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Abstract 

Alterations in mitochondrial metabolism in obesity may indicate disrupted communication 

between mitochondria and nucleus, crucial for adapting to changing metabolic demands. 

Epigenetic modifications, particularly DNA methylation, may influence this intricate interplay, 

though the specifics remain poorly understood. Leveraging data from the subcohort of the 

Finnish Twin Cohort (n=173; 86 full twin pairs) that includes comprehensive measurements 

of obesity-related outcomes, mitochondrial DNA quantity (mtDNAq) and nuclear DNA 

methylation levels in adipose and muscle tissue, we identified one locus at SH3BP4 

(cg19998400) significantly associated with mtDNAq in adipose tissue (FDR<0.05). SH3BP4 

methylation correlated with its gene expression. Additionally, 14 out of the 35 obesity-related 

traits displayed significant associations with both SH3BP4 methylation and mtDNAq in 

adipose tissue. Using the method that infers causality from examination of familial 

confounding (ICE FALCON) our data suggests that mtDNAq, insulin sensitivity and certain 

body fat measures are causal to SH3BP4 methylation. The examination of mtDNAq and 

obesity-related traits suggested causation from mtDNAq to obesity which could not, 

however, be distinguished from potential unmeasured within-individual confounding. In 

conclusion, our findings underscore the impact of mtDNAq on DNA methylation and 

expression of the SH3BP4 gene within adipose tissue, with potential implications for obesity. 

 
Keywords: DNA methylation; Mitochondrial DNA, Obesity, Monozygotic twins; ICE FALCON  
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Introduction 

The significance of mitochondria as a primary energy source for cell growth and survival is 

indisputable. While mitochondria contain their own circular 16.6 kb genome, most of the 

genes required for mitochondrial function are encoded in the nuclear DNA. Therefore, cells 

require synchronized communication between the nucleus and mitochondria, known as 

mitonuclear communication, to adapt to changing metabolic demands. This intricate interplay 

can be subject to regulation by epigenetic mechanisms1, including DNA methylation2, which 

may influence the activity of gene expression. Consequently, the importance of DNA 

methylation for mitochondrial function has been highlighted in the literature3. 

 

The existing body of literature supports a bidirectional relationship between mitochondrial 

function and nuclear DNA methylation. On one hand, different mitochondrial haplotypes and 

variants can lead to differences in DNA methylation4–7 via numerous metabolic pathways, 

such as the methionine cycle and the production of methyl groups3. On the other hand, 

nuclear DNA methylation may impact mitochondrial metabolism by regulating mitochondrial-

associated gene expression8,9. The term ‘mitochondrial metabolism’ is used here as an 

umbrella term for any measurable trait associated with mitochondrial metabolism such as 

mtDNA quantity (mtDNAq), copy number, biogenesis, dynamics, and OXPHOS (oxidative 

phosphorylation) activity. 

 

The vital role of mitochondria in cellular energy metabolism has placed them in the center of 

interest in human traits and diseases with metabolic symptoms, including obesity.  

Obesity is characterized by excess body weight which can lead to a range of systemic 

metabolic disturbances, and it has been previously associated with compromised 

mitochondrial biogenesis and OXPHOS capacity10,11. Furthermore, obesity is a highly 

heterogeneous trait, and the precise molecular phenotypes contributing to the altered 

mitochondrial metabolism remain unclear. Additionally, the exact tissue-specific roles of 
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mitochondria in obesity are not well documented, although it has been shown that adipose 

tissue metabolism may be more affected by the acquired weight than muscle tissue11. 

 

The research on the role of DNA methylation underlying obesity-associated decline in 

mitochondrial metabolism remains scarce. A recent study showed that mtDNAq influences 

cardiovascular disease and mortality through changes in DNA methylation12. DNA 

methylation profiles of adipocyte progenitor cells of individuals with obesity have also been 

linked to mitochondrial metabolism13. Despite these insights, the causal pathways and 

comprehensive characterization of the orchestrated effects of DNA methylation and 

mitochondrial decline in obesity and obesity-related phenotypes remain elusive. 

 

Here, we aimed to identify DNA methylation sites associated with differences in mtDNAq in 

two primary tissues affected by obesity, namely subcutaneous adipose tissue and skeletal 

muscle. Additionally, we explored whether these methylation sites are linked to a 

comprehensive range of obesity-related outcomes and other related phenotypes, including 

several anthropometric and body composition measures, clinical biomarkers, physical 

activity and biological aging14. Finally, we explored the potential causal relationships 

between mtDNAq, DNA methylation and obesity-related measures with a method called 

Inference about Causation from Examination of FAmilial CONfounding (ICE FALCON)15, 

utilizing the monozygotic (MZ) twin pairs of the study cohort. 

