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Abstract. 1 
Background and Purpose: Prior work on adaptive organ-at-risk (OAR)-sparing radiation 2 
therapy has typically reported outcomes based on fixed-number or fixed-interval re-planning, 3 
which represent one-size-fits-all approaches and do not account for the variable progression 4 
of individual patients’ toxicities. The purpose of this study was to determine the 5 
personalized optimal timing for re-planning in adaptive OAR-sparing radiation therapy, 6 
considering limited re-planning resources, for patients with head and neck cancer (HNC). 7 
Materials and Methods: A novel Markov decision process (MDP) model was developed 8 
to determine optimal timing of re-planning based on the patient’s expected toxicity, 9 
characterized by normal tissue complication probability (NTCP), for four toxicities. The 10 
MDP parameters were derived from a dataset comprising 52 HNC patients treated at the 11 
University of Texas MD Anderson Cancer Center between 2007 and 2013. Kernel density 12 
estimation was used to smooth the sample distributions. Optimal re-planning strategies were 13 
obtained when the permissible number of re-plans throughout the treatment was limited 14 
to 1, 2, and 3, respectively. 15 
Results: The MDP (optimal) solution recommended re-planning when the difference between 16 
planned and actual NTCPs (∆NTCP) was greater than or equal to 1%, 2%, 2%, and 4% 17 
at treatment fractions 10, 15, 20, and 25, respectively, exhibiting a temporally increasing 18 
pattern. The ∆NTCP thresholds remained constant across the number of re-planning 19 
allowances (1, 2, and 3).  20 
Conclusion: In limited-resource settings that impeded high-frequency adaptations, ∆NTCP 21 
thresholds obtained from an MDP model could derive optimal timing of re-planning to minimize 22 
the likelihood of treatment toxicities.  23 
 24 
Keywords: Personalized adaptive radiation therapy, organs at risk, normal tissue complication 25 
probability, Markov decision process, optimal strategy 26 

1 Introduction 27 

Advancements in radiation delivery techniques, such as intensity-modulated radiation therapy 28 
(IMRT) and volumetric-modulated arc therapy, enable accurate dose delivery to tumor targets 29 
while minimizing radiation exposure of the surrounding organs at risk (OARs) [1]. However, 30 
anatomical changes during the treatment, such as weight loss or tumor shrinkage, may cause the 31 
actual delivered dose to OARs to deviate from the planned dose. This can increase the risk of 32 
treatment-induced toxicities, particularly in cases where multiple OARs are in close proximity to the 33 
target, as in head and neck cancer (HNC) [2– 4]. To address this, adaptive radiation therapy (ART) 34 
has been clinically introduced, proposing on-therapy re-planning in response to anatomical changes 35 
in the target and OARs [5–10]. 36 

In practice, however, the clinical implementation of ART with daily (or even less-frequent) re-37 
planning remains limited, in large part due to the extensive human/personnel/workflow resources 38 
required to frequently perform key tasks such as segmentation and quality assurance as well as 39 
limited device accessibility time [11, 12]. Recent artificial intelligence (AI)-based algorithms (such 40 

 . CC-BY-NC-ND 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted November 4, 2024. ; https://doi.org/10.1101/2024.04.01.24305163doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.01.24305163
http://creativecommons.org/licenses/by-nc-nd/4.0/


as auto-segmentation or synthetically created CTs) [13, 14] may mitigate some or all of these process 41 
level frictions; however, the integration of such AI tools within the ART workflow is still evolving 42 
[15]. With the advent of hybrid MR-Linac devices, real-time adjustment of daily radiation plans, 43 
known as on-line ART, is now a possibility. On-line ART can also be enabled with the availability 44 
of high-frequency, high-quality cone- beam CT or CT-on-Rails devices [16, 17]. Regardless of ART 45 
implementation imaging inputs (MR or CT), cancer centers in the U.S. typically have implemented 46 
ART at fixed intervals, notably once mid-therapy [18] and often as a ‘verification’ of re-simulation. 47 
Most of the relevant studies also only report outcomes on fixed-number and/or fixed-interval re-48 
planning [19–21] (see Supplementary Table A1 for a comprehensive literature review). Such pre-49 
determined schedules for treatment re-planning, however, take a one-size-fits-all approach and do not 50 
account for the uncertain trajectory of individual patients’ toxicities [21], nor patient-specific tumor 51 
regression. As a result, determining the optimal timing of re-planning episodes remains a crucial 52 
unmet need, particularly for OAR-sparing adaptive approaches (whether for MR-Linac as we have 53 
implemented in MR-guided clinical trials [19] or for analogous CT-based approaches [20]). 54 

