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 37 
Abstract 38 

Breast cancer screening is necessary to reduce mortality due to undetected breast cancer. 39 
Current methods have limitations, and as a result many women forego regular screening. 40 
Magnetic resonance imaging (MRI) can overcome most of these limitations, but access to 41 
conventional MRI is not widely available for routine annual screening. Here, we used an 42 
MRI scanner operating at ultra-low field (ULF) to image the left breasts of 11 women 43 
(mean age, 35 years ±13 years) in the prone position. Three breast radiologists reviewed 44 
the imaging and were able to discern the breast outline and distinguish fibroglandular 45 
tissue (FGT) from intramammary adipose tissue. Additionally, the expert readers agreed 46 
on their assessment of the breast tissue pattern including fatty, scattered FGT, 47 
heterogeneous FGT, and extreme FGT. This preliminary work demonstrates that ULF 48 
breast MRI is feasible and may be a potential option for comfortable, widely deployable, 49 
and low-cost breast cancer diagnosis and screening. 50 

 51 
 52 

MAIN TEXT 53 
 54 
Introduction 55 

Approximately 1 in 8 women will develop breast cancer in their lifetime (1), with 85% of 56 
cancers occurring in women with no family history of breast cancer (2). Currently 57 
mammography is the most used imaging-based tool for breast cancer screening as it is 58 
accessible and cost-effective. However, mammography has limitations: it requires ionizing 59 
radiation, women find breast compression uncomfortable, and 1-35% of breast cancers are 60 
missed on mammograms (3–9). As a result, in 2015, only 65.3% of women over age 40 61 
had undergone a mammogram in the previous 2 years (10).  62 

Currently available MRI-based methods overcome some of these limitations (11), 63 
particularly in high-risk groups (12–14). This is because differences in soft tissues can be 64 
visualized without obfuscations from dense tissue, and MRI screening has low false-65 
negative rates (15, 16). MRI can detect invasive carcinomas, distinguishing between 66 
malignant and benign lesions using T1 weighted imaging with injected contrast agent 67 
enhancement (17). Additionally, apparent diffusion coefficient (ADC) can be used to 68 
differentiate lesions (18) and assess response to treatment(19). However, traditional 69 
clinical MRI operating at 1.5 T and 3 T requires the patient to endure a constricted setting, 70 
and currently, MRI as a screening modality is underutilized in high-risk women (defined 71 
as a lifetime risk >20%) (20). While fast MRI protocols enable screening in less than 10 72 
minutes (21), the high cost and limited access prohibit their use as a primary screening 73 
tool. 74 

Compared to clinical MRI systems operating at 1.5 T or 3 T, ultra-low field (ULF, <10 75 
mT) MRI systems can be significantly less expensive to build and have less stringent 76 
installation requirements, allowing increased access. Recently, low-field MRI 77 
neuroimaging systems operating at 64 mT have been used in the clinic at the patient 78 
bedside for stroke detection (22–24) These systems are safe, do not require an MRI 79 
technician, do not require a magnetic- or RF-shielded room, and can be rolled from room 80 
to room (25, 26). While operation at lower magnetic field generally leads to images 81 
obtained with lower SNR, the effectiveness of low-field MRI for neuroimaging in clinical 82 
practice has been demonstrated (22, 24, 27). 83 
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Based on the recent successes of low field MRI for neuroimaging, we hypothesize that 84 
there may be sufficient SNR for whole breast imaging with ULF MRI. NMR-based 85 
methods to assess breast cancers began in the early days of MRI with work at 0.71 T to 86 
measure T1 and T2 relaxation times of breast tissues (28) Given those promising results, 87 
T1 was measured on an entire mastectomy sample (29, 30) and then the whole breast was 88 
imaged at 45 mT, which supported the NMR findings, although adoption of the method 89 
was limited by an unacceptably long exam duration (31). Other studies report the T1 90 
relaxation times of ex vivo breast tissues at a range of magnetic fields using NMR 91 
dispersion (NMRD) measurements (32, 33). These works found that in the low- and ultra-92 
low field regime the T1 relaxation time of cancerous breast lesions differs from that of 93 
healthy fibroglandular and adipose tissues (28, 32, 33). These T1 differences motivate the 94 
presently described work; if one could obtain sufficient SNR over a reasonable exam time, 95 
ULF breast MRI may be suitable for low-cost breast imaging, retaining the advantages of 96 
multi-slice soft tissue imaging compared to the X-ray projection-based method used in 97 
mammography. 98 