Results 

A total of 173 individuals participated in the study, comprising complete 81 MZ twin pairs and 

5 DZ twin pairs (Table 1). The age range of the study cohort spanned from 23 to 70 years 

old, with females accounting for 59% of the cohort (Table 1). The mean BMI and fat 

percentage were 29.2kg/m2 and 39.6%, respectively, indicating that the sample is 

predominantly with overweight. In addition, average fasting glucose levels (5.6 mmol/l) and 
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HOMA-IR measures (2.1 units) were slightly elevated which suggests a reduced insulin 

sensitivity. Twenty-two participants were diagnosed with type 2 diabetes. The main analysis 

strategy is described in Figure 1, while Supplementary Table 1 summarizes the epigenetic 

age acceleration estimates of the study participants. Furthermore, the BMI-discordant MZ 

twin pairs with adipose tissue data (n=71 pairs) used in the causal inference analysis are 

presented in Supplementary Table 2. 

 

Differential methylation analysis 

To investigate whether nuclear DNA methylation was associated with mtDNAq, we 

performed an epigenome-wide association analysis (EWAS). In adipose tissue (n=153 

individuals), we identified one CpG site (cg19998400) that was inversely associated with 

mtDNAq (FDR=0.002) (Fig. 2a). The CpG is in the enhancer region of SH3BP4 (SH3 

domain binding protein 4) gene that codes for a protein involved in intracellular signaling 

pathways. Another CpG (cg17468563) located in the DHRS3 (Dehydrogenase/Reductase 3) 

enhancer region showed marginal association with mtDNAq (FDR=0.078) (Fig. 2a). Muscle 

tissue CpG methylation (n=155 individuals) was not associated with mtDNAq (Fig. 2b). The 

association profiles of the two tissues did not show similar patterns, as none of the top 100 

CpG were found to be in common between adipose and muscle samples. Additionally, there 

was no strong correlation between the regression effect sizes (Supplementary Fig. 1). The 

rest of the manuscript focuses explicitly on the findings in adipose tissue, given that we did 

not detect any statistically significant mtDNAq-linked DNA methylation sites in muscle.   

Causal inference between adipose tissue mitochondrial DNA 

quantity and identified CpG sites 

To investigate the potential evidence for causation underlying the associations between 

mtDNAq and the two identified CpG sites in adipose tissue, we performed ICE FALCON 
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analysis for the complete MZ twin pairs with data on adipose tissue DNA methylation (n=68 

MZ pairs). We analyzed each CpG separately given that we cannot assume them to have 

identical causal pathways. For instance, the cg17468563 has been reported to be under 

genetic control of multiple loci16 whereas no meQTLs have been identified for cg19998400.  

Our data was consistent with the hypothesis that mtDNAq is causally linked to cg19998400 

(Table 2). This was suggested when we set mtDNAq as the independent variable and 

observed a marginal cross-twin cross-trait association (Model 2:  Bcotwin=-0.160, p =0.091) 

which was attenuated towards null when adjusting for the twin's own mtDNAq. There was no 

evidence of change in the within-individual association. Conversely, when using mtDNAq as 

the dependent variable, we did not observe any cross-twin cross-trait associations in Models 

2 or 3. However, the increased absolute value of the regression coefficient in Model 3 is in 

line with mtDNAq being causal to methylation at cg19998400 (Table 2). The change was not 

statistically significant, which may reflect a low sample size and consequently reduced 

statistical power. The results from ICE FALCON on cg17468563 were more ambiguous, with 

the regression coefficients pointing to either causation from mtDNAq to methylation at 

cg17468563 or presence of within-individual confounding (Table 2). 

Causal inference between adipose tissue DNA methylation and 

gene expression 

As DNA methylation is a potential mechanism to regulate gene expression, we investigated 

whether the DNA methylation at cg19998400 and cg17468563 were associated with the 

expression of their respective genes, SH3BP4 (n=80 individuals) and DHRS3 (n=80 

individuals) in adipose tissue. There was a positive correlation between the expression and 

methylation of SH3BP (rPearson=0.46, p<0.001) (Fig. 3a), where the methylation explained 

solely 18% of the variation (marginal R-squared) and with familial confounding 58% 

(conditional R-squared) of the variation in gene expression (Fig. 3c). For the DHRS3 
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expression and methylation, we observed a negative correlation (rPearson=-0.66, p<0.001) 

(Fig. 3b), with a marginal R-squared of 42% and conditional R-squared 56% (Fig 3c).  

 

It is important to acknowledge that changes in gene expression patterns can also directly 

influence DNA methylation levels. Considering this, we conducted an ICE FALCON analysis 

to explore the direction of causality between gene expression and DNA methylation. We 

observed a marginal cross-twin cross-trait association between SH3BP4 expression and 

cg19998400 methylation (Model 2:  Bcotwin=-0.112, p =0.078) (Supplementary Table 3) that 

attenuated towards null when adjusting for twin’s own cg19998400 levels, whereas the twin’s 

own regression coefficient remained approximately the same. This observation is consistent 

with cg19998400 methylation influencing the SH3BP4 expression. On the other hand, the 

possibility for the presence of within-individual confounding cannot be ruled out. In contrast, 

with DHRS3 and cg17468563, we did not find any compelling evidence for either causation 

or familial confounding (Supplementary Table 3). 

