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Abstract  27 

Rhinoviruses (RVs) are one of the most commonly detected viruses in people with 28 

acute respiratory illness (ARI). Despite their significant disease burden, RV 29 

epidemiology at national levels is underexplored. The circulation patterns of RV types 30 

throughout a population and the role of virus genotype in this distribution are ill-31 

defined. We generated 803 VP4/VP2 gene sequences from rhinovirus-positive 32 

samples collected from ARI patients, including both in-patient and outpatient cases, 33 

between 1st January and 31st December 2014 from eleven surveillance sites across 34 

Kenya and used phylogenetics to characterise virus introductions and spread. RVs 35 

were detected throughout the year, with the highest detection rates observed from 36 

January to March and June to July. We detected a total of 114 of the 169 currently 37 

classified types. Our analysis revealed numerous virus introductions into Kenya 38 

characterized by local expansion and extinction, and extensive spatial mixing of types 39 

within the country due to the widespread transmission of the virus after an introduction. 40 

This work demonstrates that in a single year, the circulation of rhinovirus in Kenya was 41 

characterized by substantial genetic diversity, multiple introductions, and extensive 42 

geographical spread. 43 

Introduction 44 

Rhinoviruses (RVs) are one of the leading cause of acute upper respiratory tract 45 

illnesses, commonly referred to as "common cold"1,2. RV infections occur all year, 46 

although they peak in early autumn and late spring in many temperate countries, and 47 

in the rainy seasons in tropical countries2,3. RVs cause 8 – 12 episodes of respiratory 48 

infections in children and 2 – 4 episodes in adults each year 4–6, posing significant 49 

social and economic burden due to time lost from work or school, medical attendance, 50 

and reduced performance of regular duties7.  Despite the high prevalence and clinical 51 
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importance of RV infections, little is known about the patterns of occurrence of RV 52 

types, as well as the role of virus type in the RV distribution.  53 

RVs belong to the genus Enterovirus of the family Picornaviridae. The virus 54 

genome consists of ~7200 nucleotides and encodes four structural proteins (VP4, 55 

VP2, VP3 and VP1) and seven non-structural proteins (2A, 2B, 2C, 3A, 3B, 3C and 56 

3D)2. The single-stranded positive sense RNA genome is enclosed within a protein 57 

capsid that is made up of sixty copies of each of the four structural proteins, of which 58 

VP1, VP2, and VP3 are exposed outside, while VP4 is completely masked in the 59 

capsid2,8,9. The three surface-exposed capsid proteins carry the antigenically 60 

important sites2,8,9. Genetic variation in the VP4/VP2 and VP1 genomic regions have 61 

been useful in molecular typing10,11 and epidemiological investigations12–14. As of 15th 62 

March 2023, a total of 169 RV types have been described and classified into three 63 

distinct species, i.e., Rhinovirus A, Rhinovirus B, and Rhinovirus C15. 64 

Viral sequence data are increasingly used to track the geographic spread and 65 

transmission of viral pathogens16,17. Genomic data has considerably informed public 66 

health interventions and outbreak management for viral pathogens, e.g., SARS-CoV-67 

2, Ebolavirus, and Zika virus18–21. Widespread spatial and temporal transmission 68 

patterns of RV was previously described within the Kilifi Health and Demographic 69 

Surveillance System (KHDSS) on the Kenyan Coast covering around 300,000 70 

residents22 and marked by multiple virus introductions12. Transmission patterns of RV 71 

at a nationwide scale have not been documented in Kenya. Here we analyze 803 72 

sequences obtained from individuals presenting with acute respiratory illness (ARIs) 73 

at 11 sentinel surveillance sites across Kenya in 2014 23, to explore the temporal and 74 

spatial circulation patterns of RV types at the countrywide scale. 75 

 76 
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Methods 77 

Ethical considerations  78 

The study was approved by the Kenya Medical Research Institute - Scientific and 79 

