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Abstract

The circle of Willis (CoW) is a network of cerebral arteries with significant inter-individual
anatomical variations. Deep learning has been used to characterize and quantify the status
of the CoW in various applications for the diagnosis and treatment of cerebrovascular
disease. In medical imaging, the performance of deep learning models is limited by the
diversity and size of training datasets. To address medical data scarcity, generative
adversarial networks (GANs) have been applied to generate synthetic vessel neuroimaging
data. However, the proposed methods produce synthetic data with limited anatomical fidelity
or downstream utility in tasks concerning vessel characteristics.

We adapted the Style GANv2 architecture to 3D to synthesize Time-of-Flight Magnetic
Resonance Angiography (TOF MRA) volumes of the CoW. For generative modeling, we
used 1782 individual TOF MRA scans from 6 open source datasets. To train the adapted 3D
StyleGAN model with limited data we employed differentiable data augmentations and used
mixed precision and a cropped region of interest of size 32x128x128 to tackle computational
constraints. The performance was evaluated quantitatively using the Fréchet Inception
Distance (FID), MedicalNet distance (MD) and Area Under the Curve of the Precision and
Recall Curve for Distributions (AUC-PRD). Qualitative analysis was performed via a visual
Turing test. We demonstrated the utility of generated data in a downstream task of multiclass
semantic segmentation of CoW arteries. Vessel segmentation performance was assessed
quantitatively using the Dice coefficient and the Hausdorff distance.

The best-performing 3D StyleGANv2 architecture generated high-quality and diverse
synthetic TOF MRA volumes (FID: 12.17, MD: 0.00078, AUC-PRD: 0.9610). Multiclass
vessel segmentation models trained on synthetic data alone achieved comparable
performance to models trained using real data in most arteries.

In conclusion, generative modeling of the Circle of Willis via synthesis of 3D TOF MRA data
paves the way for generalizable deep learning applications in cerebrovascular disease. In
the future, the extensions of the provided methodology to other medical imaging problems or
modalities with the inclusion of pathological datasets has the potential to advance the
development of more robust models for clinical applications.
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Introduction

The Circle of Willis (CoW) is a network of cerebral arteries in the skull base and
provides collateral blood supply to the brain. CoW has been a significant region of
interest in medical image analysis due to pathologies arising in the anatomical
proximity and its potential to be used as a biomarker for cerebrovascular disease risk
and prognosis (Gutierrez et al., 2015; van Seeters et al., 2015). Several medical
interventions and surgeries are performed via the CoW in patients with ischemic
stroke (mechanical thrombectomy), cerebral aneurysm (coiling, clipping, flow
diverters) and vascular malformations. CoW is an anatomical landmark that exhibits
high inter-individual anatomical variations including hypoplasia or aplasia of
(communicating) artery segments, and diverse branching patterns of the middle
cerebral artery (Igbal, 2013; Krabbe-Hartkamp et al., 1998). These variations are of
vital importance for individualized risk assessment and treatment planning.
Therefore, analysis of CoW anatomy and pathologies is regularly performed in the
clinical setting as part of imaging protocols based on computed tomography
angiography (CTA) and magnetic resonance angiography (MRA) scans.

Deep learning has been used to characterize and quantify the status of the CoW for
various applications in stroke including large vessel occlusion (LVO) detection
(Brugnara et al., 2023), collateral status assessment (Bagcilar et al., 2023; Grunwald
et al., 2019), hemodynamic modeling (Frey et al., 2021) and multiclass semantic
segmentation (Yang et al., 2024). The performance and generalization of deep
learning models for these tasks significantly depend on the diversity, quality and size
of the training dataset. This especially applies to datasets with class imbalance due
to rare diseases or underrepresented anatomical variations. Variations of the CoW
are vast and vessel neuroimaging data is limited, costly to acquire and difficult to
share due to data protection regulations. Previous research has reported that rare
variations of the CoW can limit the performance in multiclass anatomical
segmentation of CoW arteries (Hilbert et al., 2022; Yang et al., 2024). Several
studies report that datasets used for Al-based medical imaging applications suffer
from a diversity problem in various tasks (Arora et al., 2023; Hofmanninger et al.,
2020). Generative adversarial networks (GANSs), a subtype of deep learning
methods, enable the synthesis of high-quality, diverse synthetic data representative
of the real-world data distribution of the training dataset. They have demonstrated
their potential to capture and model inter-individual anatomical and pathological
variabilities as well as variabilities arising from different scanner hardware and
choice of imaging parameters. Synthetic data for training of downstream deep
learning methods in medical imaging has been shown to improve performance in the
classification of histology slides (Chen et al., 2021) and image segmentation tasks
(Liu et al., 2023). However, current generative models for synthesizing angiography
scans such as time of flight magnetic resonance angiography (TOF MRA) of cerebral
arteries are based on either 2D data (Kossen et al., 2021) or do not preserve
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anatomical fidelity and continuity (Subramaniam et al., 2022). While 2D- or
3D-patch-based approaches showcase significant utility for selected downstream
tasks, particular downstream tasks such as hemodynamic modeling (Rundfeldt et al.,
2024) or 3D classification demand realistic anatomical accuracy and spatial
continuity from the synthesized vessel volumes. To tackle the research gap of 3D
modeling, prior works have proposed 3D adaptations of generative adversarial
networks (Hong et al., 2021; Mensing et al., 2022) and denoising diffusion
probabilistic models for medical images (Khader et al., 2023).

