), the probability of having a positive test overall into the
groups are:

p Pooling
2 = P(RPCR

P |DP ) · P(RPCR
P | ML)

+ (1− P(RPCR
N |DN )) · (1− P(RPCR

P | ML))

where we denoted P(RPCR
P |DP ) as the sensitivity and P(RPCR

N |DN ) as the specificity
of the RT-qPCR test respectively.

For the number of positive cases reported, we have again two components. First,
we have the same number as Strategy 1 for the high-risk population. For the low-risk
branch, we need to consider only those groups with positive test outcomes. We estimate
the probability that their individual test in the Dorfman scheme attains a positive
result,

PReported
2 = PReported

1

+

g pPooling
2∑
n=1

bern(P(RPCR
P |ML)).

Strategy 3

First, we have the same number of positive cases as Strategy 1 for the high-risk
population. For the low-risk branch, we need to consider only the test that were
positives in the first or second round. This estimate is defined as

P Reported
3 = P Reported

1 +

ML∑
n=1

bern(P(RAg
P | NL)

2
)
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Strategy 4

PReport
4 =

NME∑
n=1

bern(P
(
RPCR

P

)
)

+

NMH∑
n=1

bern(P
(
RLAMP

P | MH

)
) · (1 + bern(P

(
RLAMP

N | MH

)
))

+

NML∑
n=1

bern(P(RAg
P | ML)

2
)

3.8 Total cost, tests per person and performance across
strategies

The total costs for each strategy are computed as the sum of the costs for each
technology. Table 3 summarizes the formulas used in each case

Table 3: Costs

Strategy Cost Test per person

1 C1 = CAg TAg
1 + CPCR TPCR

1 T per person
1 =

TAg
1 + TPCR

1

NH

2 C2 = CAg TAg
2 + CPCR TPCR

2 T per person
2 =

TAg
2 + TPCR

2

N

3 C3 = CAg TAg
3 + CPCR TPCR

1 T per person
3 =

TAg
3 + TPCR

1

N

4 C4 = CPCRTPCR
4

+ CLAMPTLAMP
4 + CAgTAg

4

T per person
4 =

TAg
4 + TPCR

4 + TLAMP
4

N

3.9 Strategies assumptions

We define the cost of a single RT-qPCR test as CPCR = $100 and the cost of an
antigen-based test as CAg = $50, assuming a total population of N = 1000 individuals.
We use the logit transformation to estimate the probabilities of being classified as
high or low risk depending on the testing technology and the classifier’s sensitivity
and specificity. The overall cost, number of tests per person, and number of positive
reported cases for each strategy are defined in the following sections. The proposed
mass testing strategy provides a framework for informed decision-making in the context
of COVID-19 testing and can be adapted based on the specific characteristics of the
population and testing technologies available.

In the next sections we present the results for the costs, number of positive cases
and number of tests per person for each strategy. We also show two measures called
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stock capacity and efficiency. The stock capacity is the number of tests that can be
bought per dollar. The efficiency is the number of positive cases detected per dollar
spent. We refer to the reader to Soĺıs et al. (2022) for all the technical details.

4 Results

4.1 Model’s metrics and results

We present in Table 4, the summary statistics of the processed data.

Table 4: Summary statistics

Numeric variables Mean (S. D.) Min Max

id_bio_age 41.17 (15.75) 18 87
id_bio_bmi 25.83 (4.29) 12.58 70.63
id_mat_adult_prop 0.82 (0.22) 0.17 1.00

Risk

Categorical variables Low (0) Moderate (1) High(2)

id_beh_percep_contag 507 (25.31%) 707 (35.30%) 789 (39.39%)
id_beh_percep_severity 627 (31.30%) 614 (30.65%) 762 (38.04%)
id_beh_physical_act 211 (10.53%) 814 (40.64%) 978 (48.83%)
id_beh_risk_other 1650 (82.38%) 267 (13.33%) 86 (4.29%)
id_beh_risk_personal 1903 (95.01%) 82 (4.09%) 18 (0.90%)
id_psy_anxiety_sympt 1986 (99.15%) 14 (0.70%) 3 (0.15%)
id_psy_vacc_myths 1869 (93.31%) 77 (3.84%) 57 (2.85%)
sd_cul_holiday_season 86 (4.29%) 209 (10.43%) 1708 (85.27%)
sd_edu_level 778 (38.84%) 764 (38.14%) 461 (23.02%)
sd_inc_income_level 367 (18.32%) 557 (27.81%) 1079 (53.87%)