In this study, we describe our preliminary evaluation of breast imaging using ULF MRI. 99 
We used an ULF MRI system operating at 6.5 mT and a conical RF coil to image the left 100 
breasts of 11 women in the same prone position. ULF MR images of the whole breast 101 
revealed essential breast features, including type of fibroglandular tissue, breast outline, 102 
nipple areolar complex, and chest wall. These findings are encouraging, and ULF breast 103 
MRI may indeed be suitable as a strategy to increase access for comfortable, non-invasive 104 
breast imaging. 105 
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 106 

 107 

Fig. 1. 6.5 mT ULF MRI scanner configured for breast imaging. (A) Axial view of the ULF MRI scanner. 
The three axes of the gradient set are shown as Gx (in blue), Gy (in green) and Gz (in magenta), and the 
biplanar coils of the resistive electromagnet are shown in brown (two per side, four total). The participant lays 
on the patient table in the prone position with the head turned to the side. The left breast is placed in the RF 
coil located at the scanner isocenter. (B) CAD model of breast RF coil designed for breast imaging at 276.18 
kHz. The dimensions of the RF coil are shown in red.  
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 108 

 109 

Fig. 2. In vivo experimental setup for breast imaging at ULF. A view of the subject table with red arrow indicating 
the location of the 3D printed and uniformly wound breast RF coil fixed in the table below the subject. The dimensions 
of the RF coil are shown in red.  
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 111 
 112 
 113 
 114 
 115 
 116 
 117 

Fig. 3. Assessment of the imaging volume of the conical-shaped breast RF coil. (A) The magnetic field calculation of the breast 
RF coil where the color bar indicates the B1 field distribution (in µT/A) across the breast volume. (B) A homogeneous phantom was 
imaged using the setup as shown, with a latex balloon (in blue) filled with deionized water placed inside the breast RF coil. (C) 
Phantom imaging scan, where a single central slice is extracted from a 21-slice 3D-bSSFP acquisition. The scan shows the signal 
uniformity of the RF coil. The red line indicates the end of the plate of the RF coil. 
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 118 

Fig. 4. 3D Ultra-low field breast MRI obtained at 6.5 mT from a healthy woman in her 30s with heterogeneous fibroglandular tissue 
(FGT). 18 out of 21 sequential axial bSSFP-weighted slices of the left breast are shown, and no contrast agent was administered. Data was 
acquired in approximately 21 minutes with a spatial resolution of 3 mm ´ 3 mm ´ 8 mm. All features are visualized in this study: breast outline, 
FGT, nipple areolar complex, and chest wall. Vertical and horizontal scale bars in white are 3 mm each and are shown in slice 3. 
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 119 

Fig. 5. 3D Ultra-low field breast MRI obtained at 6.5 mT from a healthy woman in her 30s with scattered fibroglandular tissue (FGT). 17 
out of 21 representative sequential axial bSSFP-weighted slices of the left breast are shown, and no contrast agent was administered. Data was 
acquired in approximately 21 minutes with a spatial resolution of 3 mm ´ 3 mm ´ 8 mm. The nipple areolar complex and chest wall were not 
well visualized in this study. The breast outline and FGT are visualized. Vertical and horizontal scale bars in white are 3 mm each and are shown 
in slice 1. 
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 120 

Fig. 6. 3D Ultra-low field breast MRI obtained at 6.5 mT from a healthy woman in her 30s with extreme fibroglandular tissue (FGT). 18 
out of 21 representative sequential axial bSSFP-weighted images of the left breast are represented. No contrast agent was administered. Data was 
acquired in approximately 21 minutes with a spatial resolution of 3 mm ´ 3 mm ´ 8 mm. All features are visualized in this study: breast outline, 
FGT, nipple areolar complex, and chest wall. Vertical and horizontal scale bars in white are 3 mm each and are shown in slice 1. 
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 121 
 122 