In this work we set out to model the complex anatomy and heterogeneous
inter-individual variations of the CoW using generative adversarial networks. We
adapt the StyleGANv2 architecture (Karras et al., 2020b) to process
three-dimensional medical data in clinically relevant high resolutions. We evaluate
the influence of model complexity and differentiable data augmentation (Zhao et al.,
2020) on generated image quality and diversity. We showcase the capabilities of
StyleGANv2 by introducing stochastic variations to the generated TOF MRA images,
exploring the latent space of the model with image interpolations and controlling the
diversity of the images using the truncation trick. Finally, we validate the generation
quality and diversity of the generated images using quantitative metrics and
showcase the utility of the model in the downstream task of multiclass semantic
segmentation of CoW artery segments. Leveraging concepts from knowledge
distillation and self-training, we employ a novel downstream validation cycle where
we (1) train a vessel segmentation model on real data, (2) use it to generate labels
on synthetic data, (3) use the resulting synthetic data-label pairs to train a new model
which we evaluate on real unseen test data.
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Methods

StyleGAN Model

An open-source implementation of the 2D StyleGANv2 architecture (Karras et al.,
2020b) was used as a baseline (Wang, 2024). The architecture was adapted by
replacing all upsampling and convolutional operations to 3D similar to a prior 3D
StyleGANv2 implementation (Hong et al., 2021). An overview of the generator and
discriminator architectures are presented in Figure 1.

Generator Discriminator

Latent vector z

CITTTITTIT]
Noise input Generated image Real image

l 32x128x128 32x128x128
Mapping network
(8 xFC) Constant 4x4x4
’ > \

Mapped latent vector w '

Differentiable augmentations (translation, cutout)
p=0.5)

Discriminator block 32 x 128 x 128

Discriminator block 16 x 64 x 64

Discriminator block 8 x 32x 32

Discriminator block 4 x 16 x 16

Discriminator block 2 x 8 x 8

Discriminator block 2 x 4 x 4

Discriminator block 2 x2 x 2

4

Discriminator score

Generated image 32 x 128 x 128

Figure 1. Simplified visualization of the StyleGAN2 architecture adapted for 3D medical images. The
two inputs to the generator are 1) the latent vector z for the style vector and 2) noise input that is
added after each Generator block. “A” represents a learned affine transformation that converts w to a
style vector, “B” defines a noise broadcasting operation. All images that the discriminator sees are
augmented with differentiable augmentations with a probability of 0.5. Details of the generator and
discriminator blocks, upsampling, flattening and classification layers are omitted for visual clarity. A
sample input size of 32x128x128 was selected for visualization.

Mapping network

The starting point for generation is a noise vector of length 512 with a standard
normal distribution. The noise vector is converted to a style vector via the mapping
network. The mapping network is a fully connected neural network with 8 layers each
followed by a leaky ReLU activation function. The learning rate multiplier was 0.1 for
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the mapping network leading to a ten times lower learning rate for the mapping
network compared to the generator learning rate.

Discriminator

The discriminator of the StyleGANv2 is composed of a sequential stack of
discriminator blocks (Karras et al., 2020b). The number of blocks is dynamically
determined by the input image size. For an input image size of 32x128x128, the
discriminator consists of 7 discriminator blocks. This configuration is derived by
calculating the base-2 logarithm of the largest dimension of the input image. The
discriminator blocks are followed by a final 3D convolutional layer, flattening layer
and linear layer. Each discriminator block uses two 3D convolutional layers with
leaky ReLU activation functions, and integrates a residual connection that merges
the input and output of the convolutional layers. The number of convolutional filters
doubles at each block until the maximum set number of filters is reached. The
discriminator blocks progressively reduce the spatial resolution of feature maps via
strided convolutions and blurring operation across all dimensions until a dimension of
2 is reached, then only remaining dimensions greater than 2 are downsampled.

The loss function of the discriminator consisted of the hinge loss (Lim and Ye, 2017)
and the gradient penalty term to maintain the Lipschitz constraint (Gulrajani et al.,
2017). We apply lazy regularization every 16 training steps -instead of every step- to
save computational resources (Karras et al., 2020b). The loss function equation for
the discriminator was:

Lp=E,.p, [mazx(0,1+D(z))] +E..p [maz(0,1 — D(G(z)))] + Ay Lap

where x is drawn from the distribution of real images P,.,, z is the latent noise vector,
D is the discriminator, G is the generator, Lgp is the gradient penalty term with weight
Agp Of 10.

Generator

The generator architecture begins with an initial block that generates the first tensor
from a constant 4x4x4 tensor. Following the initial block, the architecture has a
sequence of generator blocks, each responsible for doubling the resolution of its
input tensor. For an input image with dimensions of 32x128x128, the generator is
structured to include 6 discriminator blocks. The StyleGANv2 generator architecture
incorporates modulated convolutions within its generator blocks (Karras et al.,
2020b), where convolutional filters are dynamically adjusted based on input style
vectors, followed by a demodulation step to normalize the outputs. Each generator
block performs either isotropic trilinear upsampling, where all dimensions are scaled
by a factor of 2, or anisotropic trilinear upsampling, which selectively upscales the
width and height dimensions, leaving the depth dimension unchanged. Each block
uses two convolutional layers modulated by style vectors. After each convolutional
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layer, a noise input of the same dimensions as the block's output is added to the
feature maps, and a leaky ReLU activation is applied. The introduction of noise at
each layer helps to introduce fine-grained details and textures into the generated
images, making them more realistic. The loss function of the generator consisted of
a generator hinge loss and a path length penalty introduced after 5000 steps every
32 steps during the training. The path length penalty aims to encourage the
generator to produce consistent and smooth variations in the output images as the
input latent space is changed. The equation for the path length penalty term was:

2
PL =E,yno,0) ([T5yll2 — a)

where J,, denotes the Jacobian matrix of the generator network's output with respect
to the latent vector w, “y” is a noise vector sampled from the standard normal
distribution N(O, I) with the same shape as generators output and “a” the target path

length which is a running average of path lengths during training.
The resulting generator loss function was:

1:(.’ - IE:‘.Z%I‘:,_ [D[G[SH] L }‘-plPL

where D is the discriminator, G is the generator and PL denotes the path length
penalty term weighted by a regularization coefficient A =1.

