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Abstract 
BACKGROUND: Peripheral inflammation is often associated with depressive disorders, and 
immunological biomarkers of depression remain a focus of investigation. 
METHODS: We performed RNA-seq analysis of RNA transcripts of human peripheral blood 
mononuclear cells from a case-control study including subjects with self-reported depression in 
the pre-symptomatic state of major depressive disorder and analyzed differentially expressed 
genes (DEGs) and the frequency of intron retention (IR) using rMATS.  
RESULTS: Among the statistically significant DEGs identified, 651 upregulated and 820 
downregulated genes were enriched in the Gene Ontology term ‘innate and adaptive immunity’. 
The upregulated DEGs were particularly enriched in the term ‘bacterial infection and 
phagocytosis’, whereas the downregulated DEGs were enriched in the terms ‘antigen presentation’ 
and ‘T-cell proliferation and maturation’. We also analyzed 158 genes for which IR was increased 
(IncIR) and 211 genes for which IR was decreased (DecIR) among the depressed subjects. The 
Gene Ontology terms associated with IncIR and DecIR were very similar to those of the up- and 
downregulated genes, respectively, with a preponderance of the term ‘ciliary assembly and 
function’ for DecIR. Moreover, the results of the network analysis also showed that a Japanese 
herbal medicine could partially mitigate the severity of depression among depressed patients. 
Inclusion of both IncIR and DecIR genes in the network analysis revealed several pathways 
related to the ability of patients to recover from depression.  
CONCLUSION: Depression was found to be associated with activation of the innate immune 
response and relative inactivation of T-cell signaling. The DEGs we identified reflect 
physiological demands that are controlled at the transcriptional level, whereas the IR results 
reflect a more direct mechanism for monitoring protein homeostasis. Accordingly, an overall 
increase in IR is a stress response, and intron-retained transcripts are sensors of the physiological 
state of the cytoplasm. In particular, detection of increased IR in cilia-specific genes apparently 
correlates with defects in ciliary function or immunological synapse in depressed subjects. The 
results demonstrate the potential of relative IR as a biomarker for the immunological stratification 
of depressed patients and the utility of IR for the discovery of novel pathways involved in 
recovery from depression. 
 
Introduction 
 

In 2017, it was estimated that more than 320 million people worldwide were affected by 
clinical depression (1). It is likely that this number—along with the number of people affected by 
other mental disorders—has since risen owing to ever-increasing stresses associated with daily 
life, particularly since the outbreak of COVID-19. In fact, depression has become the leading 
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cause of disability worldwide. Major depressive disorder (MDD) is often accompanied by anxiety 
disorder, and this combination is the leading cause of death by suicide (1). Currently, there is no 
reliable laboratory test or effective treatment strategy to diagnose or cure MDD. Another 
important issue in depression is the low remission rate, with approximately one-half of patients 
achieving complete remission; moreover the remission rate decreases with each subsequent 
treatment. Therefore, to better understand the pathogenesis of depression and its etiology, there 
is urgent need to identify biomarkers for monitoring treatment outcomes as well as genes that can 
be targeted for drug therapy (2, 3, 4, 5, 6).  

An increasing body of evidence suggests that the incidence of peripheral inflammation 
correlates with that of depression (7, 8, 9, 10, 11, 12, 13, 14). Several case-control studies of MDD 
patients have reported elevated peripheral-blood levels of inflammatory cytokines such as C-
reactive protein, interleukin 6, and tumor necrosis factor (15, 16, 17). In these cases, for which 
inflammation occurs first and depressive symptoms appear later, the viewpoint that inflammation 
contributes to depression is gaining ground. Furthermore, the prevalence of depression as a 
comorbidity is rather high for many inflammatory diseases that do not have a mental-health 
comorbidity, such as rheumatoid arthritis (18), suggesting a possible role for inflammation in 
depression. In his excellent book "THE INFLAMED MIND" (19), Ed Bullmore proposed that 
stress causes inflammation and that inflammation causes depression. Much of the current data 
seem to be consistent with his proposal (20). 

Alternative pre-mRNA splicing is a mechanism by which multiple protein isoforms can be 
produced from a single gene transcript. One type of alternative splicing is termed 'intron retention' 
(IR), which was previously thought to simply reflect one or more errors during pre-mRNA 
splicing. More recently, however, IR has been considered to be a biologically meaningful 
phenomenon, as an increase or decrease of intron abundance among specific transcripts has been 
associated with certain phenomena such as cell differentiation (21, 22, 23, 24), aging (25), and 
oncogenesis (26). Using mouse models of aging such as Klotho mice (27) and SAMP8 mice (28), 
we previously showed that the frequency of IR increases in response to stress in the pre-
symptomatic state and that when the state is restored by administration of a Japanese herbal 
medicine, the incidence of IR is restored to that of the healthy state (27, 28). In addition, we 
proposed that genes affected by IR (herein termed IR genes) play a sensor role in detecting 
perturbations in cellular homeostasis (29).  