Boolean variables False True

id_bio_bubble_contag 1275 (63.65%) 728 (36.35%)
id_bio_comorbidities 1219 (60.86%) 784 (39.14%)
id_bio_disability 1837 (91.71%) 166 (8.29%)
id_bio_out_bubble_contag 485 (24.21%) 1518 (75.79%)
id_bio_gender 1076 (53.72%) 927 (46.28%)
id_bio_vacc_status 1837 (91.71%) 166 (8.29%)
sd_cul_religion 993 (49.58%) 1010 (50.42%)
sd_eth_is_costa_rican 237 (11.83%) 1766 (88.17%)
sd_inc_income_problems 1685 (84.12%) 318 (15.88%)
sd_occ_current_job 628 (31.35%) 1375 (68.65%)
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After this feature engineering, classification models like logistic regression, Random
Forest, Gradient Boosting and XGBoost were adjusted with their respective hyperpa-
rameters. Using these models, we obtained in the test sample under a decision threshold
of 0.3037 (defined based on the maximization of the F1 metric). Taking this threshold
into account, we estimate some metrics of interest in Table 5. Also, the confusion
matrix is shown in Table 6.

Table 5: Selected machine learning model
summary metrics.

Metric Value Metric Value

Prevalence 0.2690 F1 0.6564
Threshold 0.3285 F2 0.7338
Sensitivity 0.7963 AUC 0.8002
Specificity 0.7679 AUC PR 0.5980
Precision 0.5584 Accuracy 0.7756

Figure 1 shows the receiver operating characteristic (ROC) and precision-recall
(PR) curves for the model. The ROC curve plots the false positive rate (1 - specificity)
against the true positive rate (sensitivity or recall). The PR curve plots the recall
against the precision. Both use different thresholds to calculate the metrics. The area
under the of curve (AUC) of the ROC curve for this model is 80.02% indicates a better
classification than random. The area under the PR curve (AUC-PR) compares the
false positive rate is more useful than the AUC when the dataset is imbalanced, as the
number of true negatives results are not used. The AUC-PR for this model is 59.80%.
It means the model predicts correctly the double of positive cases against using a
biased classifier with only 26.90% (prevalence) of being positive.

To determine the most relevant variables inside the model, we quantified the SHAP
(SHapeley Additive Explanation) values and variable importance analysis.

The SHAP values estimate the computing the marginal contribution of each feature
to the model’s output, while holding all other features constant. This allows us
to understand how each feature influences positively (red) or negatively (blue) the
prediction. Figure 2 has these values for our model.

Table 6: Confusion matrix (Act/Pred) with a
threshold of 0.3037.

Predicted

False True Error Rate

Actual
False 225 68 0.2321
True 22 86 0.2037

Total 247 154 0.2244
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Fig. 1: ROC and PR curves for the classification model.

The most prominent feature on the plot is the contagion inside the bubble. This is
expected given the multiple reports around the influence of physical proximity to spread
the disease (Fazio et al., 2021). The age has an inverse relation where older people have
fewer chances to get infected. This is a natural consequence of a relative young workforce
in Costa Rica. The third most relevant variable is the severity perception. Here people
with moderate or high scores (4 or plus) tend to have less chance of infections.

A relevant variable is the income level. Notice that high income individual has more
chances of being infected. In a broader sense, this group has more resources to travel
abroad, commute to other regions in the country or interact with other people due to
work related tasks. Religion become a relevant feature. The informational campaigns
mainly around Catholics cause a decrease of the infection chances. Other measures
become informative like BMI, education level or contagion outside the bubble.

In Figure 3, we present the variable importance analysis. We opted to use the
permutation variable importance method described in Fisher et al. (2019). The method
permutes every variable one-at-time and estimates the difference on the prediction
gains against the fitted model. Give the random nature of the procedure, we took 100
repetitions for each variable and then normalized to sum up 1. In the case the

The results agree with the SHAP values, where the contagion inside the bubble is
the most predominant feature. Then they follow severity perception, age, contagion
outside the bubble and income level.