Fig. 7. Representative axial bSSFP-weighted slices of the left breast acquired at 6.5 mT from three different subjects. (A) A subject with 
heterogeneous fibroglandular tissue (FGT) and all features visualized. (B) A subject with scattered FGT with the breast outline and FGT 
visualized. The nipple areolar complex (NAC) and chest wall were not well visualized. (C) A subject with extreme FGT and all features 
visualized. When visible, the indicated features labeled by numbered arrows are breast outline (indicated by 1), NAC (indicated by 2), FGT 
(indicated by 3), and chest wall (indicated by 4). Vertical and horizontal scale bars in white are 3 mm each and are shown in each slice. 
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Results  123 
Imaging system  124 
Imaging was performed on a custom-built electromagnet-based MRI scanner shown in 125 
Fig. 1 and modified for breast imaging from its previously described configuration for 126 
neuroimaging (34) . Figure 2 shows the imaging bed and dedicated RF coil designed to 127 
image a single breast. The breast and breast RF coil are placed at the isocenter of the 128 
scanner.  129 

A close-fitting conical breast coil was designed, and the RF magnetic field generated by 130 
this coil was simulated, with the resultant field map depicted in Fig. 3A. Within the breast 131 
RF coil, the field homogeneity was quantified, revealing an inhomogeneity of ±60% in the 132 
breast volume region and a magnetic field fall-off 3 cm inside the chest wall of 30%. To 133 
evaluate the sensitivity of the coil, a homogeneous flexible phantom filled with deionized 134 
water was positioned inside the breast RF coil and scanned (Fig. 3B). The phantom 135 
imaging result, shown in Fig. 3C, reflects the sensitivity distribution across the RF coil, 136 
demonstrating high sensitivity within the coil and a marked decrease in sensitivity towards 137 
the opening of the RF coil.  138 

Participant characteristics and imaging protocol 139 
ULF MRI was used to image the left breast of 11 women (mean age, 35 years ± 13 years) 140 
in this preliminary study. All women completed the study. A 3D balanced SSFP (bSSFP) 141 
sequence was used with a voxel size of 3 mm × 3 mm × 8 mm. To accelerate the imaging 142 
process, an under-sampling factor of 70% was used, and the resulting total scan time was 143 
21 minutes 36 seconds. The MR sequence and positioning were well tolerated. None of 144 
the images were degraded by patient motion. It is noteworthy that none of the participants 145 
experienced discomfort during the exam, and the breast fit naturally in the conical-shaped 146 
RF coil without any compression. 147 
 148 
ULF MRI breast imaging findings 149 
Image sets of the entire left breast for three representative subjects are shown in Fig. 4-6. 150 
The images in Fig. 7 are single slices of these three representative subjects with the 151 
following features labeled by numbered arrows: visibility of the breast outline (indicated 152 
by 1), NAC (indicated by 2), FGT (indicated by 3), and chest wall (indicated by 4). 153 

Breast images from all 11 participants were evaluated by three independent board-certified 154 
breast radiologists for the purpose of categorizing breast density and assessing the 155 
visibility of essential breast tissues. Individual image scores are reported in Table 1. Breast 156 
tissue pattern was assessed using fatty, scattered FGT, heterogeneous FGT, and extreme 157 
FGT. Inter-reader reliability of breast tissue pattern was determined using Fleiss' kappa, 158 
which resulted in a kappa value of 0.73 (95% confidence interval: 0.72 to 0.74, p<0.001), 159 
indicating substantial agreement among the readers. 160 