We therefore hypothesized that an analysis of IR genes could facilitate the identification of 
stresses experienced by patients and the possibility that dysfunctional genes may underlie their 
depression. In this regard, we explored the possibility that the incidence of IR could be used to 
investigate the etiology of depression. 
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Materials and Methods 
 
Ethics declarations, ethics approval and consent to participate 

The research plan was reviewed and approved by the Research Ethics Committee of Kitasato 
Institute Hospital and assigned research number 21037. The study on which this research was 
based was an interventional study with the following approval numbers: No. 21039 and UMIN 
Study ID UMIN000045707. The Kitasato Institute Hospital Research Ethics Committee 
deliberates in accordance with the Ethics Guidelines for Medical and Health Research Involving 
Human Subjects in Japan. All participants gave written consent to the research procedures, 
including genetic analysis.  
 
Subjects 

We recruited subjects with depressive symptoms who had consented to participate in the "Study 
of Hangekobokuto (30) and the Intestinal Environment" conducted by the Kitasato University 
Oriental Medicine Research Center and who scored between 6 and 20 on the Brief Depressive 
Symptom Scale. After the benefits and risks of the study were explained to each subject, written 
informed consent was obtained. For subjects who consented, we applied the following eight 
exclusion criteria. 1) Subjects already receiving drug treatment for depression; 2) subjects who 
had taken herbal medicinal preparations within the previous 4 weeks; 3) subjects who had taken 
antibiotics within the previous 4 weeks; 4) subjects who were clearly in need of conventional 
medical treatment; 5) subjects who had been diagnosed with ulcerative colitis or Crohn's disease; 
6) subjects with clinically significant hepatic or renal impairment; 7) subjects who had 
participated in other clinical studies within the past 12 weeks; and 8) subjects who were deemed 
by the investigators to be unsuitable for the study.  

Each subject took a single daily dose of the Japanese herbal medicine Hangekobokuto (HKT) 
at home. The BDI™-II Beck Depression Questionnaire (BDI-II) was administered at the time of 
initial screening and at hospital visits 2 months after taking their final dose of HKT, and blood 
was collected using a BD Vacutainer CPTTM Blood Collection Tube (Nippon Becton Dickinson, 
Japan). Subjects were classified according to their BDI-II score, with six subjects scoring less 
than 16 and being considered as controls (CON) and eight subjects with depression symptoms 
(before medical treatment, BMT, or after medical treatment, AMT) scoring 17 or higher. 

 
Japanese herbal medicine 

Japanese herbal medicines originated in ancient China and are widely used in Japan for 
treatment of a variety of conditions (31, 32). HKT (30) is one such formulation and is taken for 
symptoms of anxiety, stagnant gas in the stomach, and poor digestive function. In this study, HKT 
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was used as a decoction in the following amounts, based on the formula of the Kitasato University 
Oriental Medicine Research Centre: Hange (Pinelliae Tuber) 6.0 g; Bukuryo (Hoelen) 5.0 g; 
Koboku (Magnoliae Cortex) 3.0 g, Shisoyo (Perillae Herba) 2.0 g; Syokyo (Zingiberis Rhizoma) 
0.5 g. 

 
Preparation of PBMCs, RNA extraction, RNA library preparation, and RNA sequencing 
(RNA-seq) 

Blood samples were centrifuged within 2 h to isolate the PBMC (peripheral blood 
mononuclear cell) layer. After centrifugation, PBMC samples were stored at –80 °C. RNA was 
extracted from individual PBMC samples. Library construction and paired-end sequencing (150 
base pairs × 2) using the NovaSeq 6000 platform (Illumina) were outsourced to Azenta Life 
Sciences, Tokyo, Japan. RNA-seq yielded 109–148 million (× 2, paired-ends) raw reads per 
sample. These were then narrowed down using conventional procedures (33, 34, 35, 36). 

 
Analysis of differentially expressed genes 

Using the edgeR package in R, significantly differentially expressed genes (DEGs) in 
patients with depression were detected by performing the likelihood ratio test. The results showed 
that 922 downregulated and 641 upregulated genes were significantly differentially expressed 
between the six CONs and eight BMTs (P < 0.05 and fold-change > 1.2). DEGs were used for 
GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway-
enrichment analysis using the DAVID website. Similarly, the same likelihood ratio test values 
were calculated under the same conditions between BMT and AMT to investigate the effect of 
HKT administration. 