Obesity-related variables associated with adipose tissue 

SH3BP4 methylation and mitochondrial DNA quantity 

Considering the well-established connection between mitochondrial dysfunction and obesity, 

we were interested to study whether the mtDNAq-associated CpG sites would be also 

associated with different obesity-related variables. We specifically focused on the DNA 

methylation of cg19998400 at the SH3BP4 locus (herein referred to as SH3BP4 

methylation), as our data suggested a potential causal relationship with mtDNAq, in contrast 

to cg17468563 methylation at DHRS3. Among a set of 35 obesity-related traits, six showed 

significant association only with mtDNAq, four with SH3BP4 methylation, and 14 with both 

mtDNAq and SH3BP4 methylation (FDR<0.05) (Fig 4., Supplementary Tables 4-5). 

Three distinct measures of epigenetic age acceleration (EAA), namely Horvath, Hannum and 

PhenoAge, displayed a negative association with mtDNAq but not with SH3BP4 methylation. 
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In addition to EAA, mtDNAq showed negative associations with fat-free mass and adipsin 

levels, and positive with sports activity. Obesity-related variables that associated exclusively 

with SH3BP4 methylation included elevated blood triglyceride levels, hsCRP, fasting glucose 

levels and systolic blood pressure. The 14 shared associations between mtDNAq and 

SH3BP4 methylation included parameters mainly related to body fat composition, insulin 

sensitivity and HDL cholesterol levels. Consistent with existing literature, higher mtDNAq 

were correlated with lower body fat, and higher insulin sensitivity, HDL cholesterol levels and 

adiponectin levels. 

Causal inference between obesity-related traits, and adipose 

tissue SH3BP4 methylation and mitochondrial DNA quantity 

To discern the potential causal relationship between the 14 obesity-related variables, and 

both SH3BP4 methylation and mtDNAq, we employed an ICE FALCON analysis for the 

complete MZ twin pairs in the cohort (Supplementary Table 2). Our findings indicate that 

certain variables related to insulin resistance and ectopic fat may exert causal influence on 

SH3BP4 methylation, as suggested by significant cross-twin cross-trait association in Model 

2 (body fat percentage Bcotwin=0.170, p=0.074; intra-abdominal fat Bcotwin=0.235, p =0.031; 

HOMA-IR Bcotwin=0.278, p =0.002; Matsuda Bcotwin=-0.253, p=0.006; fasting insulin 

Bcotwin=0.235, p =0.004) that attenuated towards null after conditioning on twin’s own 

corresponding measures (Fig. 5b). The changes in regression coefficients were significant in 

fat percentage (p=0.047) and marginally significant in Matsuda (p=0.062). Reversing the 

regression and using SH3BP4 methylation as predictor variable also suggested causality 

from these obesity-related traits to methylation, based on the behavior of the regression 

coefficients (i.e., the cross-twin cross-trait association increased substantially while the Bself 

remained relatively stable) (Fig. 5c). Results of other obesity-related traits, specifically those 

measuring body size, liver fat percentage, subcutaneous fat and HDL cholesterol, were less 

clear. While the behavior of co-twin’s regression coefficients in ICE FALCON may indicate 
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that these variables are a consequence of SH3BP4 methylation (Fig 5b-c), the opposing 

signs between Model 1 and Model 2 coefficients, when using SH3BP4 methylation as 

predictor variable X, can also suggest the presence of within-individual confounding (Fig 5c). 

Similarly, the ICE FALCON analysis on the association between mtDNAq and obesity-

related variables suggested either mtDNAq being causal to most of the obesity-related 

variables or being subject to unmeasured within-individual confounding (Fig 5d-e). 

Discussion 

In this study, we identified a significant association between mtDNAq and DNA methylation 

at SH3BP4, which correlated with its gene expression levels. This methylation site was also 

linked to numerous obesity-related traits, specifically those that measure body fat 

composition and insulin sensitivity. Leveraging our data on monozygotic twin pairs, we 

identified potentially causal associations from mtDNAq and obesity-related outcomes to 

SH3BP4 methylation in adipose tissue. 

 

The dynamic interplay between mitochondria and the nucleus plays a pivotal role in 

responding to diverse extracellular signals and metabolic conditions, as suggested by our 

findings: modifications in mtDNAq may precede changes in SH3BP4 methylation, which 

would indicate a retrograde signaling from mitochondria to nuclear DNA methylation. This 

observation aligns with prior research, although limited, showing the impact of reduced 

mtDNAq on nuclear DNA methylation in human embryonic kidney cell lines12. One of the 

main hypotheses for retrograde signaling includes the importance of mitochondria in the 

methionine cycle, and in the production of S-adenosylmethionine. S-adenosylmethionine is a 

primary methyl donor in cells, which interacts with DNA methyltransferases (DNMT) and 

therefore can affect DNA methylation17. However, the targeted nature of the mitochondria-

dependent methylation at specific genomic loci, such as SH3BP4, requires further 

investigation, along with its potential functional implications. 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24304959doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.02.24304959
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

 

Our study indicated that the DNA methylation of SH3BP4 and DHRS3 associated with 

mtDNAq may be reflected at the gene expression level in adipose tissue. Specifically, 

methylation of cg19998400 located at the 5’UTR region of SH3BP4 correlated positively with 

SH3BP4 expression whereas methylation at the gene body (cg17468563) of DHRS3 

displayed a negative correlation, which is contrary to the previously observed general pattern 

of positive association between gene body methylation and expression18,19. However, recent 

research indicates a far more complex relationship between these two factors, heavily 

influenced by the underlying genomic context20–22. Although our study does not pinpoint the 

molecular mechanisms underlying the association, we underscore the potential implication of 

these genes and their methylation status in relation to varying mtDNAq in obesity. Moreover, 

we demonstrated that DNA methylation of both SH3BP4 and DHRS3 accounted for a 

substantial proportion of the variation in the expression of these genes, alongside shared 

familial factors within the twin pairs. These factors encompass both genetic elements, such 

as eQTLs, and environmental factors, like age and lifestyle, which cannot be distinguished 

apart using MZ twin pairs only. Consequently, future studies with the inclusion of a cohort of 

dizygotic twins or other family members could provide insights into the relative significance 

of genes and environment. 