Heukelom et al. [22] investigated the optimal implementation of ART with a single re-planning 55 
allowance (in OAR-sparing radiation therapy) using daily on-treatment CT imaging with a CT-on-rails 56 
device. Leveraging the same dataset, this paper presents a new analytical approach to derive optimal 57 
re-planning strategies based on Markov decision process (MDP) models. Our aim is to identify the 58 
optimal timing for re-planning based on changes in normal tissue complication probabilities (NTCP) 59 
of four toxicities: xerostomia, dysphagia, parotid gland dysfunction, and feeding tube dependency at 6 60 
months post-treatment. We further include allowances in HNC treatment plan adaptations (through 61 
limiting the number of available re-plans) to enhance personalized treatment and efficacy. MDPs 62 
constitute a class of mathematical optimization models that aim to determine optimal decisions/actions 63 
in stochastic dynamic systems [23, 24]. MDPs have been successfully employed to find the optimal 64 
timing for various medical interventions [25–31]; however, to our knowledge, MDPs have not been 65 
applied for triggering adaptive re-planning. We develop a generalized framework for the utilization 66 
of MDPs for evidence-based individualized radiation treatment re-planning, scalable across resource- 67 
rich and resource-limited facilities, and applicable to both CT- and MR-based platforms. Thus, 68 
rather than a class solution based on population estimates of toxicity reduction potential, we enable 69 
personalized adaptive therapy with consideration of a budget. 70 

2 Materials and Methods 71 

2.1 Data 72 

This study used a prior dataset of CT-on-Rails image-guided radiation therapy (IGRT), detailed 73 
by Heukelom et al. [22], which comprised information from patients treated for HNC at the 74 
University of Texas MD Anderson Cancer Center between 2007 and 2013; this retrospective 75 
secondary analysis was performed under MD Anderson Cancer Center Institutional Review Board 76 
approval (MDA RCR03-0800). The treatments involved (chemo-) radiotherapy with daily CT-on-77 
Rails IGRT. Of the 52 patients, 36 were male and 16 were female. Among them, 46 patients 78 
were aged 18-65, while the remaining 6 were older than 65. The primary cancer sites were as 79 
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follows: Larynx (1 patient), Oropharynx (13), Oral cavity (4), Hypopharynx (0), Nasopharynx (15), 80 
and Sinonasal (12). Treatment modalities included radiotherapy alone (16 patients), induction 81 
chemotherapy followed by radiotherapy (2), induction chemotherapy followed by concurrent 82 
chemoradiation (16), concurrent chemoradiation (14), and radiation plus Cetuximab (4). The 83 
patients’ characteristics are summarized in Supplementary Table B1. 84 

Table 1. 85 
Observed ∆NTCP values based on the difference between planned dose and actual dose, 86 
along with the number of patients associated with each ∆NTCP value. Adapted from 87 
[22] with permission. 88 

(a) Fraction 10 89 
 90 

∆NTCP 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

Number of Patients 26 7 4 6 2 2 0 1 0 0 1 1 2 
 

(b) Fraction 15 

∆NTCP 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

Number of Patients 23 8 9 2 2 1 1 2 0 0 2 1 1 

 91 
 92 

For these 52 HNC patients, Heukelom et al. [22] calculated deviation of the actual dose from the 93 
planned dose for nine OARs at fractions 10 and 15 of the treatment. At each fraction, they estimated 94 
NTCP for the toxicities related to the OARs (xerostomia, dysphagia, parotid gland dysfunction, and 95 
tube feeding dependency at 6 months post-treatment) by projecting the actual dose through the 96 
remainder of the treatment period. Subsequently, they compared these findings with the planned 97 
NTCPs and determined the difference, i.e., ∆NTCP, for each toxicity. The NTCP models are 98 
presented in Supplementary Table E1. The MDP model presented in this paper used the ∆NTCP 99 
from this dataset [22], which are summarized in Table 1. For each observed ∆NTCP value, 100 
Heukelom et al. [22]  reported the number of patients for whom this ∆NTCP was the highest value 101 
among the four NTCP models.   102 

 103 

2.2 Decision Model 104 

In the MDP model, estimates of an individual patient’s toxicity outcome, as a function of the 105 
delivered radiation dose to OARs, determine the state of the system at each decision epoch during 106 
the treatment (e.g., day). Depending on the observed state, the clinician may decide between two 107 
possible actions: (1) Re-plan or (2) continue with the current plan. When the action is to continue 108 
with the current plan, the system may transition from one toxicity state to another stochastically, 109 
governed by transition probabilities. Re-planning changes the probabilistic transition towards more 110 
favorable outcomes/states. Given that a limited number of ‘re-planning’ actions may be taken 111 
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throughout the treatment, an optimal solution to the MDP identifies the optimal timing for taking 112 
such actions, as a function of the toxicity states. The MDP model captures the stochastic evolution 113 
of post-treatment toxicity risk and identifies optimal re-planning times to mitigate the toxicities 114 
(if necessary). The model components are as follows: 115 

Re-planning allowance: Depending on available resources for plan adaptations, the model 116 
considered a maximum number of re-plans B that could be implemented throughout the treatment. The 117 
analysis was performed for B = 1, 2, 3. 118 