Visibility of the following features in the breast was scored using a 5-point Likert scale (1 161 
– not at all visible, to 5 – clearly visible and very sharp): breast outline, fibroglandular 162 
tissue (FGT) compared to intramammary adipose tissue, demarcation of the nipple areolar 163 
complex (NAC), and the chest wall, defined as visualization of the pectoralis muscle. The 164 
limited data set from this pilot study did not allow for proper training of the readers, and 165 
given the novelty of the images, the readers were not well “calibrated” to each other. For 166 
example, when evaluating the visibility of the breast outline, we find the readers were 167 
internally consistent: each reader scores all images with the same visibility (with the 168 
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exception of a single case for reader 1 that received a higher score). However, each reader 169 
has assigned a different visibility score from the other readers. As a result, a binary rating 170 
system was adopted from the 5-point scale with a score of 1 remaining not at all visible 171 
and scores 2-5 as visible. Fleiss’ kappa was also used to measure the agreement regarding 172 
the visibility of essential breast tissues. In this binary framework, consensus on the 173 
visibility of the breast outline and fibroglandular (FGT) tissue was consistent (kappa = 1), 174 
whereas the nipple-areolar complex (NAC) and chest wall exhibited kappa values of 0.54 175 
(95% confidence interval: 0.58 to 0.60, p<0.001) and 0.27 (95% confidence interval: 0.26 176 
to 0.28, p<0.2), respectively.   177 
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 178 

Table 1: Qualitative assessment of imaging in each of the 11 subjects. Three breast radiologists assessed each imaging feature on a 5-point Likert scale of 1-5 (1 – not at all visible, 2 – barely 179 
visible, 3 – clearly visible but blurred, 4 – clearly visible and sharp, 5 – clearly visible and very sharp). Breast tissue pattern (density) was evaluated using F – Fatty, S – Scattered FGT, H – 180 
Heterogenous FGT, and E – Extreme FGT. 181 

Feature 

 Subject # Statistical Analysis 

Subj 
1 

Subj 
2 

Subj 
3 

Subj 
4 

Subj 
5 

Subj 
6 

Subj 
7 

Subj 
8 

Subj 
9 

Subj 
10 

Subj 
11 

Fleiss Kappa test 
kappa (95% 

confidence level) p-value 

Breast tissue 
pattern Re

ad
er

 
# 

1 S H S H S E H H S H E 
0.73 * 

(0.72 – 0.74) 
<0.001

* 2 S H S H S E H H S H E 
3 F H F S S E H H S H E 

Breast outline 
visibility Re

ad
er

 
# 

1 4 4 4 4 5 4 4 4 4 4 4 
1 - 2 3 3 3 3 3 3 3 3 3 3 3 

3 5 5 5 5 5 5 5 5 5 5 5 

Fibroglandular 
tissue visibility Re

ad
er

 
# 

1 3 3 3 3 3 3 3 3 3 3 3 
1 - 2 2 3 2 3 2 2 2 3 2 3 3 

3 3 3 3 3 3 3 3 3 3 3 3 

Nipple Areolar 
Complex 
visibility Re

ad
er

 
# 

1 3 4 1 3 1 4 4 3 1 3 3 
0.54 

(0.58 – 0.6) <0.001 2 2 3 1 2 2 3 3 2 1 3 3 
3 2 4 1 3 2 3 4 3 2 4 4 

Chest wall 
visibility Re

ad
er

 
# 

1 3 4 4 4 1 4 3 4 4 4 3 
0.27 

(0.26 – 0.28) <0.2 2 1 2 2 2 1 2 2 2 2 2 2 
3 3 4 4 4 3 3 4 3 4 3 2 

Note.- Subj = Subject  
* The Fleiss kappa test on the breast tissue pattern was based on a 4-level score : 1- F, 2- S, 3- S and 4-E.  
Inter-reader analysis on the 4 remaining imaging features were assessed on as a binary rating system, where scores of 2 to 5 were categorized as visible 
and a score of 1 as not visible. 