 

The link we identified between the mtDNAq-associated methylation site in SH3BP4 and 

various obesity-related outcomes, particularly those assessing insulin sensitivity and body fat 

composition, implies a potential role of mtDNAq-induced methylation in the etiology of 

obesity. SH3BP4 acts as a negative regulator in many signaling pathways such as mTORC1 

(mammalian target of rapamycin complex 1), a key promoter of cell growth and 

proliferation23, and has been observed to promote adipogenesis, possibly by regulating 

mitochondrial functions24–26. Previous research has demonstrated that mTOR signaling is 

compromised in obesity, potentially influenced by factors such as diet quality27–29 and 
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oxidative stress30. Still, the precise contribution of SH3BP4 methylation and gene expression 

to cellular function and disease development remains unclear.  

Our analysis indicates that changes in DNA methylation at SH3BP4 may result from 

alterations in body insulin sensitivity and intra-abdominal fat accumulation. Previous studies 

conducted on blood have also suggested that methylation may be a consequence rather 

than a cause of obesity31,32. Intriguingly, our findings suggest that only certain obesity-related 

outcomes, perhaps those more closely tied to metabolic disruptions such as insulin 

resistance and ectopic fat, are causally associated to SH3BP4 methylation, while others 

closely related, such as BMI, are not. This may reflect the high metabolic heterogeneity often 

observed among people with similar BMI33. Nevertheless, the discrepancy warrants further 

investigation into the pathways that result in changes in SH3BP4 methylation in the context 

of obesity. 

 The connection between mtDNAq and obesity has been established10,34,35, yet the 

exploration of causal pathways has been limited. We identified a dualistic relationship 

between mtDNAq and obesity-related outcomes which pointed to either causation from 

mtDNAq to several obesity-related outcomes or the presence of unmeasured within-

individual confounding. Excessive nutrient intake is a plausible factor influencing this 

association, as it is known to impair mitochondrial function36–38 and contribute to the excess 

body weight. Whether nutrient intake serves as a confounder in the association or initiates a 

pathway mediated by mitochondria leading to obesity remains uncertain. It is also possible 

that there is a circular relationship between mtDNAq and obesity. Additionally, changes in 

mtDNAq may manifest only after changes in other mitochondrial parameters, which were not 

covered in this study, thereby limiting the identification of causal associations between 

mitochondrial function and obesity, and DNA methylation. Despite this, we demonstrate that 

both mtDNAq as well as specific obesity-related outcomes may be causal to DNA 

methylation at SH3BP4, via shared or independent molecular pathways. 
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Aging is widely linked with a decline in mitochondrial metabolism, including reduced 

mtDNAq39,40. We revealed an association between mtDNAq and EAA, measured with 

Hannum, Horvath and PhenoAge, in adipose tissue, which can indicate that mitochondrial 

metabolism is one of the key components in driving biological aging. These clocks have 

been reported to exhibit similar transcriptional signals with one another41. While many of the 

epigenetic clocks were originally developed for whole blood (except for Horvath that is a 

multi-tissue clock), it has been shown that some of the clocks, including PhenoAge and 

Hannum, work fairly robustly in other tissues too41. Moreover, PhenoAge shows increased 

age acceleration in cells with depleted mitochondria41. 

 

Our study underscores the importance of investigating diseases-affected tissues beyond 

readily available blood samples. Exploring two primary tissues affected by excess weight, we 

discovered that the associations between DNA methylation and mtDNAq in obesity are not 

uniform. Only adipose tissue DNA methylation, but not muscle, was found to be associated 

with mtDNAq, which may reflect the different roles of these two tissues in obesity. For 

instance, alterations in adipose tissue seem to be more profoundly associated with metabolic 

health than those in muscle in obesity11. It may be that changes in muscle emerge only after 

systemic changes, such as insulin resistance, that are followed by the lipid accumulation. It 

is important to note that our cohort comprised mostly healthy participants, and therefore our 

findings cannot be necessarily generalized to more severe health complications such as 

metabolic syndrome or type 2 diabetes. Furthermore, mtDNAq as a proxy for mitochondrial 

biogenesis may not be directly comparable between the two tissues. 