Decision epochs: Given a treatment period consisting of 33-35 fractions, the decision epochs were 119 
set at fractions 10, 15, 20, and 25. Prior studies have shown that anatomical changes are unlikely 120 
to happen very early during the treatment [22]; thus fraction 5 was omitted. Fraction 30 was also 121 
excluded due to its proximity to the end of treatment, with negligible impact on the total dose to 122 
the OARs. 123 

States: At each decision epoch, the state of the system was captured by the pair (∆NTCP, b), 124 
where ∆NTCP denoted the deviation of treatment toxicity from the planned value at that time, and 125 
b ≤ B was the number of remaining re-plans. For example, if the maximum permissible number 126 
of re-plans was 2 (B = 2), and the clinician opted to implement a re-plan at fraction 10, then the 127 
state of the system at fraction 15 became b = 1. The ∆NTCP ranged from 0% to 12% in the model 128 
(Table 1); in computing the number of cases for each reported ∆NTCP value, only those patients 129 
were included who experienced the change of ∆NTCP in at least one of the four aforementioned 130 
toxicities. 131 

Actions: At each decision epoch, two possible actions were included: (1) Re-planning, or (2) 132 
continuing with the current plan (no re-planning). The stochastic transition of the toxicity state 133 
from one decision epoch to the next was a function of the action taken and was determined by the 134 
associated transition probabilities. Fig. 1 illustrates the states of the MDP and possible transitions 135 
associated with each action at Fractions 10, 15, and 20 along with their smoothed transition 136 
probabilities, for the case that at most 2 re-plannings may be performed.  137 

Transition Probabilities: The transition probabilities, governing the stochastic evolution of toxicity 138 
under each action, were estimated using the information presented in Table 1. Under the ‘no re-139 
planning’ action, the probabilities for transitions from fraction 0 to 10 and from fraction 10 to 15 140 
were directly estimated based on the number of patients in each ∆NTCP category. For example, the 141 
probability of transitioning from ∆NTCP = 0% at fraction 0 to ∆NTCP = 1% at fraction 10 is 7/52 142 
= 0.13, as 7 patients out of 52 exhibited such a change in ∆NTCP from fraction 0 to fraction 10. To 143 
make our transition probabilities more realistic with a broader spread and to avoid any deterministic 144 
transitions between states, we smoothed out the transition probability matrix from Fraction 10 to 145 
15 by using kernel density estimation with Gaussian kernels, implemented in Python [27]. We 146 
manually varied the bandwidth between 0 and 1 to observe its effect on the distribution. Based on 147 
these tests, we selected a final bandwidth of 0.4, balancing smoothness and fit to capture 148 
meaningful data patterns without introducing noise. The original and smoothed probabilities 149 
associated with the ‘no re-planning’ action are presented in Supplementary Material C. It was 150 
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assumed that transition probabilities from fraction 10 to 15 remained constant for subsequent 151 
decision epochs, due to the absence of reported ∆NTCP information beyond fraction 15 by Heukelom 152 
et al. [22]. To model the impact of the ‘re-planning’ action on transition probabilities, it was assumed 153 
that, at each decision epoch, the action immediately decreased ∆NTCP to a value proportional to the 154 
elapsed treatment time. For example, if the ‘re-planning’ action was taken at fraction 10 for 155 
∆NTCP = 5%, the state of toxicity would immediately decreased to ∆NTCP = 2% at this fraction, 156 
as approximately one third of  the treatment period had passed and the dose escalation would not 157 
continue through the rest of the treatment; see Fig. 2. Subsequently, the transition from fraction 10 to 158 
15 was governed by the probabilities for ∆NTCP = 2%, calculated from Table 1. The probabilities 159 
associated with the ‘re-planning’ action, as described above, are presented in Supplementary Material 160 
C. 161 

Rewards: For each set of consecutive actions taken at the decision epoch, the model considered 162 
the expected −∆NTCP at the end of the treatment period (with respect to the transition 163 
probabilities) as the corresponding reward. The objective of the MDP was to maximize the 164 
expected reward by identifying an optimal set of actions, one at each decision epoch, as a function 165 
of the system’s state. This is referred to as an optimal policy.  Because the rewards were defined 166 
by negative values in the MDP model, smaller end-treatment ∆NTCP values translated to higher 167 
rewards. 168 

The optimal policy of an MDP may become a single-threshold policy (also referred to as 169 
control-limit policies) [24], which refers to a class of policies that use thresholds on the state value 170 
to recommend an action. For this study, a single-threshold policy recommended re-planning when 171 
the ∆NTCP exceeded a threshold, while no re-planning was needed when it falls below the 172 
threshold. This implies that if the action for ∆NTCP = x% at a certain decision epoch was to re-173 
plan, then for every other state with ∆NTCP = y% > x% and the same allowance b, the action was 174 
also to re-plan. A single-threshold policy reduces the complexity of decision-making to a simple 175 
rule that uses only one threshold at each fraction to trigger action and is efficient to implement.  176 