Ethical Review Unit (SSC #3044) and CDC Institutional Review Board (#6806) to use 80 

pre-existent, pseudonymized specimens, and data. All individuals, parents and 81 

guardians gave written informed consent for themselves or their children to participate 82 

in the original studies23. For older children aged 13–17 years, assent was obtained as 83 

part of the individual informed consenting process. 84 

 85 

Surveillance sites  86 

This study utilised samples collected throughout the surveillance period covering 1st 87 

January to 31st December 2014 from three health facility-based respiratory virus 88 

surveillance programs in Kenya (Table 1 and Figure 1). The first program included 89 

eight inpatient hospitals participating in the influenza sentinel surveillance : Dadaab 90 

Refugee Camp (RC), Kakuma RC, Kenyatta National Hospital (KNH), Nakuru County 91 

Referral Hospital (CRH), Kakamega CRH,  Nyeri CRH,  Siaya CRH and Coast General 92 

Teaching and Referral Hospital24–26; the second included two outpatient clinics; Lwak 93 

Mission Hospital, Asembo and Tabitha Medical Clinic, Kibera under Population-Based 94 

Infectious Disease Surveillance (PBIDS)27, and the third program was a pediatric 95 

inpatient sampling at the Kilifi County Hospital (KCH)28. The influenza sentinel 96 

surveillance was established by Kenya Medical Research Institute-Centre for Global 97 

Research (KEMRI-CGHR), the US Centers for Disease Control and Prevention 98 

(CDC)-Kenya, and the Ministry of Health as part of the Global Influenza Surveillance 99 

and Response System since 200624. The PBIDS platform in Asembo and Kibera is 100 

run by KEMRI-CGHR with financial and technical support from CDC since 200629. 101 
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Surveillance at KCH is conducted by the KEMRI-Centre for Geographic Medical 102 

Research Coast (CGMRC) under KEMRI-Wellcome Trust Research Programme 103 

(KWTRP) in Kilifi, Kenya28. Overall, the selected surveillance sites offer a good 104 

representation of the various geographical settings in Kenya. 105 

  106 

Patient enrollment 107 

The surveillance sites recruited patients of various ages presenting with acute 108 

respiratory illness (ARI) with a measured fever of ≥38°C and a cough with an onset of 109 

symptoms within the last 7 days (influenza-like illness, ILI) or acute respiratory illness 110 

requiring hospitalization with a history of fever or measured fever ≥38°C and a cough 111 

with an onset of symptoms within the last 14 days (severe acute respiratory illness, 112 

SARI), or acute lower respiratory tract illness (ALRTI) defined as the presence of 113 

cough OR difficulty in breathing with one of the following danger signs: chest in-114 

drawing, stridor, unable to breastfeed, vomit everything, convulsions, lethargy, or 115 

unconsciousness or an adaptation of WHO severe/very severe pneumonia as 116 

described in a Table 1. The different case definitions were consistently applied within 117 

each platform over the course of the study period.  118 

Data and specimen collection 119 

Patient demographic data and clinical features of presenting illness were collected in 120 

real-time using custom designed databases. Nasopharyngeal (NP) and/or 121 

oropharyngeal (OP) swabs were collected from eligible patients who presented to 122 

health facilities with clinical features of an acute respiratory illness as describe in  123 

patient enrolment section. NP/OP samples were stored in viral transport media, and 124 

transported to the laboratory for long-term storage at -80oC. 125 

 126 
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RV screening and sequencing  127 

Viral RNA was extracted using RNeasy Mini Kit (Qiagen, Germany) in Qiacube HT as 128 

per the manufacturer’s instructions and screened for respiratory viruses (i.e. RSV 129 

(groups A and B), rhinovirus, human coronaviruses (hCoV-OC43, -NL63, -229E), 130 

influenza A virus and adenovirus) using a multiplex real-time reverse-transcription 131 

PCR (rt-RT-PCR) assay30,31. A sample was considered RV positive if the rt-RT-PCR 132 

cycle threshold (Ct) was ≤35.032. The VP4/VP2 viral genomic region (~420 nucleotides 133 

long) of positive samples was amplified and sequenced as previously described33. 134 