 

This study encompasses several strengths. First, the carefully phenotyped twin cohort for a 

comprehensive range of obesity-related outcomes enables disentangling the most significant 

molecular phenotypes of obesity to mtDNAq. Second, the inclusion of adipose and skeletal 

muscle tissues broadens the examination of the impact of excess weight and other obesity-

related outcomes across tissues. In addition, using monozygotic twins, we can use statistical 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted April 3, 2024. ; https://doi.org/10.1101/2024.04.02.24304959doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.02.24304959
http://creativecommons.org/licenses/by-nc-nd/4.0/


12 

methods such as ICE FALCON to investigate the causality of the observed associations. 

The ICE FALCON offers a robust approach to explore the causal relationship in the 

observational data using related individuals, including twins15,42–44 without the need for 

genetic instrumental variables. To our knowledge, there is a lack of established genetic 

variants or polygenic scores to estimate mtDNAq specifically in adipose and muscle tissues. 

This absence of genetic information on mtDNAq prevented us from using statistical methods 

such as MR-CoD45, which depend on genetic data. 

However, there are limitations to consider that include the cross-sectional nature of 

the study, as well as the modest sample size, which substantially limits statistical power.  

Nevertheless, the uniqueness of our dataset, to our knowledge, sets it apart as the first to 

integrate DNA methylation and mitochondrial quantity in individuals with obesity using 

adipose and muscle tissues. 

 

Overall, we demonstrate a potential causal link from adipose tissue mitochondrial 

metabolism to DNA methylation and expression of SH3BP4. Additionally, this connection 

holds significance in obesity, where certain outcomes related to insulin sensitivity and intra-

abdominal fat were seen to contribute to SH3BP4 methylation, influenced either by mtDNAq 

or through alternative pathways. We propose the existence of a complex network 

interconnecting DNA methylation and mitochondrial metabolism in obesity, contributing to 

the multifaceted nature of obesity as a phenotype. Comprehensive examination of their 

interplay with various metabolic parameters holds promise for advancing our understanding 

of the intricate metabolic landscape in obesity. 
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Methods 

Study cohort 

The study participants originate from the metabolic substudy from the larger Finnish Twin 

Cohort (FinnTwin1246, FinnTwin1647 and Older Finnish Twin Cohort48). The present substudy 

was designed to study obesity-related metabolism, and the participants were initially invited 

to participate based on their self-reported weight and height. Our data consisted of 173 

individuals, comprising those with both subcutaneous adipose and muscle tissue data 

available (n=141), individuals with only subcutaneous adipose tissue (n=16), and those with 

only skeletal muscle data (n=16) (Table 1). 

Clinical data 

The selected study participants were deeply phenotyped for obesity-related clinical 

measures as described more in detail in van der Kolk et al. 202111. Briefly, anthropometric 

and body composition were measured after overnight fasting. Body mass index (BMI) was 

calculated from weight and height (kg/m2), measured during on-site visits. In addition, waist 

circumference was measured and waist-to-hip ratio (WHR) calculated. Fat mass, fat 

percentage and lean mass were quantified using dual-energy X-ray absorptiometry. Intra-

abdominal and subcutaneous fat volumes were measured using magnetic resonance 

imaging (MRI), and liver fat content using magnetic resonance spectroscopy (MRS). Supine 

blood pressure measurements were also taken (mean of three measurements). 

 

Blood samples were obtained after overnight fasting, and concentrations of plasma glucose, 

serum insulin, plasma total cholesterol, low-density lipoprotein (LDL), high-density lipoprotein 

(HDL), triglycerides, high sensitivity C-reactive protein (hsCRP), alanine aminotransferase 

(ALAT) and aspartate aminotransferase (ASAT) were measured using standard HUSLAB 

clinical laboratory procedures. Homeostatic model assessment-insulin resistance index 
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(HOMA-IR) and the Matsuda index for insulin sensitivity were calculated from the standard 

4-point oral glucose tolerance test (OGTT).  

 

Levels of different forms of physical activity (sport, work, leisure and total) were assessed 

using the Baecke questionnaire49,50. 

Sample Collection 

The samples of this study have been used in previous research11,51,52. Briefly, the adipose 

and muscle tissue samples were collected from subcutaneous abdominal adipose tissue and 

vastus lateralis muscle, respectively, under local anesthesia (lidocaine). Adipose tissue 

samples were taken using a surgical technique or needle biopsy, and muscle samples 

through Bergström needle biopsy. Determination of adipocyte volume (dm3) has been 

previously described in Lapatto et al. 202352. The tissue samples for DNA/RNA extraction 

were snap-frozen in liquid nitrogen. 

Mitochondrial DNA quantity 

DNA was extracted from adipose and muscle tissue biopsies using AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen). The amount of mtDNA was quantified using 

quantitative PCR (qPCR), targeting for two mitochondrial encoded genes ND5 (NADH 

dehydrogenase 5) and CYTB (cytochrome b), and normalized to genomic DNA as measured 

from APP (amyloid-beta precursor protein) and B2M (beta-2-microglobulin). Data was 

processed using the 2-ΔΔCt method with qbase+ software (Biogazelle) to obtain calibrated 

normalized relative quantities (CNRQ) for the mtDNA quantity. In cases of missing data (due 

to poor sample quality) for either ND5 or CYTB, we applied a stochastic regression method 

to input missing values, using the other gene as a reference. Subsequently, we calculated 

the mean of ND5 and CYTB, which served as the metric for mtDNAq.  
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DNA methylation data 

High molecular weight DNA was extracted from adipose and muscle biopsies with AllPrep 

DNA/RNA/miRNA Universal Kit (Qiagen) or QIAmp DNA Mini Kit (Qiagen) and bisulfite 

converted with an EZ DNA Methylation Kit (ZYMO Research) according to the 

manufacturers’ protocol. DNA methylation was quantified using Infinium 

HumanMethylation450K (adipose tissue) or HumanMethylationEPIC BeadChip arrays 

(adipose and muscle tissues). 