Truncation trick

Truncation of style vectors has been proposed previously to control the trade-off
between the fidelity and diversity of generated images (Brock et al., 2019; Karras et
al., 2019). This can be achieved by first calculating a mean style vector by passing
noise vectors z through the mapping network. Each individual style vector can then
be adjusted based on a truncation parameter towards the mean style vector. Lower
values of the truncation parameter lead to images that are more closely aligned with
the central style, enhancing their realism but potentially at the expense of diversity.
The effect of the truncation parameter y with respect to quality and diversity was
visually analyzed by generating example images with g = 1, 0.75, 0.5, 0.25. The
truncation trick was implemented as follows:

w=w+1v-(w-—"w)
where W' is the truncated style vector, w is the average style vector, w is the original

style vector before truncation and y is the truncation parameter with typical values
between 0 and 1.
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Data

Open source TOF MRA data from 7 datasets were used. 1782 scans from 6
datasets were used to train the 3D StyleGAN model. The TopCoW (Topology-Aware
Anatomical Segmentation of the Circle of Willis for CTA and MRA) challenge dataset
(n=110) was used for validation and the downstream multiclass CoW segmentation
analysis (Yang et al., 2024). Importantly, the TopCoW dataset included patients with
stroke-related neurological disorders and stood in contrast to the datasets used for
the training of the StyleGAN model. In the training set for generative modelling all
datasets included healthy patients except for OASIS 3 dataset which also included
patients with neurodegenerative disease (LaMontagne et al., 2019). The relevant
characteristics of the datasets are described in Table 1. The datasets were acquired
using 3T and 1.5 T MRI machines from different vendors. Further descriptions on
patient characteristics and imaging protocols can be found in the respective
publications.

Dataset Number of |Site Population Modeling |Citation
scans

IXI 564 Multi Healthy Training  [(“IXI Dataset —
Brain
Development,”
n.d.)

Lausanne 126 Single Healthy Training [(Di Noto et al.,
2023)

NITRC 56 Single Healthy Training [(*NITRC:
Magnetic
Resonance
Angiography
Atlas Dataset:
Tool/Resource
Info,” n.d.)

CASILab 109 Single Healthy Training |(Bullitt et al.,
2005)

ICBM 180 Multi Healthy Training [(Mazziotta et
al., 2001)

OASIS 3 747 Single Neurodegenerative |Training [(LaMontagne

disease etal., 2019)
TopCow 110 Multi Stroke-related Validation |(Yang et al.,
neurological disorder 2024)

Table 1. Datasets used in the study. A total of 1782 TOF MRA scans were used from 6 open source
datasets for generative modeling. For downstream validation, the TopCoW Challenge dataset was
used both for training and testing of multiclass CoW artery segmentation models.
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Data preprocessing pipeline

A custom TOF MRA template with a size of (288x320x199 in width,height,depth)
voxels and a voxel spacing of 0.62x0.62x0.62 was created using the 56 patients
from the NITRC dataset. First, a reference image with no artifacts was selected from
the dataset. Each image in the dataset was registered to the reference image using
FLIRT (FMRIB's Linear Image Registration Tool) of FSL (FMRIB Software Library)
(Jenkinson et al., 2012). Registered images were averaged using the “fsimaths”
command to create the custom template image. Skullstripping of the custom
template and training images was performed using SynthStrip (Hoopes et al., 2022).
The skullstripped images were registered to the custom template using FLIRT
(FMRIB's Linear Image Registration Tool) with 6 degrees of freedom and mutual
information as the cost function (Jenkinson et al., 2002; Jenkinson and Smith, 2001).
The resulting transformation matrix was applied to the original images without skull
stripping, ensuring that arteries of the skull base are not omitted due to
preprocessing errors. Images where any of the preprocessing steps failed were
excluded. The preprocessing steps are illustrated in Figure 2.

Figure 2. Preprocessing of the real training data. A) Custom TOF MRA template generated from the
NITRC dataset. B) Brain mask overlaid on the custom template. Skullstripped images were used for
registration and the resulting transformation matrix was applied to non-skullstripped TOF MRAs. C)
An axial slice of an example real image. D) The cropped region of interest of size 32x128x128 after
registration to the TOF MRA template.

Model training

StyleGANv2 architectures with varying complexity levels were explored by changing
the number of filters for the first layer and the maximum number of convolutional
filters (Table 2). All real and generated images seen by the discriminator were
augmented using different combinations of translation, cutout and contrast as
differentiable augmentations with an augmentation probability of 0.5 (Zhao et al.,
2020). Horizontal flipping was applied with a probability of 0.5 on real data to
effectively double the dataset size. The Adam optimizer was used with B,= 0.5 and

[32 = 0.9 (Kingma and Ba, 2017). The learning rate was set using a Two Time-scale

Update Rule (TTUR) multiplier of 1.5, resulting in initial learning rates of 0.0001 and
0.00015 for the generator and discriminator respectively (Heusel et al., 2017). The
learning rate for the configuration Large was set lower (G: 0.00005, D:0.000075) to
ensure stability. The effective batch size was set to 32 using gradient accumulation 4
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times in each step with a batch size of 8. The Config-L was trained with a batch size
of 4 and gradient accumulation 8 times for each step, resulting in the same effective
batch size of 32.