Consensus sequences were assembled using the Sequencher software version 5.4.6 135 

(Gene Codes Corporation, Ann Arbor, USA). 136 

 137 

RV species and type assignment 138 

We used the term ‘type’ to refer to RV sequences classified as distinct by genetic 139 

comparisons as described previously11. Sequences were assigned into the same RV 140 

type based on >90% nucleotide similarity to rhinovirus prototype sequences (also 141 

referred to as reference sequences11 and phylogenetic clustering with bootstrap 142 

support value >70%11. Distributions of pairwise genetic distances were assessed for 143 

evaluation of intertype and intra-type divergence11. Intra-type 'variant' was defined 144 

based on a divergence cut-off or threshold value determined as the least frequent 145 

value between the first (same phylogenetic clade) and second (different phylogenetic 146 

clades) modes in a pairwise nucleotide difference distribution plot as previously 147 

described34. Viruses within the same phylogenetic clade were assumed to belong to 148 

the same variant of an RV type. 149 

 150 

Global dataset 151 
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Rhinovirus VP4/VP2 sequences from other regions around the world deposited in 152 

GenBank as of 31 December 2021, whose sequenced regions overlapped the 803 153 

Kenyan sequences generated in this study and derived from viruses sampled between 154 

1st January 2005 and 31st December 2014, were collated and phylogenetically 155 

compared with the Kenya virus sequences. The complete comparison global data set 156 

comprised 4,448 VP4/VP2 sequences from 40 countries, including 653 sequences 157 

from Kenya (Kilifi (n=627), Nairobi (n=10), Mombasa (n=4), Malindi (n=3), Alupe (n=3), 158 

Kisumu (n=2), Isiolo (n=2), Kisii (n=1) and Kericho (n=1) (Appendix Table 1). 159 

 160 

Phylogenetic analysis 161 

Multiple sequence alignments (MSA) were generated using MAFFT v7.22035 and 162 

maximum likelihood phylogenetic trees estimated using IQ-TREE v1.6.1236. Branch 163 

support was assessed by 1000 bootstrap iterations. The temporal signal in the data 164 

was examined using TempEst v1.5.337. TreeTime v.0.8.1 was used to transform the 165 

ML tree topologies into dated trees. Phylogenetic trees were visualized using ggtree 166 

v2.2.4 package38 in R39. 167 

 168 

Statistical analysis.  169 

Statistical analysis was conducted using STATA version 15.1 (College Station, 170 

Texas). Site-specific monthly percent virus positivity was computed.  171 

 172 

 173 

 174 

 175 

 176 
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Type diversity calculation 177 

RV type diversity was calculated using diversity indices (Shannon (H) and Simpson 178 

(D)) 40,41 . The calculations were as follows: 179 

s 180 

Shannon Index (H) = - ∑pi ln pi  181 
i=1 182 

 183 

      Simpson Index (D) = s 
1/  184 

∑pi2 185 
i=1 186 

 187 
Where p is the proportion (n/N) of individual types found in one individual species (n) 188 

divided by the total number of types found (N), and s is the total number of species. 189 

Higher scores of H and D indicates high diversity. 190 
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Results 191 

Between 1st January and 31st December 2014, a total of 6398 NP and/or OP swabs 192 

samples were collected from patients who voluntarily presented to the eleven facilities 193 

with ARI. Testing was done on 5859 (91.6%) available samples, Table 2. Of the tested 194 

samples, 5665 (96.7%) were linked with their respective demographic and clinical 195 

data. Two hundred and fourteen samples (214) collected from Siaya and Kibera 196 

patients with missing data on respiratory symptoms were excluded from the study, the 197 

final analytical dataset comprised of 5451 specimens. RV was detected in 17.0% 198 

(924/5451) of samples collected from the 11 surveillance sites (Table 2). The percent 199 

of samples that were virus positive for RV infections varied by surveillance site; Siaya 200 

recorded the highest positives (24.0%) while Dadaab (10.4%) recorded the lowest 201 