 

DNA methylation data was preprocessed and normalized with R package meffil53. Due to the 

modest sample size, adipose tissue 450K and EPIC data were preprocessed together, 

omitting the platform-specific probes from the analysis. After background and bias 

correction, we excluded bad quality samples with following criteria: i) Median difference in X 

and Y chromosome intensities > 3 standard deviations (SDs), ii) Median methylated vs. 

unmethylated intensity > 3 SDs, iii) unreliable control probes, iv) detection p-value >0.01 in 

more than 20% of probes and v) bead number < 3 in more than 20% of the probes. 

 

We then applied quantile normalization to reduce technical variation by adjusting for 

methylation sample slide and control probe PCs. Number of PCs included was estimated 

from a scree plot separately for adipose and muscle data (Supplementary Fig. 2). Bad 

quality probes were removed with following criteria: i) Detection p-value > 0.01 in more than 

20% samples, ii) bead number < 3 in more than 20% samples, ii) SNP probes and iv) 

ambiguous mapping probes54,55. After QC, the number of samples and probes were 

153/411,585 and 155/765,201 CpG sites for adipose and muscle data, respectively. The 

data was then beta mixture quantile (BMIQ) normalized to adjust for type2 probe bias. 

Because a considerable amount of batch effect remained from 450K and EPIC platforms in 

adipose tissue, we applied ComBat to minimize the effect of a platform (Supplementary Fig. 
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3). Methylation M-values, calculated as the log2 ratio between the methylated versus 

unmethylated probe intensities, were used in the statistical analysis56. 

Epigenetic age acceleration estimates 

Epigenetic age for each individual was calculated from the preprocessed DNA methylation 

data. We used the principal component (PC) versions of the original Hannum57, Horvath58, 

GrimAge59 and PhenoAge60 clocks as that has been shown to remove bias caused by 

technical variation in certain CpGs61. Other epigenetic clocks applied were DunedinPACE62 

which measures a pace of aging, as well as muscle specific epigenetic clock MEAT63 that 

was calculated for skeletal muscle tissue only. Epigenetic age acceleration measures, 

defined as the residuals from regressing an epigenetic age estimate on chronological age, 

were used in the statistical analyses. 

RNA sequencing data 

Adipose tissue RNA sequencing data was available for a subset of the twins (n=80 

individuals). The generation and preprocessing of the RNA-seq data has been described in 

detail elsewhere11. Briefly, RNA was extracted using AllPrep DNA/RNA/miRNA Universal Kit 

(Qiagen) with DNase I (Qiagen) digestion according to manufacturers’ protocol. After the 

calculation of RNA integrity numbers, the libraries were prepared with Illumina Stranded 

mRNA preparation and sequenced with Illumina HiSeq2000 platform. The data was mapped 

against human reference genome 38, the quality was calculated and read counts generated. 

Statistical analysis 

Differential methylation analysis 

To identify individual CpG sites associated with mtDNAq in adipose and muscle tissue, we 

performed an EWAS using R package limma64 that fits a linear model for each probe and 

computes moderated Bayes t-statistics. The models were adjusted for known biological and 
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behavioral (age, sex, smoking status), and technical (beadchip date and row) covariates, as 

well as cell type proportions. In the absence of reference-based cell type deconvolution 

methods developed specifically for either adipose or muscle tissues, we applied EpiDISH65 

to adjust for key known cell types: fibroblasts and epithelial cells. In addition, the adipose 

tissue model was adjusted for the proportion of fat cells derived from EpiDISH. The fraction 

of immune cells was omitted from the model due to high correlation with other cell types. The 

relatedness of twins in a pair was accounted for as a blocking factor in the model. 

Associations between DNA methylation and gene expression in adipose 

tissue 

DNA methylation is known to influence gene expression, due to which we investigated 

whether the identified DNA methylation sites correlated with the expression of their closest 

genes. We applied Pearson correlation to see to what extent DNA methylation and the 

expression of their respective genes were related. In addition, using linear mixed effects 

modeling between gene expression (outcome) and DNA methylation (predictor), and 

adjusting for the relatedness of the twins, we investigated how much of the variation in gene 

expression is explained i) by the changes in DNA methylation solely (marginal R squared) 

and ii) together with common familial factors shared within the twin pairs (conditional R 

squared). 