The MDP was solved using the MDPtoolbox of MATLAB [32], for B = 1, 2, 3. The 177 
MATLAB code and its outputs are available at https://figshare.com/s/ 64bc3481737d17fc287e. 178 

 179 

3 Results 180 

After solving the MDP, the optimal policy, which specified the optimal action (‘re-planning’ or ‘no 181 
re-planning’) for each state (∆NTCP, b) at each decision epoch, was reported. The analysis revealed 182 
that the optimal policy was a single-threshold policy, where a specific ∆NTCP threshold was assigned 183 
to each fraction. When only one re-plan was allowed (B = 1), the optimal policy at fraction 10 was 184 
to re-plan for any ∆NTCP value greater than or equal to 1%. Subsequently, at fraction 15, this 185 
threshold increased to 2% and remained at 2% for fraction 20. At fraction 25, the minimum ∆NTCP 186 
required for a re-planning was 4%. These thresholds remained the same in the optimal policies for B 187 
= 2, 3. We summarized the results in Table 2 and provided an illustration in Supplementary Fig. 188 
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D1 for B = 3. 189 

Table 2. 190 

Optimal re-planning thresholds based on ∆NTCP and re-planning allowance. 191 

 192 

4 Discussion 193 

This study introduced the first — to our knowledge — application of the mathematically rigorous 194 
MDP methodology, to determine optimal timing of ART in HNC. The MDP model guides 195 
clinicians in determining the minimum values of ∆NTCP at fractions 10, 15, 20, and 25 for 196 
performing a re-plan, given a re-planning allowance of 1, 2, or 3 throughout the treatment. 197 

The re-planning ∆NTCP threshold increased over time in the optimal policy, consistent with the 198 
diminishing impact of re-planning as the treatment progresses. These values were 1% at fraction 199 
10, 2% at fractions 15 and 20, and 4% at fraction 25. Additionally, the results suggest optimality of 200 
re-planning for any changes in NTCP (∆NTCP ≥ 1) at fraction 10. This supports the findings of 201 
Heukelom et al. [22], who identified fraction 10 as the optimal time for a single re-plan. Importantly, 202 
at a given fraction, the ∆NTCP thresholds remained the same for different number of re-plans (B = 1, 203 
2, 3); the re-planning allowance did not affect these thresholds. Furthermore, in cases where ∆NTCP 204 
at fraction 25 was below the 4% threshold, both options (‘re-planning’ or ‘no re-planning’) yielded 205 
the same impact on the end-treatment ∆NTCP, indicating that re-planning did not result in an 206 
improvement. 207 

We acknowledge that minimizing the expected ∆NTCP may result in prescribing re-planning 208 
for any ∆NTCP value, potentially leading to a high number of false negatives. This arises from 209 
our modeling assumptions, which permitted a fixed number of re-plans at no cost, encouraging 210 
frequent re-planning due to low ∆NTCP thresholds. In an ongoing study, we are incorporating re-211 
planning costs without limiting the number of re-plans to better explore the trade-off between cost 212 
and benefit; however, at a minimum, we have opted to err on the side of patient benefit, rather than cost-213 
control; as patient NTCP benefit is potentially scalable across any health system, while cost per re-plan 214 
and acceptable cost constraints are variable across national and international health policy and 215 
reimbursement systems. 216 

The significance of a ∆NTCP of 4% or below lies in its potential impact on patient outcomes. 217 
While seemingly minor, even slight decreases in NTCP can have considerable implications for 218 
patient health and well-being. For instance, a reduction in severe toxicity such as osteoradionecrosis 219 
by just 4% could significantly enhance the quality of life and long-term survival prospects for 220 
patients. Moreover, customizing treatment to achieve such reductions underscores the importance of 221 

Re-planning allowance (B) 1 2 3 
Number of remaining re-plans (b) 1 2 1 3 2 1 
∆NTCP threshold at fraction 10 1% 1% - 1% - - 
∆NTCP threshold at fraction 15 2% 2% 2% 2% 2% - 
∆NTCP threshold at fraction 20 2% 2% 2% 2% 2% 2% 
∆NTCP threshold at fraction 25 4% 4% 4% 4% 4% 4% 
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personalized care tailored to individual patient needs. By focusing on optimizing treatment outcomes 222 
at this level, healthcare practitioners can prioritize patient-centric approaches that aim to minimize 223 
treatment-related toxicity and maximize overall patient benefit.  224 