(Table 2). Rhinovirus was detected throughout the year in most sites, although the 202 

prevalence of detections varied by month of sampling due to seasonal variation in 203 

SARI (Figure 2). Different sites experienced peak occurrence in different months, but 204 

a majority saw infection peaks between January - March (7/11) and June - July (5/11) 205 

(Figure 2). There was no RV detected in April in Kenyatta National Hospital (KNH) and 206 

in May in Kakuma and Kibera sites (Figure 2). There were no samples collected in 207 

Dadaab between July and September.  208 

VP4/VP2 sequences were successfully obtained from 803/924 (87.0%) RV 209 

positive samples (Table 2). The remaining samples either failed to amplify with the 210 

VP4/VP2 specific primers (n=111) or were identified as non-RV enteroviruses (n=10). 211 

Overall, 492 (61.3%) sequences were classified as Rhinovirus A comprising 58 types; 212 

63 (7.8%) sequences were Rhinovirus B comprising 16 types, and 248 (30.9%) were 213 

Rhinovirus C comprising 40 types. The most detected types were A34 (n = 35), A22 214 

(n=30), A58 (n = 27), A12 (n = 25) and A78 (n = 23) (Supplementary Table 1). The 215 
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number of types largely reflected the number of samples sequenced and varied 216 

between sites (Supplementary Figure 1A). Comparison by care setting (i.e., outpatient 217 

vs. inpatient) or ARI definition (i.e., ILI vs. SARI vs. ALRTI) across different RV types 218 

revealed no significant differences in ARI definition (p-value 0.06) and  care setting (p-219 

value 0.2) (Supplementary Table 2). Rhinovirus type diversity per site calculated using 220 

the Shannon (H) and Simpson (D) indices indicated that Siaya had the highest value 221 

of diversity, followed by Lwak and Kilifi. Dadaab reported the lowest value of diversity 222 

(Table 3). All three RV species were detected in all sites, except for Dadaab, where 223 

Rhinovirus B was not detected (Supplementary Figure 1B). The proportions of RV 224 

species were similar in all the sites; Rhinovirus A (range, 51 - 75%) and Rhinovirus C 225 

(range, 17 - 46%) were frequently detected, while Rhinovirus B (range, 0 - 13%) 226 

infections were low or not detected (Supplementary Figure 1B). 227 

 228 

Spatial-temporal distribution of RV types in Kenya 229 

We identified up to 49 unique RV types co-circulating in a single month across the 230 

country, and/or up to 20 unique types within a single location in a single month 231 

(Supplementary Figure 2). The duration of circulation varied by RV type; several types 232 

occurred at a high prevalence and for consecutive months, while others occurred once 233 

or intermittently during the study period (Supplementary Figure 3). For example, RV-234 

A22 was detected throughout the year, A34 was present for 11 consecutive months 235 

(February to December 2014), and RV-C7 and A21 circulated consecutively for 8 236 

months (February to September and May to December, respectively) (Supplementary 237 

Figure 3). Spatially, several RV types circulated widely; some circulated in multiple 238 

sites during the same timeframe, while others circulated in multiple sites at different 239 

times (Figure 3). For example, RV-A22 was detected in all 11 sites, while A34 was 240 
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detected in 10 sites. We observed the occurrence of localized type-specific epidemics 241 

or outbreaks; the distribution of RV types was similar between neighbouring locations 242 

(Figure 3). For example, types A21 and A78 circulated in Asembo, Siaya, and 243 

Kakamega in the same period (June-July), while A49 was seen in Mombasa and Kilifi 244 

between July and December (Figure 3). Other types were more random in occurrence 245 

with no discernable temporal or spatial pattern. 246 

 247 

Phylogenetic clustering 248 

We reconstructed time-scaled phylogenies for thirteen prevalent types. In the global 249 

context, Kenyan viruses formed monophyletic clusters/clades containing sequences 250 

from different sampling sites in Kenya, suggesting multiple introductions and local 251 

transmission chains (Figure 4). For example, the Kenyan RV-A22 viruses collected 252 

between 2008 and 2014 separated into 3 major clusters, each comprising sequences 253 

from different locations in Kenya. Similarly, A34 viruses collected in 2014 separated 254 

into 2 major clusters, each with sequences from different sites (Figure 4). Similar 255 

observations were observed for other RV types including, A12, A49, A58, A78, and 256 