Each model was trained on a single V100 GPU with 32 GB VRAM in a high
performance research cluster. Mixed precision (Micikevicius et al., 2018) was
implemented using the automated mixed precision (AMP) functionality in PyTorch to
reduce memory footprint and speed-up the training.

Model name Generator Init | Discriminator Max Number of parameters
Conv Filter Init Conv Filter | Conv (million) Generator /
Filters Discriminator
Small 16 32 256 12/ 22
Medium_v1 16 32 512 30/67
Medium_v2 16 32 1024 30/ 181
Large 32 64 1024 117 | 267

Table 2. Model configurations and hyperparameters.

Evaluation

Stochastic variation

Medical images contain stochastic elements due to image noise, scanner variations
or patient movement. When synthesizing artificial medical images, this is a key
characteristic that should be preserved to create realistic diversity in the synthetic
dataset. These stochastic variations can be modelled by changing the random noise
input of the StyleGAN model while keeping the style vector constant leading to
generated images with similar anatomical structure but slight changes in random
aspects of the image. Stochastic variations were demonstrated by generating 100
images from the same style vector varying only the additional noise input. The
coefficient of variation per pixel across 100 volumes was calculated and axial slices
were visualized to demonstrate the locations most affected by changes to the noise
input.

Style Mixing

Style mixing enables style-based generative models to generate samples by
inheriting aspects from two distinct style vectors. Style mixing can be used to
combine different anatomical and imaging characteristics, demonstrating the ability
of the generative model to reproduce the wide range of anatomical features present
in different subjects. To explore the model's ability to smoothly transition between
these diverse features, spherical linear interpolation (Shoemake, 1985; White, 2016)
was used in the latent space. A series of TOF MRA volumes were generated by
interpolating in 20 steps between two latent vectors. By generating a TOF MRA
volume using each intermediate latent vector while moving from one latent vector to
another the transition from one generated image to another was visualized. The
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interpolations were performed at the level of the latent noise vector before passing
through the mapping network.

Evaluation of fidelity and diversity

Quantitative evaluation was performed using 3 metrics: Fréchet Inception Distance
(FID) (Heusel et al., 2017), MedicalNet Distance (MD) (Chen et al., 2019), and area
under the curve of the Precision Recall for Distribution (AUC-PRD) (Sajjadi et al.,
2018). The Fréchet Inception Distance was computed slice-wise using all 32 axial
slices of real and generated 3D volumes. An additional metric based on the Fréchet
Distance was computed using the MedicalNet (Chen et al., 2019) as the feature
extractor and is referred to as MedicalNet Distance (MD) in this manuscript. This
follows prior works (Subramaniam et al., 2022; Sun et al., 2022) and has the goal to
compute a domain adapted version of the FID. The AUC-PRD (Sajjadi et al., 2018)
was computed based on the extracted features by the MedicalNet to assess the
diversity (recall) and fidelity (precision) of the generated images in a single value.
The FID, MD and the AUC-PRD scores were monitored during training every 3000
steps. The metrics were also computed using two random subsets of the real training
data to get a benchmark of expected values.

Qualitative visual analysis was performed throughout training and testing of models.
Additionally, a visual Turing test was performed using 100 TOF MRA volumes (50
generated and 50 real volumes). The best performing model based on the
quantitative metrics was used to generate the volumes. The bottom and top 2 axial
slices were removed from the volumes before visual rating, since these slices most
frequently contained artifacts introduced by the generative model. The visual rating
was performed by a board-certified stroke specialist (ST) with more than 10 years of
experience. The rater assessed the TOF MRA volumes one-by-one in 3D using
ITK-SNAP (Yushkevich et al., 2016), was blinded to the origin of the images and had
1 minute to classify each volume as either real or generated.

Replica Detection

Generative Al studies in medicine report generated images that are copies of the
original training data (Dar et al., 2024). It is important to ensure that the generated
data is unique and the generative model does not memorize training data and simply
produce identical copies from the training dataset. A replica detection method based
on the L2 distance between real and generated images was used (Carlini et al.,
2023; Yoon et al., 2023). The criterion for a generated image to be considered a
replica was that the closest real image as measured by L2 distance should have an
L2 distance that is less than V3 of the L2 distance of the second closest real image
(Yoon et al., 2023). This indicates that a generated image is unusually similar to a
real image, potentially indicating a replica. The formula for the L2 distance based
criterion for replica detection was:


https://doi.org/10.1101/2024.04.02.24305197
http://creativecommons.org/licenses/by-nc-nd/4.0/

medRxiv preprint doi: https://doi.org/10.1101/2024.04.02.24305197; this version posted April 3, 2024. The copyright holder for this preprint
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity.
It is made available under a CC-BY-NC-ND 4.0 International license .

W — Xillo
W — Xall2

<

1
"3

where W is a generated sample, X, X, are the samples with the smallest and
second smallest L2 distance to W.

We report the percentage of suspected replicas via the L2 distance methodology
using 500 generated TOF MRA volumes and visually verify the authenticity of a
subset of 50 random generated images by checking the visual similarity to the
corresponding real images with the closest L2 distance.