4.2 Monte Carlo simulations of mass testing strategies

To evaluate the economic and epidemiological impact of the strategies developed in
Soĺıs et al. (2022), we used the data that was used for training the model, as was the
number of positives and negatives estimated by the model to give an approximation of
the prevalence of COVID-19 for the date of the data. We also used the sensitivity and
specificity of the model that was previously developed. Using Monte Carlo simulation,
we simulated different epidemiological and cost scenarios (1000 simulations) using 1000
people to test the strategies.
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Fig. 2: SHAP values for the classification model.
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As seen in Figure 4, the distribution of the number of positives detected tends to
be higher for strategy 4, followed by strategy 2 and with similar behaviors to each
other, strategies 1 and 3. This tells us, in particular, that in terms of positive people
reported with COVID-19, the one with the highest number of reported people would
be strategy 4, where this behavior is more evident when the proportion of people with
symptoms greater than 5 days grows.

Figure 5 shows that the strategy that performs the least tests per person is strategy
2 under any proportion of symptom onset greater than 5 days in the population. This
is followed by strategy 3 and the order of strategy 1 and 4 depending on the proportion
of occurrence of symptoms.
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Fig. 3: Variable importance for the classification model.
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Fig. 4: Distribution of the number of positive reports by strategies and by proportion
of people with onset of symptoms greater than 5 days
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Fig. 5: Distribution of the number of tests carried out by strategies and by proportion
of people with onset of symptoms greater than 5 days
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Figure 6 shows the distribution of costs for each strategy. As can be seen, the one
that would have the lowest cost would be strategy 1, followed by strategies 4, 2 and 3.
However, it is important to note that although one strategy is cheaper than another,
its effectiveness must also be evaluated through their ability to detect positives. This
can be seen better in figure 7:
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Fig. 7: Distribution of efficiency by strategy and by proportion of people with onset
of symptoms greater than 5 days

Figure 7 shows a graph of efficiency (efficiency defined as the ability of each strategy
to detect one positive case per dollar spent) and stock capacity (represents the number
of tests that can be purchased given a budget). As shown, the strategy with the highest
efficiency and highest stock capacity is strategy 2. Strategies 1 and 4 tend to be efficient
at detecting a positive case but not as efficient when considering a budget. Strategy 3
tends to be inefficient and with a not-so-high stock capacity.

5 Conclusions

This paper has investigated the use of mass testing strategies tailored to specific
risk groups and testing technologies to improve the efficiency and impact of testing
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campaigns during pandemics. In the case of Costa Rica, the proposed strategies were
designed according to the MINSA official guidelines.

We targeted the risk groups using a machine learning model trained with the
determinants of health extracted from the “Actualidades 2021” survey. The model
achieved an AUC of 0.80 and an AUC-PR of 0.59, indicating a better classification
than random. The most relevant variables were contagion inside the bubble, severity
perception, age, contagion outside the bubble and income level. The model can be used
to predict the risk of COVID-19 infection in Costa Rica and can be adapted to other
countries by using local data.

The proposed mass testing strategies were evaluated using a Monte Carlo simulation.
The results showed that the strategy with the highest efficiency and highest stock
capacity is Strategy 2. Strategies 1 and 4 tend to be efficient at detecting a positive
case but not as efficient when considering a budget. Strategy 3 tends to be inefficient
and with a not-so-high stock capacity. For Strategy 4, the inclusion of RT-LAMP as a
testing technology has shown to be a promising alternative to address the limitations
of antigen-based tests. RT-LAMP offers high sensitivity and specificity comparable to
RT-qPCR but at a lower cost and with simpler equipment and reagents. Additionally,
RT-LAMP provides results within an hour, facilitating faster decision-making and
contact tracing efforts.

This approach has the potential to enhance the limited resources assigned to MINSA
and other health institutions during pandemics. We need to work on the inclusion of
other epidemiological variables like the number of cases, hospitalizations and deaths to
improve the model’s performance. Furthermore, the adoption in the national guidelines
of machine learning mechanism can help to handle the uncertainty and speed-up the
decision during pandemics.
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Appendix A Cleaned variables

Table A1: Cleaned variables. Boolean variables are 0 (False) and 1 (True), while
Categorical variables are as 0 (Low Risk), 1 (Moderate Risk) and 2 (High Risk).

Variable name Meaning Type

covid19 The person had COVID-19:
No (0), Yes (1).

Boolean

id_beh_percep_contag The self-perception of COVID-
19 contagion: Low (0), Moder-
ate (1), High (2).