 225 
We leveraged an existing CT-on-rails reference dataset [22] to objectively derive the ∆NTCP 226 

listed in the proposed MDP model. It is crucial to acknowledge the limitations regarding the 227 
generalizability of findings from this single-site retrospective in silico dataset. For instance, the in 228 
silico daily dose accumulation was not actively applied to individual patients, but rather calculated 229 
post hoc from a high-granularity CT-on-rails daily volumetric IGRT series. The CT-on-rails platform 230 
at MD Anderson utilized an in-house custom- constructed intermediary localization and 231 
alienation software (CT-Assisted Targeting (CAT)) [33]. Consequently, there were instances where 232 
delivered geometric shifts were either unrecorded or unrecoverable, or clearly aberrant (such as extensive 233 
shift records representing an initial setup that was then revised after repositioning) during the 234 
secondary export of coordinate displacement to the commercial Record and Verify software 235 
(Mosaiq, Elekta AB). These discrepancies were subsequently omitted in the in-silico model to 236 
streamline data, leading to conceptual gaps in the resultant NTCP modeling where these missing 237 
values were not accounted for. Furthermore, it is important to note that this modeled secondary 238 
dataset did not include adaptation or daily re-optimization of the initial daily dose in vivo. 239 
Consequently, the data presented in this paper should be viewed as a clinically approximate semi-240 
synthetic illustrative use-case, rather than a definitive rationale for the large-scale implementation of 241 
the observed idealized re-planning thresholds across distinct operational platforms. Nonetheless, we 242 
believe that the resultant MDP model could be readily scaled using higher-quality prospective or 243 
observational cohort data for secondary validation. In essence, the data presented in this paper 244 
should be regarded as informative rather than definitive, and the individualized planning parameters 245 
suggested by MDP should be viewed as proof of concept rather than a formal criterion barring 246 
external validation. 247 

In the prior work, Heukelom et al. [22] exclusively reported ∆NTCP for fractions 10 and 15, 248 
consistent with internal re-planning practices at MD Anderson Cancer Center based on data from a 249 
Phase II study by Maki et al. [34]. Consequently, for model extensibility in the current application, 250 
we have explicitly assumed transition probabilities remain stable for the subsequent epochs. This 251 
assumption introduced a known level of uncertainty that warrants consideration and is an area of 252 
future research, as it has been unclear for specific OARs whether these transition states were indeed 253 
stable over therapy. Moreover, the MDP model stipulated weekly re-planning intervals on indexed 254 
fractions (e.g., fractions 10, 15, 20, 25, and 30) as a simplification for clarity of presentation reflective 255 
of our current adaptive protocols [19], but could readily be adapted to continuous daily fraction-based 256 
re-planning intervals. 257 

The four NTCP models in Supplementary Table E1 are among the most currently used models 258 
to calculate the NTCP values for the considered toxicities: xerostomia, dysphagia, parotid gland 259 
dysfunction, and feeding tube dependency at 6 months post-treatment [22, 35]. With the advent of 260 
more recent NTCP models for HNC radiation therapy, e.g., [36], it is possible that new NTCP models 261 
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could offer improved estimations. In addition, the presented results are based on data collected from 262 
52 HNC patients. While we recognize the importance of sample size in calibrating MDPs, this 263 
sample size is considered substantial in HNC research, considering that HNC accounts for only 264 
about 4% of cancer cases in the United States [37]. Furthermore, our results are contingent upon 265 
the available CT-on-Rails data, and future research may benefit from incorporating higher-266 
dimensional data (e.g., GTV/the clinical target volume (CTV) modifying approaches, MRI anatomic 267 
and/or biomarker data for TCP/NTCP) for a more extensive insight. 268 

Nonetheless, the proposed MDP model for ART is clinically relevant, mathematically rigorous, 269 
resource-aware, and scalable, and can be adjusted based on new OAR toxicity with reference 270 
NTCP values. Necessarily, the precision of the model relies on accurate calculations of NTCP, 271 
particularly when adhering to rigorous criteria that determine whether patients are suitable for or 272 
excluded from ART [38]. Despite the challenges and limitations, our study introduces novel 273 
contributions to the field of ART. Unlike previous works [22], which primarily considered a single 274 
re-planning allowance, our optimization model extends its applicability to scenarios with multiple 275 
re-plans. Furthermore, our optimal policy spans across fractions 10, 15, 20, and 25, representing 276 
an advancement beyond the limited scope of Heukelom et al. [22], which only reported results for 277 
fractions 10 and 15. Gan et al. [39] achieved optimal timing for re-planning in HNC radiation 278 
therapy by analyzing weekly dose data through semi-auto segmentation and the K-nearest-279 
neighbor method. They constructed a dose deviation map to visualize differences between planned 280 
and actual doses, simulating different ART scenarios. By evaluating accumulated dose differences 281 
before and after re-planning, the optimal timing for re-planning was determined. Our methodology 282 
differs in that we incorporate ∆NTCP and utilize it to develop an MDP model for determining the 283 
optimal timing for re-planning. 284 