Downstream multiclass CoW artery segmentation

Multiclass segmentation of CoW arteries was used as a downstream task to show
the utility of the generated data. The TopCow challenge data was split into a training
(50) and test set (60). For paired artery segments the left and right labels were
merged to create a single class. This resulted in following artery segments as target
classes: Internal carotid artery (ICA), basilar artery (BA), posterior communicating
artery (Pcom), anterior communicating artery (Acom), the posterior cerebral artery
(PCA), anterior cerebral artery (ACA) and the first segment of the middle cerebral
artery (M1). The same preprocessing as in the training dataset was applied on the
provided full TOF MRA scans, including rigid registration and center cropping. For
CoW artery segmentation, the nnUnet framework was used which is a
self-configuring state of the art medical image segmentation method (Isensee et al.,
2021). A default 3D nnUnet model was trained on the training set of 50 TOF images
of real patients using 5-fold cross validation. We refer to this model as the teacher
nnUnet model. The performance of the model was assessed on the test set
consisting of 60 real patients.

Prior works have proposed to generate the labels together with the original images
(Li et al., 2022; Subramaniam et al., 2022). This can be achieved by concatenating
labels to the original images as a second channel. While this is practical for
downstream model training, it increases the memory footprint of the models due to
the added channel. We hypothesize, under the assumption that the generated
images are of high enough quality, that a model trained on real data should be able
to produce high quality labels when inference is performed on generated data.
Therefore, we formulate a validation cycle for our models visualized in Figure 3.
First, as an indirect validation of the quality of generated images, the teacher nnUnet
model trained on real data was used to perform vessel segmentations on the
generated data. Second, the segmentations provided by the teacher model were
used as pseudo-labels, i.e. a silver-standard, to train a student nnUnet model with
identical hyperparameters and same 5-fold cross validation as the teacher model on
synthetic datasets of varying size and diversity. Finally, the performance of the
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student model was evaluated on the real test data using the Dice coefficient (Zou et
al., 2004) and Hausdorff Distance (Taha and Hanbury, 2015) and compared against
the teacher model using the EvaluateSegmentation tool (Taha and Hanbury, 2015).

TopCow Train Labels - Human 3D
(Real, n=50) Experts StyleGAN
train |
l generate

Teacher t Synthetic Labels - Teacher

nnUnet —_— segment  —p Data et

Model

segment Validation Cycle train

v

Labels - Student TopCow Val Student
Model (R:al, n=60) —RSEEE “M“g:elt
e
\ Labels - Teacher
compare Model

Figure 3. Concept of training a student segmentation model on synthetic data and labels provided by
the teacher segmentation model. The quality of the synthetic data is validated by 1) the ability to
segment synthetic data with a model trained on real data, 2) training a student model on synthetic
data that can segment arteries of the Circle of WiIllis on real test data. For quantitative evaluation of
segmentation performance the labels provided by the teacher and student models were compared
using the TopCow Validation set of 60 patients.
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Results

The proposed 3D adaptation of the StyleGANv2 architecture generated realistic and
diverse TOF MRA volumes of the Circle of Willis as indicated by visual analysis. The
visual comparison of middle axial slices of the TOF MRA volumes and the 3D

visualizations of the Circle of Willis anatomy between real and generated volumes is

shown in Figure 4.

Generated

B Basiar [ '] pcA [ Pcom I ica T ] mi [T Aca [ [ Acom |

Figure 4. Overview of image quality and diversity of the generated images. Middle axial slices of
random samples from the real and the generated datasets are shown (top section). Images are
generated with the configuration Medium_v2 without the truncation trick. The segmentations used for
3D visualization of the Circle of Willis (bottom section) were generated using the teacher nnUnet
model. Quantitative evaluation results: FID-axial 2D: 12.17, MedicalNet Distance-3D: 0.00078, AUC of

the PRD: 0.9610.
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Quantitative analysis was performed to select the data augmentation strategy and
model complexity. The values of FID, MD and AUC-PRD were monitored during
training (Figure 5). Best models from each run were selected by the lowest FID score
among the three training steps with the lowest MD scores. The selected generator
models were used to generate 1782 synthetic TOF MRA volumes matching the
number of samples in the training set. The comparison of generated volumes against
real volumes in the training set using FID, MD and AUC-PRD is shown in Table 3.
The augmentation strategy was selected using the configuration Medium v1 as the
baseline model. The model trained without any augmentations had the highest FID
score, highest MD and lowest AUC-PRD and the training resulted in mode collapse
as shown in Figure 5. All differentiable augmentations were combined with horizontal
flip augmentations with a probability of 0.5. The combination of translation and cutout
as differentiable augmentations had the highest AUC-PRD, outperformed the
combination of translation, cutout and contrast with respect to MD and outperformed
only translation with respect to FID (Table 3, Figure 5). Therefore, the translation and
cutout augmentation was selected as the default differentiable augmentation strategy
for model complexity analysis. The results of the model complexity analysis are
summarized in Table 3. The configuration Medium_v2 achieved the best
performance (FID:12.17, MD:0.00078 and AUC-PRD: 0.9610). The configuration
Small with the lowest capacity had inferior performance compared to more complex
models in all metrics. Increasing the model capacity as in configuration Large did not
lead to better performance.

Model Complexity Analysis

Augmentation Analysis

Figure 5. Model complexity and augmentation analysis. The use of differential augmentations
improves training stability. The training for configuration “no augmentation” was stopped early due to
the observed mode collapse. For the augmentation analysis the model configuration Medium_v1 was
used. For the model complexity analysis, the translation_cutout strategy (green curve in the 2 row)
was selected as the best augmentation strategy and used for all models. The configuration
Medium_v2 was the best performing model of the model complexity analysis.
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Augmentation Analysis

Augmentations FID MD AUC-PRD
No Augmentation 5411 |0.04003 |0.2891
Translation + horizontal flip 2050 | 0.00086 | 09574
Translation + cutout + horizontal flip 1714 | 000106 | 0.9687
Translation + cutout + contrast + horizontal flip | 416.82 | 000233 | 0.9270

Model Complexity Analysis

Model Complexity FID MD AUC-PRD
Small 23.05 |0.00548 |0.8263
Medium_v1 17.14 | 0.00106 | 0.9687
Medium_v2 12.17 | 0.00078 | 0.9610
Large 13.57 [ 0.00209 | 0.9599

Table 3. Quantitative analysis of model complexity and augmentation strategy.