Associations between obesity-related outcomes, mitochondrial DNA 

quantity and DNA methylation 

Given that there is a well-established link between mitochondria and obesity, we were 

interested to explore whether the mtDNAq-associated CpG methylation was further linked to 

various obesity-related measures. We performed a generalized equation estimation (gee) 

regression using the R package geepack66 with ‘exchangeable’ correlation structure to 

account for within twin pair similarities. The CpG methylation was used as an outcome 

variable and each obesity-related outcome separately as a predictor variable. Those obesity-
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related variables that did not follow normal distribution were log10 transformed before the 

analysis (Supplementary Tables 3-4). The models were adjusted for age, sex and smoking, 

beadchip date, and row. We verified the associations between the obesity-related outcomes 

and mtDNAq and chose variables that exhibited statistically significant (FDR<0.05) links with 

both mtDNAq and CpG methylation. 

Causal inference 

To assess the potential evidence for causal relationship or common familial confounding 

underlying the identified associations between DNA methylation, mtDNAq and obesity-

related outcomes, we applied a statistical method called ICE FALCON (Inference about 

Causation from Examination of FAmilial CONfounding)15. The method is based on 

regression models of observational data of related individuals, specifically twins, and 

assesses the changes in twin’s own and co-twin’s regression coefficient from with and 

without adjusting the counterparts’ predictor variables (Models 1-3 below). We restricted the 

ICE FALCON analysis for the complete MZ pairs in our cohort. 

 

𝑀𝑜𝑑𝑒𝑙 1: 𝑌𝑠𝑒𝑙𝑓 ~ 𝛼 + 𝛽𝑠𝑒𝑙𝑓 × 𝑋𝑠𝑒𝑙𝑓  

𝑀𝑜𝑑𝑒𝑙 2: 𝑌𝑠𝑒𝑙𝑓  ~ 𝛼 + 𝛽𝑐𝑜𝑡𝑤𝑖𝑛 × 𝑋𝑐𝑜𝑡𝑤𝑖𝑛 

𝑀𝑜𝑑𝑒𝑙 3: 𝑌𝑠𝑒𝑙𝑓 ~ 𝛼 + 𝛽𝑠𝑒𝑙𝑓 × 𝑋𝑠𝑒𝑙𝑓  + 𝛽𝑐𝑜𝑡𝑤𝑖𝑛 × 𝑋𝑐𝑜𝑡𝑤𝑖𝑛 

 

Briefly, if the observed cross-twin cross-trait association (βcotwin) diminishes after adjusting for 

within-individual association it suggests a causal effect from the predictor variable to the 

outcome. Conversely, if the βcotwin appears only when conditioning on the within-individual 

association, it indicates a causal relationship from the outcome to the predictor. If both the 

βcotwin and the βself decrease after conditioning on each other, it indicates familial confounding 

(genetic or environmental) between the predictor and outcome. We examined βcotwin with and 

without conditioning on within-individual association using generalized equation estimation in 

R package geepack62 using ‘exchangeable’ correlation structure for the twin pairs. All 
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analyses were adjusted for age, sex and smoking. Technical covariates of beadchip date 

and row were added as covariates to adjust analyses including DNA methylation data. 

Additionally, the ICE FALCON between mtDNAq and DNA methylation sites were further 

adjusted for BMI. We then calculated the changes in regression coefficients, for which we 

estimated standard errors of changes with non-parametric bootstrapping generating 1,000 

datasets having the original sample size. The models were then reversed, e.g. using the 

previous X variable as Y variable to gain additional evidence on the causal pathway. 
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Table 1. Participant characteristics. 

 
N (twin pairs, singletons) 173 (86, 1) 

MZ / DZ (full twin pairs) 163 (81) / 10 (5) 

Age, mean (range) 45.7 (22.8–69.3) 

Female, % 59.0 

Smoking, % Never 39.3 

Current 30.1 

Former 30.6 

    

Obesity-related measures, Mean (range) SD 

Weight (kg) 83.7 (48.7–143.6) 18.3 

BMI (kg/m2) 29.2 (19.7–45.9) 5.8 

Waist circumference (cm) 97.6 (65.2–144.3) 15.7 

WHR 0.9 (0.8–1.1) 0.1 

Fat (%) 36.6 (8.9–57.3) 9.6 

Fat (kg) 31.9 (7.4–66.0) 13.0 

Fat-free mass (kg) 49.8 (29.5–76.7) 10.8 

Intra-abdominal fat (cm3) 1,015 (152–3,950) 870 

Subcutaneous fat (cm3) 4,582 (827–15,129) 2,830 

Adipocyte volume (mm3) 539 (123–1,131) 218 

Liver fat (%) 2.7 (0.1–22.4) 4.0 

Total cholesterol (mmol/l) 4.8 (2.7–7.7) 0.9 

HDL (mmol/l) 1.5 (0.5–3) 0.5 

LDL (mmol/l) 3 (1–5.1) 0.8 

Triglycerides (mmol/l) 1 (0.3–5.9) 0.6 

hsCRP (mg/l) 2.3 (0.1–9.7) 2.3 

Adipsin (µg/ml) 1.2 (0.7–1.7) 0.2 

Adiponectin (ng/ml) 3,320 (1,310–7,710) 1,408 

ALAT (U/l) 29.3 (14–127) 20.1 

ASAT (U/l) 29.2  (7–131) 14.3 

Systolic blood pressure (mmHg) 133 (97–195) 19 

Diastolic blood pressure (mmHg) 80 (48–110) 78 

Fasting glucose (mmol/l) 5.6 (4.0–16.1) 1.1 

Fasting insulin (mU/l) 8.1 (0.9–34.3) 5.9 

HOMA-IR 2.1 (0.2–9.9) 1.8 

Matsuda index 6.7 (0.7–34.2) 4.9 

Physical activity measures (Baecke scale),  Mean (SD) 