 182 
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 183 

 184 
Discussion  185 

In this preliminary study, we performed MR breast imaging at 6.5 mT on the left breast of 186 
healthy participants and were able to identify key breast features, namely breast outline, 187 
FGT, NAC, and chest wall. Eleven participants with breasts of various size were included, 188 
and images were acquired using a single bSSFP sequence lasting approximately 21 189 
minutes. No external contrast agent was used for these studies. The results presented here 190 
encourage us to further develop ULF MRI for breast imaging, including approaches to 191 
further reduce exam time.  192 
 193 
MRI at the low- and ultra-low magnetic field is challenging due to inherently low 194 
Boltzmann polarization and consequently low signal. Two additional consequences of 195 
MRI physics at ultra-low magnetic field are relevant to this work. First, as magnetic field 196 
decreases, tissue T1 relaxation times generally decrease, while T2 relaxation times are 197 
generally constant across fields (32, 35). Second, the magnetic susceptibility artifacts are 198 
significantly reduced at ultra-low field. We leverage both of these aspects to our 199 
advantage at 6.5 mT, where the efficiency of bSSFP in this regime is maximal (34) and 200 
enables banding-free imaging over large fields of view. In this study, the image SNR was 201 
sufficient to visualize key breast tissues. 202 
 203 
The three expert readers had substantial agreement in their evaluation of breast tissue 204 
pattern and most key breast tissues. There were some discrepancies between the readers: 205 
specifically, the average scores of Reader 2 were 33% lower than those of Reader 1 206 
(paired t-test, p<0.001) and 28% lower than Reader 3 (paired t-test, p<0.001), whereas the 207 
scores of Reader 3 were 7.01% higher than those of Reader 1 (paired t-test, p<0.03). Also, 208 
the readers had some disagreement on the visibility of the NAC and chest wall. We 209 
attribute this to two factors: lack of training and lack of experience with ULF MRI. The 210 
limited data set did not allow for proper training of the readers, and instead only the 211 
evaluation criterion were discussed. Additionally, there is a lack of calibration across the 212 
readers, given that these are their first experiences with ULF MRI images. Conversely, if 213 
these readers were examining clinical breast MRI scans, there would be an implicit 214 
calibration, since the readers have all examined many clinical breast MRI scans, over a 215 
long period of time (13 years, 3 years and 9 years, respectively). 216 
 217 
The NAC and chest wall were not always visible. The absence of NAC on certain scans 218 
can be due to either the slice thickness and positioning of the breast or the normal 219 
variations in human anatomy, which include flat or inverted nipples. The chest wall was 220 
not always visible, primarily in participants with a larger breast. This is a limitation of the 221 
coil design. Since the imaging depth of the RF coil is approximately 3 cm from the end 222 
plate of the RF coil, the chest wall was not fully captured in participants with larger breast 223 
sizes.  224 

 225 
Our current methods have some limitations. In addition to the lack of visualization in the 226 
chest wall, our preliminary study did not image the axilla, a potential site of breast cancers 227 
and nodal disease. Also, the image resolution used here falls short of the clinical 228 
requirements for breast cancer screening where a target resolution of 2 mm× 2 mm × 5 229 
mm is needed to identify small tumors. Ideally, both breasts and axilla could be imaged 230 
simultaneously at the target resolution in a scan time of ten minutes or less. To decrease 231 
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the total exam time, the use of RF coils capable of imaging both breasts simultaneously 232 
with a field of view that includes the axilla and chest wall can be developed. Our relatively 233 
simple low-cost coil design allows the construction of breast coils in a variety of sizes to 234 
maximize the filling factor and thus the SNR for a given subject (36). 235 