C10 (Figure 4). Certain clades or clusters were location-specific and genetically 257 

distinct from other Kenyan 2014 sequences. For example, an A78 variant from Nyeri 258 

and an A58 variant in Dadaab (Figure 4), showing evidence of localised transmission 259 

clusters.  260 

Sequences originating from Kenya did not form a single monophyletic group on 261 

the phylogenetic tree, instead, they were interspersed mostly as singleton or clusters 262 

located separately or with clusters of viruses from other countries. For example, RV-263 

A22 sequences from Kenya clustered closely with sequences from China and France 264 

in 2014, while A12 sequences clustered closely with sequences from China, the USA, 265 
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France, Uganda, and Nepal in 2014. The Kenyan A58 sequences clustered closely 266 

with those from USA and France, while the A78 sequences clustered closely with 267 

Chinese and American sequences, and the A34 resembled Nepalese sequences. 268 

 269 

Discussion 270 

This study provides a detailed description of the spatial-temporal dynamics of 271 

introductions and spread of rhinovirus in Kenya based on phylogenetic analyses. We 272 

show that the persistent circulation of RV in Kenya was mostly driven by multiple 273 

introductions of different types throughout the one-year period, leading to established 274 

local transmission. 275 

Rhinovirus A was the predominant species circulating in Kenya in 2014, 276 

followed by Rhinovirus C, and the least common was Rhinovirus B. This is consistent 277 

with a previous surveillance study across 8 sampling sites in Kenya in 200842. 278 

Although differences in subject recruitment strategies may not allow one-on-one 279 

comparison between this study and others, these observations are similar to studies 280 

reported in Africa, USA, Asia, Europe, the Middle East, and Australia11,43. The 281 

similarities in frequencies of RV species in diverse geographies would suggest that 282 

RV circulates unrestricted globally. 283 

RV was detected all year, with the highest detection rates observed in January 284 

to March and June to July. The year-round occurrence of rhinovirus in the country was 285 

largely sustained by contemporaneous and successive mini epidemics or outbreaks 286 

caused by distinct types and variants that were probably introduced separately into 287 

the country or diversified locally after a single introduction. 288 

Spatial-temporal analysis revealed occurrence of multiple types and variants 289 

across space and time in agreement with previous studies12,14,44. The observed 290 
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variations in time and duration of circulation among the rhinovirus types could be due 291 

to (i) differences in the duration of type-specific immunity, (ii) frequency of introductions 292 

or, iii) level of antigenic similarity (heterologous immunity)34. The concurrent and 293 

sequential circulation of RV types seen as the occurrence of multiple peaks of the 294 

same type in the same or distant locations could signify multiple introductions, 295 

antigenic variation, or infections in different population strata34. The heterogeneity in 296 

RV detection by month and location could be attributed to the seasonal variation in 297 

SARI or sampling methods or to regional differences in environmental and climatic 298 

factors. Climatic factors such as temperature, rainfall, and relative humidity have been 299 

hypothesized to influence RV activity in the tropics3,45,46. 300 

Even with non-uniform sampling and short duration of study (1 year), we 301 

showed close genetic association among sequences from different sites as a result of 302 

widespread transmission of the virus in the country. On a finer spatial scale, study 303 

sites occurring within the same geographical region (as described in Table 1)  had a 304 

similar distribution of RV types, an indicator of a point source outbreak, in which a 305 

single virus type enters a location and diffuses through the interconnected populations 306 

probably sharing social amenities12. This agrees with our previous work that showed 307 

greater similarity in RV types among the locations in proximity12.  308 

The global phylogenies showed that RV viruses circulating in Kenya were 309 

closely related to strains circulating in Europe, Asia, and North America. The Kenyan 310 