Leisure-time physical activity 2.9 (0.6) 

Sports activity 2.7 (0.9) 

Work activity 2.5 (1.0) 

Total activity 8.1 (1.5) 

  

ALAT = Alanine aminotransferase; ASAT = Aspartate aminotransferase; BMI = body mass index; DZ = dizygotic; 

HOMA-IR = Homeostatic model assessment for insulin resistance; hsCRP = high-sensitivity C-reactive protein; 

MZ = monozygotic; WHR = waist-to-hip ratio 
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Table 2. Results from ICE FALCON analysis between mtDNA quantity and the identified 

CpG sites (n = 68 monozygotic twin pairs) in adipose tissue. Regression models were 

adjusted for age, sex, smoking, BMI and methylation beadchip and row. P-values < 0.05 are 

bolded. 

 

Formula 

(Y/X 
variable) 

Coef* 
(βself / 

βcotwin) 

Model 1 Model 2 Model 3 Change in 

coefficients 

Est SE P Est SE P Est SE P Est P 

mtDNAq (Y) 
 cg19998400 (X) 
 

βself 

-0.350 0.061 9.2E-09    -0.358 0.060 2.1E-09 -0.008 0.728 

βcotwin 

      0.006 0.070 0.930 -0.067 0.059 0.257 -0.073 0.426 

cg19998400 (Y) 
mtDNAq (X) 

βself 

-0.487 0.098 7.3E-07    -0.475 0.102 3.6E-06 0.013 0.643 

Bcotwin 

      -0.167 0.081 0.039 -0.055 0.072 0.444 0.112 0.351 

mtDNAq (Y) 
cg17468563 (X) 

βself 

-0.431 0.092 2.9E-06    -0.428 0.092 3.6E-06 0.003 0.942 

βcotwin 

      0.163 0.080 0.043 0.143 0.073 0.051 -0.020 0.788 

cg17468563 (Y) 
mtDNAq (X) 

βself 

-0.342 0.082 2.9E-05    -0.331 0.082 5.0E-05 0.011 0.664 

βcotwin 

      0.132 0.078 0.090 0.050 0.067 0.460 -0.082 0.289 

 

*Standardized regression coefficient; βself represents the association between twin’s own X and Y variables 

whereas βself is the cross-twin cross-trait association i.e. the association between twin’s own X variable with their 

co-twin’s Y variable.  

mtDNAq = mitochondrial DNA quantity 
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Figure 1. Study flowchart. 

 

Figure 2. Volcano plot of the epigenome-wide association study on mtDNA quantity in 

(a) adipose tissue (n=153 individuals) and (b) skeletal muscle (n=155 individuals). Red dots 

indicate CpGs with FDR<0.10. 

 

Figure 3. Relationship between DNA methylation and gene expression at two genomic 

loci in adipose tissue. 

(a) Correlation between methylation at cg19998400 and SH3BP4 expression (n=80 

individuals).  

(b) Correlation between methylation at cg17468563 and DHRS3 expression (n=80 

individuals).  

(c) Variation in SH3BP4 and DHRS3 expression explained by methylation at cg19998400 

and cg17468563 (yellow bars), respectively, and combined with common familial factors 

(genetic or environmental) (blue bars) (n=80 individuals). 

DNAme = DNA methylation; L2PM = log2-counts per million; r = Pearson correlation coefficient 

 

Figure 4. Standardized beta coefficients and standard errors for the associations 

between obesity-related outcomes and methylation at cg19998400 (X-axis) or mtDNA 

quantity (Y-axis) (n=42-142 individuals) in adipose tissue. Yellow background indicates 

variables with FDR<0.05 associated with cg19998400 methylation only, blue indicates 

variables associated with mtDNA quantity only, and green indicates variables associated 

with both. 

 

Figure 5. Results from the ICE FALCON analysis between adipose tissue mtDNA 

quantity, SH3BP4 methylation and obesity-related outcomes. 

(a) Behavior of the ICE FALCON regression coefficients of Models 1-3 in each causal 

scenario. 

(b-e) Standardized regression coefficients and 95% confidence intervals analysis for the ICE 

FALCON regression coefficients (n=21-71 pairs) of (b) obesity-related outcomes regressed 

against SH3BP4 methylation, (c) SH3BP4 methylation regressed against obesity-related 

outcomes, (d) obesity-related outcomes regressed against mtDNA quantity and (e) mtDNA 

quantity regressed against obesity-related outcomes. 

‘Self’ represents the association between twin’s own X and Y variables whereas ‘Cotwin’ is 

the cross-twin cross-trait association i.e. the association between twin’s own X variable with 

their co-twin’s Y variable. ‘Adjusted’ refers to the regression coefficients derived from the ICE 

FALCON Model 3 that includes both twin’s own and their cotwin X variables. 

HDL = high-density lipoprotein; Subcut. = subcutaneous; Ia. = intra-abdominal 
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