Categorical
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Variable name Meaning Type

id_beh_percep_grav The self-perception of COVID-
19 severity: Low (0), Moderate
(1), High (2).

Categorical

id_beh_risk_others The risk behaviors towards
others during the pandemic
like physical contact or social-
distancing: Low (0), Moderate
(1), High (2).

Categorical

id_beh_risk_personal The personal risk behaviors
during the pandemic like wear-
ing mask or handwashing: Low
(0), Moderate (1), High (2).

Categorical

id_bio_bubble_contag Contagion inside your bubble:
No (0), Yes (1).

Boolean

id_bio_out_bubble_contag Contagion outside your bubble
(coworkers or other relatives):
No (0), Yes (1).

Boolean

id_bio_death_covid Death of a coworker or relative
due to COVID-19: No (0), Yes
(1).

Boolean

id_beh_physical_act Physical activity: Active (0),
Moderate (1), Sedentary (2).

Categorical

id_psy_vacc_myths General believes or myths
towards vaccination like it
produces infertility, decreases
the health, contains chips,
etc.: Disagree (0), Neutral (1),
Agree (2).

Categorical

id_bio_vacc_status Vaccinated (0) or not vacci-
nated (1).

Boolean

id_psy_anxiety_sympt Days with anxiety symptoms
during the week, None (0), 1–3
days (1), 4–7 days (2).

Categorical

sd_inc_income_problems The family had income prob-
lems due to the COVID-19: No
(0), Yes (1).

Boolean
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Variable name Meaning Type

sd_inc_income_level The current household income
level: High income (0), Middle
income (1), Low income (2).

Categorical

sd_cul_holiday_season In the holidays, the person will
be alone (0), with only their
family bubble (1) or it will visit
other relatives (2).

Categorical

id_bio_gender Feminine (0) or masculine (1). Boolean

id_bio_age Age Integer

id_bio_bmi Body mass index (BMI)
equals to, weight/height2

where weight is in kilograms
and height in meters.

Float

(
kg

m2

)

sd_edu_level Educational level: University
or more (0), High school
including dropouts (1) and
Elementary school or less (2).

Categorical

sd_occ_current_job The person it is just studying,
staying at home or retired (0),
or it has a job or is looking for
one (1).

Boolean

sd_eth_is_costa_rican The person is Costa Rican (1)
or not (0).

Boolean

id_bio_comorbidities The person has comorbidities
like diabetes, hypertension, etc.
(1) or not (0)

Boolean

sd_cul_religion The person declares some affil-
iation to some religion (1) or
not (0).

Boolean

id_bio_disability The person has some disability
(1) or not (0).

Boolean

id_mat_adult_prop Proportion of adults
in the household esti-
mated with the formula
18+ members/total members.

Float ([0,1])
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Española de Geriatŕıa y Gerontoloǵıa 57 (5): 264–268. https://doi.org/10.1016/j.
regg.2022.08.002 .

Oran, D.P. and E.J. Topol. 2020, September. Prevalence of Asymptomatic SARS-
CoV-2 Infection: A Narrative Review. Annals of Internal Medicine 173 (5): 362–367.
https://doi.org/10.7326/M20-3012 .

Oran, D.P. and E.J. Topol. 2021, May. The Proportion of SARS-CoV-2 Infections
That Are Asymptomatic: A Systematic Review. Annals of Internal Medicine 174 (5):
655–662. https://doi.org/10.7326/M20-6976 .

25

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24305223doi: medRxiv preprint 

https://doi.org/10.1016/j.enfcli.2022.05.001
https://doi.org/10.1016/j.enfcli.2022.05.001
https://doi.org/10.1186/s12985-020-01435-6
https://doi.org/10.1038/s41576-021-00360-w
https://doi.org/10.1038/s41576-021-00360-w
https://doi.org/10.3390/diagnostics11010068
https://doi.org/10.1016/j.regg.2022.08.002
https://doi.org/10.1016/j.regg.2022.08.002
https://doi.org/10.7326/M20-3012
https://doi.org/10.7326/M20-6976
https://doi.org/10.1101/2024.04.02.24305223
http://creativecommons.org/licenses/by-nc-nd/4.0/


Park, M.S., H. Jo, H. Lee, S.Y. Jung, and H.J. Hwang. 2022, April. Machine Learning-
Based COVID-19 Patients Triage Algorithm Using Patient-Generated Health Data
from Nationwide Multicenter Database. Infectious Diseases and Therapy 11 (2):
787–805. https://doi.org/10.1007/s40121-022-00600-4 .