RV diversity appears to be nested within the global diversity as a result of transmission 311 

facilitated by unrestricted movement, increased connectivity, and social mixing.  312 

Although our analyses were limited to the VP4/VP2 genomic region, we 313 

highlight the use of sequence data to trace the introduction and spread of rhinovirus 314 

at the countrywide level and show the benefit of systematic, continuous, and 315 
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geographically representative surveillance to detect and monitor the occurrence of 316 

types at a larger scale. Whole genome sequencing could provide more insight into 317 

virus diversity and transmission47, and we recommend that future studies should 318 

combine genomic data with epidemiological and anthropological data (e.g., host 319 

migration, immunity profiles, population densities, and social contact patterns) to 320 

further elucidate patterns of RV infections. 321 

This study had some limitations. First, due to the retrospective approach of the 322 

study, it was not possible to recover sequences from all the samples due to sample 323 

degradation; samples (n=111/924) that failed sequencing had considerably higher Ct 324 

values (low viral load) compared to samples that were successfully sequenced with 325 

low Ct values (high viral load). Second, there were varying study design by sites, for 326 

instance, the disease case definition and ages enrolled. The varying designs would 327 

mainly affect the virus positivity estimates observed over the one-year surveillance 328 

period, in that sites that had more inclusive case definition that includes mild cases of 329 

respiratory illnesses may exhibit higher rates of rhinovirus positivity  compared to sites 330 

using a more restrictive case definition that only includes severe cases of respiratory 331 

illnesses. Third, the inclusion of fever as a criterion in most of the case definitions used 332 

may lead to the underestimation of RV prevalence since many RV infections, including 333 

severe cases, do not necessarily manifest with fever. Consequently, there is a 334 

possibility that we might have missed RV patients who do not exhibit fever symptoms, 335 

potentially impacting the overall assessment of RV prevalence in our study. Fourth, 336 

the short sequence fragment analysed in this study may result in spurious 337 

phylogenetic connections. Lastly, the study focused on samples that were collected in 338 

hospital settings, which may have missed genotypes associated with asymptomatic or 339 

mildly ill infections. 340 
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In conclusion, our study demonstrates that sustained circulation of the virus in 341 

2014 was due to frequent introductions of different types and variants into the country 342 

followed by local spread for some of these introductions. Temporal differences in 343 

persistence of rhinovirus types over the one-year period, could be attributed to 344 

differences in the frequency and number of virus introductions into the country. Spatial 345 

patterns show extensive spread of the virus, and the evidence of similar distribution of 346 

types in locations that are in proximity to each other may indicate local partitioning or 347 

spatial structures of virus transmission.348 
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Tables  533 

Table 1: Description of the 11 respiratory surveillance sites across Kenya. 534 

Surveillance site Region Setting Inclusion 
criteria 

Age 
included 

Kenyatta National Hospital (KNH) Central Inpatient SARI1 & ILI2 <13 

years  

Nyeri County Referral Hospital Central Inpatient SARI1 All  

Mombasa County Referral 

Hospital 

Coast Inpatient  SARI1 All  

Kilifi County Hospital Coast Inpatient Pneumonia4 <5 years 

Kakuma Refugee Camp North Inpatient SARI1 All 

Dadaab Refugee Camp North Inpatient SARI1 All 

Nakuru County Referral Hospital Rift 

valley 

Inpatient SARI1 All 

Siaya County Hospital Western  Inpatient SARI1 All 

Kakamega County Referral 

Hospital 

Western Inpatient SARI1 All 

Lwak Mission Hospital, Asembo 

PBIDS* 

Western  Outpatient ALRTI3 & ILI2 All 

Tabitha Medical Clinic, Kibera 

PBIDS 
Central Outpatient  ALRTI3 & ILI2  All 

 535 
Key: 1, SARI, Severe Acute Respiratory Illness is defined as an acute respiratory 536 

illness requiring hospitalization with a history of fever or measured fever ≥38°C AND 537 

a cough with an onset of symptoms within the last 14 days. 2, ILI, Influenza Like Illness 538 

is defined as measured fever of ≥38°C OR sore throat in an outpatient of any age. 3, 539 