Quantitative evaluation on two random non-overlapping subsets of real TOF MRA
volumes (n=891) resulted in FID of 1.54 MD of 0.00018 and AUC PRD of 0.9890.
The comparison performed on two subsets (n=870) divided by datasets (Subset 1:
OASIS, NITRC, CASILab vs Subset 2: Lausanne, IXI, ICBM) resulted in FID of 18.48
MD: 0.01334 and AUC PRD of 0.7926. Randomly selected patients from the OASIS
dataset were excluded to match the number of cases in the two subsets in the
second analysis.

In the visual turing test, the human rater reported to have considered the anatomy of
CoW arteries, ophthalmic and anterior choroidal arteries, optic nerve, hypothalamus,
pituitary gland, inferior horn of lateral ventricles, the Sylvian fissure as well as brain
tissue details to distinguish between the images. The rater had an accuracy of 44 %
in classifying the volumes as real or generated. A total of 100 volumes were
evaluated (50 real, 50 generated). Out of 50 real volumes, 31 were identified
correctly as real and 19 were falsely identified as generated. Out of 50 generated
volumes, 13 were correctly identified as generated and 37 were falsely identified as
real. The confusion matrix of the visual rating and respective example axial slices of
TOF MRA volumes are shown in Figure 6.
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Confusion Matrix of the visual Turing test Examples of Axial Slices
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Figure 6. Visual Turing test results. The confusion matrix of the visual Turingon is shown (left). One
example axial slice from each category (false positive, true positive, true negative, false negative) is
shown (right).

Replica detection methodology based on the L2 distance could not identify any
replicas in a random sample of 500 generated images. The visual analysis of a
subset of 50 closest real images measured by the L2 distance was performed by the
human rater and revealed no identical images.

In the following, the truncation trick, interpolation of style vectors and modeling of
stochastic variations in images are demonstrated. First, the influence of the style
scale parameter y on the diversity of generated images is shown in Figure 7.
Decreasing the value of the style scale parameter images led to lower diversity and
more homogenous contrast across the TOF MRA volumes. Second, the 3D
StyleGAN model could generate a smooth transition of intermediate TOF MRA
volumes when spherical interpolation between latent vectors was performed (Figure
8). Third, the stochastic variations in the images were modeled by changing the
noise input of the model while keeping the style vector constant (Figure 9).
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Figure 7. The influence of the style scale parameter y on the diversity of generated images. The
truncation of the style vectors using lower values of @ decreases the diversity of generated images.
With lower y values, background details diminish, and the contrast across the images becomes more
uniform, resulting in a set of images that appear more alike in anatomical features and overall visual
impression (bottom left y=0.25).

Figure 8. Image interpolation. From the image in the top left to the image in the bottom right
a TOF MRA volume was generated for 20 intermediate steps using spherical interpolation
between latent vectors. Smooth interpolation between images indicates that the model can
generalize and shows limited overfitting. Truncation gy was set to 0.75.
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Generated TOF MRA 1 Generated TOF MRA 2 Generated TOF MRA 3 Coefficient of variation map

Figure 9. Generated images with stochastic variation. The noise input is varied while keeping the
style vector the same across different TOF MRA volumes. The coefficient of variation map (right)
shows the per voxel coefficient of variation over 100 generated sample volumes and highlights the
areas that change with the noise input. While background details are controlled by the noise input, the
vessel anatomy is controlled by the style vectors and remains unchanged.

For the downstream multiclass CoW artery segmentation, four student models
trained on different training dataset compositions (50 real, 50 generated, 500
generated, 50 real + 50 generated) were evaluated on the test set of 60 patients
from the TopCoW challenge. The quantitative results using the Dice coefficient and
the Hausdorff Distance are summarized in Table 4. Increasing the number of
generated volumes from 50 to 500 led to higher downstream vessel segmentation
performance. Using 50 generated volumes in addition to 50 real patients as data
augmentation in the training set did not lead to superior performance compared to
the baseline teacher model trained on 50 real images. The downstream vessel
segmentation performance in 3 example patients from the test set is visualized in
Figure 10.
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Composition of ICA M1 ACA | Basilar | PCA | Acom | Pcom
Training set

Dice Coefficient
(higher is better)

50 Real 0.909 | 0.789 | 0.834 | 0.871 0.798 | 0.498 | 0.589
50 Generated 0.901 [ 0.777 | 0.809 | 0.855 0.785 | 0.321 | 0.464
500 Generated 0.907 [ 0.785 | 0.829 | 0.870 0.795 |1 0.419 | 0.554

50 Real + 50 Generated | 0.909 | 0.788 | 0.832 | 0.872 0.797 10.470 | 0.575
Hausdorff Distance
(lower is better)

50 Real 464 |9.17 |7.81 3.04 9.68 |[3.04 10.67
50 Generated 6.42 |11.15 | 11.03 | 3.05 10.09 | 3.46 14.00
500 Generated 442 1914 (868 (249 9.36 |[3.16 13.20
50 Real + 50 Generated | 4.33 [ 10.23 | 7.86 |2.59 10.00 | 3.00 11.94

Table 4. Quantitative segmentation results. Mean values for the Dice coefficient and Hausdorff
distance on the unseen test set are shown. The best mean value for each artery segment is
highlighted in bold.