An aspect not explored in this study is the adaptation based on GTV or CTV modification, either 285 
for shrinking GTV/CTVs [19] or isotoxic boost approaches [40, 41]; we concentrated solely on 286 
OAR-based adaptation. Adapting based on GTV could open avenues for optimal re-plans, 287 
potentially influencing NTCP and extending into scenarios such as Stereotactic Body RT [42]. This 288 
introduces a distinctive problem and solution space beyond the scope of our current investigation. 289 
Furthermore, we exclusively focused on optimizing the ART workflow within the context of photon 290 
therapy. Similar optimization methodologies could prove advantageous when exploring ART in the 291 
context of proton therapy, particularly in addressing setup variability reduction [43]. For this study, 292 
NTCP calculations were based on the ‘plan of the day.’ While our findings may vary with deformable 293 
dose registration, the operational implementation remains consistent. Future efforts should consider 294 
incorporating deformable dose registration to enhance the model’s generalization. 295 

Several surveys in both low/middle-income countries [44, 45] and high-income economies [45] 296 
have identified resource constraints as an impediment to ART implementation; the use of models 297 
such as our MDP provides a potential avenue for stratification of resource allocation. Put simply, 298 
with one re-plan allowed, almost all patients would be best served via re-planning early during 299 
treatment; however, as the budget of re-planning staff/technical/time resources expand, evidence-300 
based personalized re-planning is potentiated by our MDP approach. 301 
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Graphical Abstract: Overview of the analysis method. The sub-figures displaying 
Organs at risk and toxicities are adapted from [1] with permission. Abbreviation: NTCP = 
Normal tissue complications probability. 
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Fig. 1: Markov Decision Process Model. The permissible number of re-plans is 2 (B = 2). The states are
shown by ellipses. �NTCP values are located in the upper half of the ellipses, while the lower halves contain
the value of b (the number of remaining re-plans). Transitions between states are shown by green arrows
when the action is ‘no re-planning’ and by red arrows when the action is ‘re-planning.’ Not all arrows, states,
and fractions are included to avoid ambiguity. For example, the smoothed transition probability from state
(2%,2) state to (1%,1) when the action is ‘re-planning’ is 0.86.
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Fig. 2: E↵ect of actions on system transitions. The permissible number of re-plans is 2 (B = 2). The states
are represented by ellipses. The �NTCP values are located in the upper halves of the ellipses, while the
lower halves contain the value of b (the number of remaining re-plans). When the action at a fraction is
‘re-planning,’ as in Fractions 10 and 15 in Part A and Fraction 10 in Part B, the transition to a state with
a lower �NTCP within the same fraction is shown with red arrows. Transitions between states from one
fraction to the next are shown with blue arrows. When the action is ‘no re-planning,’ as in Fraction 15 in
Part B, no transition occurs within that fraction. Instead, the system transitions to a new state at Fraction
20. This is depicted by the gray states at Fraction 15, indicating that there is no immediate decrease in
�NTCP.
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Supplementary Material A. Literature Review on Head-and-neck-cancer Adaptive Radiation Therapy. 
 

Table A1: A comprehensive list of relevant papers on head-and-neck-cancer ART along with the number of re-plan 
and the reported fractions. 

 
Paper Replan Trigger Replan Frequency 
Castelli et al. [1] None Replan weekly 
Lim et al. [2] Parotid dose Replan at F14 
McDonald et al. [3] Weight loss or Case studies of replans on four patients, 

  one at F6, F8, F24, F26 
Reinders et al. [4] None Replan weekly 
Kee et al. [5] Tumor ADC Replan at week 2 and 4, Increase dose at F10 
Ciarmatori et al. [6] None Single replan at F18 
Maffei et al. [7] None Optimal replan at F18 
Wang et al. [8] None Single replan at F18 
Gros et al. [9] Dosimetric factors Optimal replan between F1 and F23 
Duma et al. [10] Weight loss Replan varied from F6 to F20 
Fung et al. [11] None Replan after F25 and F35 
Kuo et al. [12] None Replan after F25 
Hansen et al. [13] Weight loss or Replan after F19 ± 6 

 tumor shrinkage  
Capelle et al. [14] None Replan at F20 
Brwon et al. [15] Source-to-skin Median re-planning at F22 and F26 

 distance corrections  
Castelli et al. [16] None Replan weekly 
Brown et al. [17] Nodal volume Median re-planning at F11 for nasopharyngeal 

  and at F20 for oropharyngeal 
Aly et al. [18] None Replan weekly 
Figen et al. [19] Weight loss or Mean replan at F15 

 tumor shrinkage  
Bobi´c et al. [20] None Replan weekly 
Gupta et al. [21] None Replan daily 
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Supplementary Material B. Patient Characteristics. 

 
Table B1: Patient characteristics. Abbreviations: cCRT = concurrent chemoradiation. RT = radiotherapy. TNM 
classification according to version 3. Accelerated RT: 2 Gy per fraction, 6 times per week. 