ALRTI, Acute lower respiratory tract illness is defined as presence of cough OR 540 

difficulty in breathing with one of the following danger signs: chest in-drawing, stridor, 541 

unable to breastfeed, vomit everything, convulsions, lethargy, or unconsciousness. 4, 542 

Pneumonia is defined as modified WHO syndromic severe or very severe 543 

pneumonia48 ; PBIDS, Population-Based Infectious Disease Surveillance. 544 
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Table 2: Description of samples collected per site, cases positives for RV, and samples sequenced in the VP4/VP2 coding region. 545 

Surveillance site NP/OP 
collections 

Tested Linkage 
with clinical 

and 
demographic 

data 

With 
respiratory 
symptoms 

Samples 
positive for  

HRV 

% 
Positivity 

VP4/VP2 
sequenced 

(%) 

Kenyatta National Hospital 
(KNH) 

510 357 343 343 64 18.7 63 (99) 

Nyeri County Referral Hospital 482 427 425 425 68 16.0 57 (84) 
Mombasa County Referral 
Hospital  

524 455 445 445 103 23.1 87 (85) 

Kilifi County Hospital 722 722 722 722 113 15.7 96 (85) 
Kakuma Refugee Camp 220 175 175 175 25 14.3 23 (92) 
Dadaab Refugee Camp 189 158 154 154 16 10.4 13 (81) 
Nakuru County Referral 
Hospital 

811 714 712 712 126 17.7 103 (82) 

Siaya County Referral 
Hospital 

936 922 794 642 154 24.0 128 (83) 

Kakamega County Referral 
Hospital 

464 418 402 402 72 17.9 65 (91) 

Lwak Mission Hospital, 
Asembo PBIDS* 

879 862 862 862 117 13.6 108(92) 

Tabitha Medical Clinic, Kibera 
PBIDS 

640 631 631 569 66 11.6 60 (91) 

Not recorded 21 18 0 0 0 0 0 
Total  6398 5859 5665 5451 924 17.0 803 (86.0) 

 546 
Abbreviations : PBIDS, Population-Based Infectious Disease Surveillance.547 
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Table 3:  Rhinovirus type diversity measured using Shannon (H) and Simpson (D) diversity indices.  548 

Site Number of 
sequences 

Sequences per  
species Number of 

types 

Shannon’s 
diversity  

(H)  

Simpson 
diversity  

(G) 
  RV-A RV-B RV-C    

KNH 63 32 2 29 32 3.31 23.68 
Nyeri 57 31 3 23 35 3.38 24.43 

Mombasa 87 54 3 30 42 3.58 30.82 
Kilifi 96 54 7 35 46 3.69 34.79 

Kakuma 23 14 1 8 15 2.56 10.76 
Dadaab 13 7 0 6 9 2.09 7.20 
Nakuru 103 61 7 35 50 3.66 28.74 
Siaya 128 90 16 22 56 3.79 34.66 

Kakamega 65 49 4 12 33 3.29 22.59 
Asembo 108 65 14 29 52 3.74 34.23 
Kibera 60 33 5 22 38 3.47 26.17 

549 
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Figures 550 

 551 

Figure 1:  Map of Kenya showing the geo-location of the 11 respiratory surveillance 552 

sites, distinguishing inpatient (red markers) from outpatient (green markers) facilities. 553 
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 554 

Figure 2: Monthly distribution of samples tested and cases positives for rhinovirus from the 11 surveillance sites in Kenya in 2014. 555 
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Figure 3: Temporal distributions of frequent RV types across different sites. 557 
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Figure 4: Time-resolved lineage-specific phylogenetic trees for prevalent RV types. The Kenya genomes are indicated with filled 559 

circles coloured by site.  560 
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