Peeling, R.W., P.L. Olliaro, D.I. Boeras, and N. Fongwen. 2021, February. Scaling
up COVID-19 rapid antigen tests: Promises and challenges. The Lancet Infectious
Diseases 0 (0). https://doi.org/10.1016/S1473-3099(21)00048-7 .

Plantes, P.J., M.S. Fragala, C. Clarke, Z.N. Goldberg, J. Radcliff, and S.E. Gold-
berg. 2021, February. Model for Mitigation of Workplace Transmission of
COVID-19 Through Population-Based Testing and Surveillance. Population Health
Management 24 (S1): S16–S25. https://doi.org/10.1089/pop.2020.0322 .

Sandmann, F.G., P.J. White, M. Ramsay, and M. Jit. 2020, December. Optimizing
Benefits of Testing Key Workers for Infection with SARS-CoV-2: A Mathematical
Modeling Analysis. Clinical Infectious Diseases 71 (12): 3196–3203. https://doi.org/
10.1093/cid/ciaa901 .
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Soĺıs, M., C. Pasquier, S. Núñez-Corrales, G. Madrigal-Redondo, and A. Gatica-
Arias. 2022, September. Estimating the performance of mass testing strategies for
COVID-19: A case study for Costa Rica.

Tindale, L.C., J.E. Stockdale, M. Coombe, E.S. Garlock, W.Y.V. Lau, M. Saraswat,
L. Zhang, D. Chen, J. Wallinga, and C. Colijn. 2020, June. Evidence for transmission
of COVID-19 prior to symptom onset. eLife 9: e57149. https://doi.org/10.7554/
eLife.57149 .

Wiencek, J.R., C.L. Head, C.D. Sifri, and A.S. Parsons. 2020, October. Clinical
Ordering Practices of the SARS-CoV-2 Antibody Test at a Large Academic Medical
Center. Open Forum Infectious Diseases 7 (10): ofaa406. https://doi.org/10.1093/
ofid/ofaa406 .

26

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24305223doi: medRxiv preprint 

https://doi.org/10.1007/s40121-022-00600-4
https://doi.org/10.1016/S1473-3099(21)00048-7
https://doi.org/10.1089/pop.2020.0322
https://doi.org/10.1093/cid/ciaa901
https://doi.org/10.1093/cid/ciaa901
https://doi.org/10.15517/rev.biol.trop..v70i1.47407
https://doi.org/10.22088/cjim.11.0.495
https://doi.org/10.1038/s41591-020-1046-6
https://doi.org/10.1038/s41591-020-1046-6
https://doi.org/10.7554/eLife.57149
https://doi.org/10.7554/eLife.57149
https://doi.org/10.1093/ofid/ofaa406
https://doi.org/10.1093/ofid/ofaa406
https://doi.org/10.1101/2024.04.02.24305223
http://creativecommons.org/licenses/by-nc-nd/4.0/


World Health Organization. 2010. A conceptual framework for action on the social
determinants of health. pp. 76 .

Yang, S. and R.E. Rothman. 2004, June. PCR-based diagnostics for infectious dis-
eases: Uses, limitations, and future applications in acute-care settings. The Lancet.
Infectious Diseases 4 (6): 337–348. https://doi.org/10.1016/S1473-3099(04)01044-8 .

27

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24305223doi: medRxiv preprint 

https://doi.org/10.1016/S1473-3099(04)01044-8
https://doi.org/10.1101/2024.04.02.24305223
http://creativecommons.org/licenses/by-nc-nd/4.0/

	Introduction
	Related work
	Determinants of health
	Conceptual framework for testing strategies

	Methods
	Dataset
	Data Wrangling
	Machine learning models
	A Proposal for Mass Testing Strategy
	Mathematical formulation for massive testing strategy simulation
	Number of tests
	Strategy 1
	Strategy 2
	Strategy 3
	Strategy 4


	Positive detection
	Strategy 1
	Strategy 2
	Strategy 3
	Strategy 4


	Total cost, tests per person and performance across strategies
	Strategies assumptions

	Results
	Model's metrics and results
	Monte Carlo simulations of mass testing strategies 

	Conclusions
	Acknowledgements

	Cleaned variables