 
Variable Number of Patients = 52 Percentage 

Sex Male 69% 
 Female 31% 

Age 18-65 years 88% 
 ≥ 65 years 12% 

T-classification Tis-T1 8% 
 T2 15% 
 T3 13% 
 T4 54% 
 Recurrence 8% 
 Unknown 2% 
 Post-surgery 23% 

N-classification N0 27% 
 N1 19% 
 N2 38% 
 N3 2% 

Primary site Larynx 2% 
 Oropharynx 25% 
 Oral cavity 8% 
 Hypopharynx 0% 
 Nasopharynx 29% 
 Sinonasal 23% 

Pathology Adenocarcinoma 2% 
 Neuroblastoma 6% 
 Neuroendocrine 8% 
 Squamous cell carcinoma 50% 
 Undifferentiated carcinoma 17% 
 Other 17% 

Treatment modality Radiotherapy alone 31% 
 Induction chemotherapy followed by RT 4% 
 Induction chemotherapy followed by cCRT 31% 
 Concurrent chemoradiation 27% 
 Radiation + Cetuximab 8% 

Baseline weight loss No weight loss 38% 
 Moderate weight loss (1 – 10%) 33% 
 Severe weight loss (>10%) 6% 
 Unknown 23% 

Baseline xerostomia No xerostomia 4% 
 Some xerostomia 8% 
 Unknown 88% 

Accelerated RT Yes 6% 
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Supplementary Material C. Transition Probabilities. 
Action 1: No re-planning 
The natural transition probabilities from fraction 0 (pre-treatment) to fraction 10 were directly 
estimated using the information provided in Table 1. For each ∆NTCP category, the ratio of 
the corresponding number of patients at fraction 10 to the total of 52 patients was taken as 
the associated transition probability.  We note that all patients exhibit 
∆NTCP = 0% at fraction 0. These probabilities apply only to the states with the same number 
of remaining re-plans b, by the definition of the ‘no re-planning’ action. The transition 
probabilities are presented in Supplementary Table C1. 

 
Table C1: Transition probabilities from fraction 0 (F0) to fraction 10 (F10) under ‘no re-planning.’ 

 
∆NTCP @ F10 → 
∆NTCP @ F0 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.50 0.13 0.08 0.11 0.04 0.04 0.00 0.02 0.00 0.00 0.02 0.02 0.04 
 
 
The natural transition probabilities from fraction 10 to fraction 15 were estimated in a similar 
manner. As the number of patients in each ∆NTCP category at fraction 15 were aggregated, 
a mapping from ∆NTCP categories at fraction 10 to those of fraction 15 was established. 
To ensure a feasible map, it was assumed that ∆NTCPs may slightly improve (1%) on its own, 
without intervention. The necessity of this assumption may be observed by the number of 
patients with ∆NTCP = 12% at Fraction 10 and 15 in Table 1; two patients exhibited 
∆NTCP = 12% at fraction 10, while this number at fraction 15 was one patient. As no 
patient showed ∆NTCP = 6%, 8%, 9% at fraction 10, it was assumed that the patients in 
these categories retain the same ∆NTCP at fraction 15 with probability 1. The transition 
probabilities are presented in Supplementary Table C2. 

 
Table C2: Transition probabilities from fraction 10 (F10) to fraction 15 (F15) under ‘no re-planning.’ The same 
probabilities apply to subsequent transitions, i.e., from F15 to F20, from F20 to F25, and from F25 to end-treatment, 
under ‘no re-planning.’ 

 
∆NTCP @ F15 → 
∆NTCP @ F10 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.88 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1% 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2% 0.00 0.25 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3% 0.00 0.00 0.50 0.33 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4% 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 
5% 0.00 0.00 0.00 0.00 0.00 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 
6% 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
7% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 

10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 
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Table C3: Smoothed Transition probabilities from fraction 10 (F10) to fraction 15 (F15) under ‘no re- planning.’ The 
same probabilities apply to subsequent transitions, i.e., from F15 to F20, from F20 to F25, and from F25 to end-
treatment, under ‘no re-planning.’ 

 
∆NTCP @ F15 → 
∆NTCP @ F10 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
4% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
5% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.42 0.02 0.00 0.00 0.00 0.00 
6% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00 
7% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00 
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 

10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.88 0.04 0.00 
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.88 0.06 0.02 
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06 0.46 0.48 

 
 
Action 2: Re-planning 
The impact of ‘re-planning’ on transition probabilities at a specific fraction was modeled 
by presuming an immediate reduction in ∆NTCP to a proportion relative to the elapsed 
treatment time, followed by a natural transition governed by the probabilities associated with 
the reduced ∆NTCP. For instance, ‘re-planning’ at fraction 10 when ∆NTCP is at 5% 
results in an immediate decrease to ∆NTCP = 2%, reflecting that about one-third of the 
treatment has been completed. This is then followed by a transition (from F10 to F15) 
according to the probabilities associated with ∆NTCP = 2% @ F10 in Supplementary Table 
C2. These probabilities are presented in the following tables. We note that the earliest decision 
epoch for ‘re-planning’ is fraction 10. 