 236 
The 6.5 mT ultra-low field magnetic resonance imaging system used here is a 237 
configurable test bed system developed in our laboratory to perform preliminary research 238 
and refine sequences and techniques for breast cancer imaging. To be considered for 239 
clinical use, it is necessary to increase the SNR, as improved SNR can be used to attain 240 
increased resolution, decreased scan time, or both. Although the results shown here were 241 
acquired at 6.5 mT, operation at even moderately higher magnetic field (B0) will have a 242 
big impact on increasing the attainable resolution and decreasing the scan time for this 243 
application. A factor of 3 increase in magnetic field to a nominal 20 mT will result in a 244 
factor of 5 increase in SNR, as SNR is proportional to B03/2 (37). This could allow us to 245 
obtain images 25x faster for the same SNR. Further increases in SNR from an increase in 246 
field strength to approximately 65 mT (10x higher than the studies presented here) could 247 
maintain the mobility and low-cost of a low-field system but with a very significant 248 
reduction of imaging time and an increase in spatial resolution.  249 
 250 
We note that the absolute chemical shift between fat and water decreases with decreasing 251 
field, making conventional water suppression techniques more challenging. Previous work 252 
using NMR and NMR dispersion techniques observe that the T1 of adipose tissue in the 253 
breast does not change with field strength, while the T1 of fibroglandular tissues do 254 
change with field strength (32, 33). Thus, it may be possible to make a fat suppression 255 
technique that takes advantage of the T1 dispersion differences. 256 
 257 
Contrast agents are typically used to increase the contrast between a tissue of interest and 258 
the surrounding tissue, and clinical breast MRI requires the use of contrast agents to 259 
identify breast tumors (38–40). However, there is concern about the long-term effects of 260 
repeated administration of MRI contrast agents such as gadolinium (41). At low magnetic 261 
fields, however, gadolinium-based contrast agents do not improve the contrast of the 262 
image, in part because gadolinium is not magnetically saturated at low magnetic fields, 263 
and thus does not increase the brightness of the image. Recent work highlights the 264 
possibilities of iron-oxide nanoparticles and SPIONS for use at low magnetic fields (42, 265 
43). A possible benefit of iron-oxide based agents is their biocompatibility, and 266 
preliminary in vivo studies used ferumoxytol, an FDA-approved SPION-based treatment 267 
of iron deficiency anemia (44, 45). Contrast agents were not used in this preliminary 268 
study. 269 
 270 
With this perspective on low-field MRI physics, these initial results encourage us to 271 
envision many possibilities for non-contrast, low-field, breast MRI. A purpose-built 272 
system could be used in many possible imaging orientations including prone as is current 273 
practice, but also extending to supine in the surgical orientation, sitting, or standing. 274 
Different magnet designs can be considered to enable portability, low-cost, and integration 275 
in a surgical suite or other locations where the magnetic fields of typical clinical systems 276 
(1.5 T and 3 T) prohibit safe imaging. ULF MRI systems can increase access, and the 277 
absence of gadolinium-based intravenous contrast agents and enclosed spaces may 278 
increase use of screening breast MRI. 279 
 280 

All rights reserved. No reuse allowed without permission. 
(which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. 

The copyright holder for this preprintthis version posted April 4, 2024. ; https://doi.org/10.1101/2024.04.01.24305081doi: medRxiv preprint 

https://doi.org/10.1101/2024.04.01.24305081


  Page 16 of 22 
 

In conclusion, we have demonstrated the feasibility of ultra-low field magnetic breast 281 
imaging without the use of contrast agents or compression. This approach may provide a 282 
new option for breast cancer screening and diagnosis in the future. 283 