Manual segmentation Real (n=50) Generated (n=50) Generated (n=500) Real + generated (n=50)

Patient 1

Patient 2

Patient 3

- Basilar artery PCA - Pcom - ICA ] ] M1 | [ ACA | | Acom |

Figure 10. Visualization of downstream vessel segmentation performance using generated data. The
student model trained on 50 generated volumes shows inferior performance on an unseen test patient
compared to other models and misclassifies voxels of PCA as ACA and vice versa (Patient 1, third
column). Notably Patient 1 has a more complex Circle of Willis variation compared to Patient 2. In
Patient 2 and 3, all models demonstrate comparable performance, with the greatest performance
variation being in the communication arteries Pcom and Acom. This observation is in alignment with
the quantitative results from Table 4.
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Discussion

We present an adaptation of the StyleGANv2 architecture tailored for the generative
modeling of Circle of Willis anatomical variations. Generation of diverse TOF MRA volumes
with high resolution and anatomical fidelity was possible with the proposed approach.
Differentiable augmentations were of vital importance for 3D modeling with limited data. For
downstream validation, we demonstrated the feasibility of training multiclass CoW artery
segmentation models only on synthetic data and achieved comparable performance to a
teacher model trained on real patient data. Synthetic TOF MRA data of the Circle of Willis
can be utilized in a wide variety of clinical and medical imaging applications and can facilitate
sharing of private medical patient data.

Generative modeling of 3D medical data poses unique challenges that need to be addressed
in model development. Compared to 2D medical datasets, 3D datasets are more limited in
size, data sharing can be more problematic and labeling in 3D is more labor intensive and
costly. To tackle limited data and computational constraints in generative Al applications,
previous works utilized modalities that are inherently 2D such as chest X-ray scans
(Chambon et al., 2022) or histological images (Karras et al., 2020a) or extracted 2D
slices/patches from 3D modalities such as MRI or CT (Kossen et al., 2021). Whereas
hundreds of 2D slices or patches can be extracted from a 3D medical image, modeling in 3D
significantly limits the number of training samples since each scan of a patient already
includes multiple slices. 2D generative models are useful and practical in some downstream
applications but lack the often necessary spatial consistency and anatomical context in many
other medical applications. Applications such as hemodynamic modelling in cerebral
arteries, large vessel occlusion detection algorithms, and aneurysm segmentation models
require 3D medical data for model development. To address limited data scenarios in
generative modeling, differentiable augmentations for the discriminator have been proposed
by multiple research groups concurrently (Karras et al., 2020a; Tran et al., 2021; Zhao et al.,
2020). We used the proposed differentiable augmentation strategy by Zhao et al. including
translation and cutout together with horizontal flipping to increase generation performance in
our limited medical data use-case. Our results suggest that without differentiable
augmentations the generation performance of high quality and diverse data in the target
resolution of 32x128x128 would be highly limited (Table 3). The model trained without any
differential augmentations in Figure 5 resulted in mode collapse in the beginning of the
training. Furthermore, to tackle computational limitations we trained the adapted StyleGAN
on a cropped RO focusing only on the Circle of Willis and used mixed precision training.
With this approach clinically common and acceptable image resolutions could be
synthesized without sacrificing performance on our downstream task of multiclass CoW
artery segmentation.

Generative models for medical imaging can be evaluated from various perspectives
including fidelity (quality, resolution and anatomical realism), diversity (representation of
variability in the real data distribution), utility (validation using a downstream clinical task)
and privacy (data leakage) (Chen et al., 2021). For each generative modeling approach, the
intended use case significantly defines model selection with respect to fidelity-diversity and
privacy-utility trade-offs. In our study, fidelity and diversity of the generated images were
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equally important while we prioritized utility over privacy since our models are trained on
already publicly available data.

Quantitative evaluation of image fidelity and diversity is rather challenging and controversial
in medical imaging because most available metrics, such as FID, rely on feature extraction
models pretrained on non-medical datasets containing natural images. The FID has been
reported to be over-reliant on texture and is argued not to be directly transferable to medical
images (Hong et al., 2021). Other works argue that FID aligns well with visual quality
analyses (Woodland et al., 2022). In addition to FID, we therefore use the MedicalNet (Chen
et al., 2019) for feature extraction before calculating the Fréchet Distance. Using the
extracted feature embeddings by the MedicalNet we compute the area under the curve of
the precision and recall for distributions curve similar to prior works (Subramaniam et al.,
2022). In our use case, the quantitative results correlated well with visual impressions; the
FID was used to assess the texture in axial slices, MD for the 3D consistency and overall
quality and AUC-PRD for the diversity of the generated TOF MRA volumes.

Generative Al models are proposed to enable data sharing and aim to guarantee privacy by
avoiding sharing real patient data. However one aspect that is neglected in some medical
applications of generative Al is the assessment of replicas i.e. the memorization of real data
from the training set (Pinaya et al., 2022). This phenomenon of generating replicas of real
data is hypothesized to be a problem of overfitting due to limited data and can be more
frequent in diffusion based architectures compared to generative adversarial networks
(Akbar et al., 2023). Replica detection is especially important when no privacy preserving
training methods such as differential privacy are used (Xie et al., 2018). Sharing of generator
weights or generated data along with the publications might lead to restricted data being
shared in an unnoticed way. Therefore, future works should implement a standardized
replica detection method for generative Al applications in medical imaging.