Table C4: Transition probabilities from fraction 10 (F10) to fraction 15 (F15) under ‘re-planning.’ 
 

∆NTCP @ F15 → 
∆NTCP @ F10 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
6% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
7% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
8% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
9% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 

10% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
11% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
12% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
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Table C5: Transition probabilities from fraction 15 (F15) to fraction 20 (F20) under ‘re-planning.’ 
 

∆NTCP @ F20 → 
∆NTCP @ F15 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
5% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
6% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
7% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
8% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
9% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.42 0.02 0.00 0.00 0.00 0.00 

10% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.42 0.02 0.00 0.00 0.00 0.00 
11% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00 
12% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00 

 
Table C6: Transition probabilities from fraction 20 (F20) to fraction 25 (F25) under ‘re-planning.’ 

 
∆NTCP @ F25 → 
∆NTCP @ F20 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
4% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
5% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
6% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
7% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.42 0.02 0.00 0.00 0.00 0.00 
8% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.42 0.02 0.00 0.00 0.00 0.00 
9% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00 

10% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00 
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00 
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 

 
Table C7: Transition probabilities from fraction 25 (F25) to end-treatment under ‘re-planning.’ 

 
∆NTCP @ end → 
∆NTCP @ F25 ↓ 

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10% 11% 12% 

0% 0.81 0.08 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
1% 0.07 0.86 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
2% 0.01 0.28 0.66 0.04 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 
3% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
4% 0.00 0.03 0.46 0.31 0.17 0.01 0.02 0.00 0.00 0.00 0.00 0.00 0.00 
5% 0.00 0.00 0.02 0.03 0.43 0.06 0.42 0.04 0.00 0.00 0.00 0.00 0.00 
6% 0.00 0.00 0.00 0.00 0.04 0.43 0.09 0.42 0.02 0.00 0.00 0.00 0.00 
7% 0.00 0.00 0.00 0.00 0.00 0.06 0.85 0.09 0.00 0.00 0.00 0.00 0.00 
8% 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 0.00 
9% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 

10% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 0.00 
11% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.07 0.85 0.08 0.00 0.00 
12% 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.88 0.04 0.00 
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Supplementary Material D. Optimal ∆NTCP Thresholds for Re-planning. 
 
 

 
Fig. D1: Optimal ∆NTCP thresholds for re-planning for B = 3. Optimal ∆NTCP thresholds for re-planning at fractions 
10, 15, 20, and 25 are 1%, 2%, 2%, and 4%, respectively. The optimal ∆NTCP thresholds increase with respect to 
fraction but remain constant with respect to the number of replans remaining. 
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Supplementary Material E. NTCP Models. 

 
Table E1: The employed NTCP models for xerostomia, dysphagia, parotid gland dysfunction, and feeding tube 
dependency at 6 months post-treatment. 

1. NTCP model for moderate to severe xerostomia at 6 months [22]. 

NTCP = (1	 +	𝑒!")!# , where 
S = -1.443 + (mean dose to contralateral parotid * 0.047) + (baseline xerostomia score * 0.720). Baseline 
xerostomia is 0 (none) or 1 (a bit). 

 

2. NTCP model for physician rated feeding tube dependency at 6 months [23] 
 

NTCP = (1	 +	𝑒!")!#, where 
S = -11.70 + (advanced T-stage * 0.43) + (moderate weight loss * 0.95) 
+ (severe weight loss * 1.63) + (accelerated radiotherapy * 1.20) + (chemoradiation * 1.91) 
+ (radiotherapy plus cetuximab * 0.56) + (mean dose PCM superior *0.071) 
+ (mean dose PCM inferior * 0.034) + (mean dose contralateral parotid * 0.006) 
+ (mean dose cricopharyngeal muscle * 0.023). 
The dose variables are in Gy, and for all the other variables 0 (no) or 1 (yes) are filled in. 

 

3. NTCP model for physician rated decreased salivary flow using the mean dose model [24–26].

  NTCP = #
√%&

∫ 𝑒
!"#
#

'
!( 𝑑𝑡, where 𝑢	= )!*)$%

+*)$%
	

  D is the mean parotid dose, TD50 is the dose resulting in 50% complication probability and m 
determines the slope of the model. The employed parameters were TD50=39.9 Gy and m = 0.4. 

4. NTCP model for dysphagia (grade 2–4 swallowing dysfunction according to the RTOG/EORTC Late 
Radiation Morbidity Scoring Criteria, physician rated 6 months after treatment) [27]. 
NTCP = (1 + e−S)−1, where 
S = −6.09+ (mean dose PCM superior * 0.057) + (mean dose supraglottic larynx * 0.037). 
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