 284 
Materials and Methods 285 

Study Design and Participants 286 
This prospective pilot study was performed from March 2023 to May 2023 and granted 287 
institution review board approval from the Office for Human Research Studies (protocol 288 
21-579) at the Dana-Farber/Harvard Cancer Center.  Written informed consent was 289 
obtained from each participant. 290 
 291 
A total of 11 healthy female participants were enrolled (mean age, 35 years ± 13 years). 292 
Exclusion criteria were: pregnancy, breastfeeding, or inability to undergo MRI due to 293 
presence of an implanted or external MRI unsafe device or MR conditional device not 294 
meeting the conditions required for the scan. Participants had to be older than 20 and 295 
younger than 80 years old. The study also excluded individuals directly supervised by 296 
study investigators. 297 
 298 
Imaging System 299 
Imaging was performed on a custom-built electromagnetic MRI scanner, shown in Fig. 1, 300 
and previously described (34). The scanner operates at a main field strength of 6.5 mT 301 
(Larmor frequency of 276.18 kHz). The shimmed magnetic field inhomogeneity measured 302 
over a 20 cm spherical region at isocenter is less than 10 Hz. Imaging gradients are 303 
produced by a biplanar gradient set capable of producing linear gradients of up to 1 mT/m 304 
in all three axes. 305 
 306 
For this study, the imaging bed was modified from its previous configuration for 307 
neuroimaging (34) to a breast imaging setup where the breast and breast RF coil are 308 
located at the isocenter of the scanner. Figure 2 illustrates the imaging bed and dedicated 309 
RF coil designed to image a single breast. In order to achieve a good filling factor and thus 310 
a high SNR (36), a close-fitting conical breast RF coil was designed. To evaluate RF coil 311 
homogeneity, the magnetic field was calculated using the Finite-Element-Method 312 
simulation (Ansys Maxwell, 2021, Ansys, Canonsburg, PA, USA). The simulated 313 
magnetic field was used to assess the field homogeneity within the breast volume and to 314 
determine the magnetic field fall-off beyond the physical end of the coil. The uniformity 315 
of the breast imaging region was also assessed using a homogeneous flexible phantom 316 
consisting of a latex balloon filled with deionized water. This MR phantom was placed 317 
inside the breast RF coil, and as seen in Fig. 3B, it occupied the entire imaging region-of-318 
interest. The imaging protocol used to scan the MR phantom was the same as that of 319 
participant scanning protocol.  320 
 321 
The decision in favor of this type of coil shape was mainly based on promising study 322 
results at higher field strengths (46). The conical RF coil was also adapted in size to 323 
enable imaging of larger breasts, based on the reported common female breast sizes in the 324 
US (47). The coil height is 10 cm; its diameter at the base is 19 cm; and its diameter at the 325 
peak is 4 cm (48, 49). The RF coil is uniformly wound on a conical supporting structure. 326 
This coil design is capable of imaging the whole breast and the chest wall to a depth of 327 
approximately 3 cm. Using this breast coil, the left breast of all participants was imaged 328 
with participants in the prone position, as schematically illustrated in Fig. 1A. Photographs 329 
of the actual in vivo experimental setup can be requested from the corresponding author. 330 
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 331 
MRI acquisition 332 
A 3D balanced SSFP (bSSFP) sequence was used with a flip angle of 70 degrees, TE 333 
(echo time)/TR (repetition time) of 13 ms/26 ms, a matrix size of 64 × 72 × 21, 50 334 
averages, and a voxel size of 3 mm × 3 mm × 8 mm. To accelerate the imaging process, an 335 
under-sampling factor of 70% was used. The total scan time was 21 minutes 36 seconds. 336 
No contrast agents were used. Given the scan duration, the study was limited to imaging 337 
one breast, and the left breast was imaged in all participants for consistency. 338 
 339 
Images were reconstructed in MATLAB (Natick, MA, USA) using inverse fast Fourier 340 
transform (IFFT) with the under-sampled region zero-filled in k-space. Images were 341 
converted into DICOM format using the MATLAB function dicomwrite. 342 
 343 
The MR images of all participants were reviewed by three board-certified breast 344 
radiologists (M.A.S., L.R.L and J.C.VC) with 13, 9 and 3 years of experience reading 345 
breast MRI. The readers reviewed the evaluation criteria; however, due to the limited data 346 
of this pilot study, no additional images were used to train the readers. Images were 347 
viewed in DICOM format using 3D Slicer (50). The visibility of the following features in 348 
the breast was assessed: visibility of the breast outline, visibility of the fibroglandular 349 
tissue (FGT) compared to intramammary adipose tissue, demarcation of the nipple areolar 350 
complex (NAC), and visualization of the pectoralis muscle (chest wall). Visibility of these 351 
features was assessed using a 5-point Likert scale (1 – not at all visible, 2 – barely visible, 352 
3 – clearly visible but blurred, 4 – clearly visible and sharp, 5 – clearly visible and very 353 
sharp). Breast tissue pattern (density) was assessed using four categories: fatty, scattered 354 
FGT, heterogeneous FGT, and extreme FGT. Images were also evaluated for motion 355 
artifacts. 356 

 357 
Statistical Analysis 358 
Inter-reader agreement was assessed by computing Fleiss’ kappa among three reader’s 359 
feature visibility assessments. Due to the novelty of these images, i.e., they were new to 360 
all readers, and the limited data set, which did not allow for proper training of the readers, 361 
the readers were not “calibrated” to each other, as they are when reading clinical MRI. As 362 
a result, the 5-point scale was revised to a binary scale to assess whether or not a feature 363 
was visible (1 – not at all visible, 2 or greater – visible). All statistical analyses were 364 
performed using IBM SPSS Statistics for Windows, version 26.0. (IBM Corp., Armonk, 365 
NY, USA).  366 

 367 
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