To assess the utility of the generated data by the 3D StyleGAN model we assess the
performance on the downstream task of multiclass CoW artery segmentation. The selection
of this downstream task directly stems from the motivation of modeling the variations of the
CoW and opens a path for a direct use case in clinical settings and medical imaging
research. In this downstream task, we use a novel validation cycle based on the
“teacher-student” model concept. In the initial step of the validation cycle, a teacher
segmentation model trained on real data is used to provide pseudo-labels for the generated
data. The ability of the teacher model to segment CoW arteries on generated TOF MRA data
is a crucial finding, since it showcases that the quality and anatomical fidelity of generated
samples are high enough to enable a satisfactory vessel segmentation result. In the second
step, a student segmentation model trained on the pairs of generated data and
pseudo-labels was able to segment unseen real TOF MRA volumes from the test set. The
performance of the student model on real test data shows proper generalization and
suggests that generated data retained the predictive properties of TOF MRA volumes for the
CoW artery segmentation. Increasing the number of generated data for training of the vessel
segmentation model improved segmentation performance, highlighting that increased
dataset diversity and size is beneficial for CoW artery segmentation. Furthermore, the
student model trained on 500 generated volumes produces high quality segmentations
comparable to the model trained on 50 real volumes. These results are highly promising for
future vessel segmentation approaches, since generated TOF MRA data and labels
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provided by either human experts or other models can be used to pretrain models or to
perform on-the-fly data augmentation.

Generative models have important features that can be exploited for certain clinical and
medical imaging applications. First, we explored image interpolation to enable a continuous
transition between two generated images. Image interpolation has the potential to be used in
different medical applications, for instance for disease progression modeling. Future works
could train conditional generative models on large datasets including a specific pathology
together with healthy controls. Interpolations between healthy images and late pathological
images can provide important interim snapshots of a disease that may not be routinely
captured due to lack of symptoms at an early asymptomatic stage of the disease. With this
methodology, the growth of an aneurysm, the expansion of an intracranial hematoma,
invasiveness and growth of a tumor or aging of an organ such as the brain can potentially be
modeled, and respective datasets can be generated for specific downstream clinical or
research applications. Second, the truncation trick allows control over the diversity and
quality of the generated images. Lower truncation values scale the style vectors towards the
mean style vector and potentially improve image quality while sacrificing the diversity of the
generated samples. Thus, the truncation parameter can be tuned to fit the demands of a
downstream use case to favor diversity or image quality. Rare variations of the CoW can be
synthesized using higher values for the truncation parameter to create tailored datasets for
rare variations of certain artery segments, such as the posterior communicating artery or the
branching patterns of the middle cerebral artery. Third, the additional noise inputs in each
layer in the StyleGAN architecture allow the modeling of stochastic elements in the
generated medical images. Such stochastic variations can include background noise,
different scanner qualities, or variations due to patient movement. Images with stochastic
variations can be used as a form of data augmentation technique to improve robustness of
downstream models towards adversarial attacks.

Our work has several limitations and implications for future works. First, although we used
multiple open-source datasets we have utilized predominantly healthy patient data from a
single imaging modality. We hypothesize that, given enough data, the results presented in
this study can be translated to datasets containing pathologies such as aneurysms, strokes,
or vascular malformations. Second, the 3D generative modeling is limited by computational
resources with training times exceeding several days for training at clinically relevant
resolutions and input sizes. To overcome this limitation, we trained the adapted StyleGAN by
constraining the region of interest to only focus on the Circle of Willis and used mixed
precision training. Due to computational limitations we did not perform exhaustive
hyperparameter searches including the augmentation probability for the differentiable
augmentation. Adaptive discriminator augmentations (Karras et al., 2020a) could be tested
to improve performance in future works. Third, we have tested only the StyleGAN
architecture for the modeling. More recent or efficient architectures such as Lightweight GAN
(Liu et al., 2021) or diffusion models can potentially produce images with higher quality and
diversity. Fourth, the dataset size of 1782 3D patient volumes is limited compared to
non-medical datasets such as FFHQ (Karras et al., 2019) or medical datasets using 2D
slices. We have limited our analysis to open-source data to allow for reproducibility and used
techniques such as differentiable augmentations to alleviate this limitation. Fifth, in the
downstream vessel segmentation task, we used pseudo-labels provided by the real model,
effectively capping the performance of the student models to that of the real model, even
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when the generated data was used for data augmentation. Further studies could manually
refine pseudo-labels provided by the teacher model to generate higher quality labels to
potentially surpass the performance of models trained on real data. Finally, despite the
replica detection methodology we employed, we cannot guarantee that our models are
privacy preserving, i.e. data leakage in the sense of membership inference attacks cannot
be ruled out where individual training data samples are recovered from our trained model.
Therefore, we make only the code publicly available whereas our model weights will be
made available upon reasonable request with assurance that the applying researcher has
gained access to all the open access training datasets used in this study. This should let
researchers reproduce our results and generate very similar synthetic datasets.

Conclusion

In this study, we adapted the StyleGANv2 architecture to generate high-quality,
high-resolution 3D CoW vessel data representative of inter-individual anatomical variations.
Our approach demonstrates the feasibility of utilizing synthetic data for training multiclass
CoW artery segmentation models, achieving comparable performance to models trained on
real patient data. The utilization of differentiable augmentations, a cropped region-of-interest
around the CoW, and mixed precision training helped to overcome the significant challenges
of data scarcity and computational demands. Thus, our approach of generative modeling of
3D TOF MRA data paves the way for generalizable deep learning applications in
cerebrovascular disease. In the future, the extension of the provided methodology to other
medical imaging problems or modalities with inclusion of pathological datasets has the
potential to advance the development of more robust models for clinical applications.
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