 
Detection of IR 
IR-containing genes were analyzed to determine their possible role in stress sensing as proposed 
previously (27, 28, 29). rMATS v.4.1. was used to assess the differential IR landscape embedded 
in the RNA-seq data. For our analysis, the parameters for the rMATS program were as follows: 
[--cstat 0.05 -t paired --readLength 150 --variable-read-length]. A cut-off of P < 0.05 in the 
likelihood ratio test and an absolute difference of the IR ratio > 0.05 (both used to establish 
statistical significance in the rMATS program) were used to call differential IR events. Similarly, 
the same likelihood ratio test values were calculated under the same conditions between BMT and 
AMT to study the effect of HKT administration. 
 
Interactome analysis 
A protein-protein interaction network was generated using Cytoscape ver. 3.9.1 with StringApp 
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version 1.7.1. The network type "full STRING network" was selected for plotting graphs, and a 
confidence-score cut-off value of 0.7 was used (default values were used for all other parameters). 
The statistical significance of data presented in Figure 5 was established using proteins encoded 
by IR genes and DEGs, and protein-protein interactions were analyzed among members of each 
functional gene group, cilia-related genes (proteins), psychiatric disorders–relevant genes 
(proteins), and adaptive and innate immunity–related genes (proteins).  
 
Results 
RNA-seq and analysis of DEGs 
 
The study included a group of eight subjects with depression for whom the BDI-II score ranged 
from 17 to 27, which reflects moderate depression. These subjects were designated as the BMT 
group. Six other subjects with relatively mild depression had scores ranging from 7 to 16, and 
these subjects served as controls (CON group). (see Figure 1A(i)(ii)). As we are all on the 
spectrum, we wanted to gain molecular insight into the transition from mild to moderate 
depression. All subjects were also screened to ensure that they had not taken any medication or 
been hospitalized during the 3-month period before examination (see Materials and Methods for 
details). 

PBMC and RNA were isolated from each sample and used for RNA-seq. DEG analysis resulted 
in the identification of 651 upregulated and 820 downregulated genes for the BMT group 
compared with the CON group (Figure 1BC, Supplementary Table 1). GO enrichment analysis 
of the upregulated genes (Figure 1D, Supplementary Figure 1) revealed enrichment for innate 
immunity–related terms such as infection, phagocytosis, inflammation and adaptive immunity–
related terms; the analysis of downregulated genes (Figure 1E, Supplementary Figure 2) revealed 
enrichment for adaptive immunity–related terms such as antigen presentation, T-cell activation, 
and synapse-related terms. Figure 1B shows all downregulated genes involved in T-cell activation 
(5 genes in Figure 1E) and all upregulated genes involved in the innate immune response (21 
genes in Figure 1D), which included a large number of immunoglobulin heavy chains (37, 38), 
suggesting that many of the subjects had an inflammatory phenotype (37).  
 
Identification of IncIR and DecIR genes in depressed subjects 
 
Because IR is a stress response and genes susceptible to IR are a physiological sensor ((27, 28); 
see later), we characterized genes for which IR was increased in depressed subjects (IncIR) and 
genes for which IR was decreased (DecIR), considering that such an analysis would indicate the 
type of stress to which the subjects had been exposed. A total of 158 IncIR and 198 DecIR genes 
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were identified (Figure 2AB, Supplementary Table 2), and their characteristics were first studied 
based on published information. As expected, many sensor or regulatory genes were represented 
among the protein-coding IR genes (Table 1; 45 genes). This is only half of the genes identified 
as sensors, regulators and modulators among the IR genes in this analysis, in which genes 
controlling inflammation, innate immunity and adaptive immunity were also identified. GO 
enrichment analysis (Figure 2CD) of IncIR revealed enrichment of terms related to the TNF 
signaling pathway and several terms related to innate immune response. In IncIR, the TNF 
signaling pathway and several terms related to innate immune response were enriched; among the 
DecIR genes, there was enrichment of terms related to T-cell signaling and other adaptive immune 
responses as well as inflammation and innate immune processes. In short, both innate and 
adaptive immunity were highlighted in the IR analysis, as was the case for the DEG analysis, 
suggesting that the IR genes mirrored the DEG genes. The important difference between the IR 
genes and DEG genes is that immunoglobulin genes were included in the DEG list—in fact, 
almost half of the upregulated genes in our RNA-seq analysis were immunoglobulin genes (see 
Supplementary Figure 1), but this was not true for the IR [genes (see Discussion). The reason why 
immunoglobulin genes were not among the IR genes is discussed later. Interestingly, the highest 
enrichment score among the DecIR genes was for cilium assembly, suggesting that cilia are 
involved in sensing depression-induced stress (see Discussion). 
 
IR genes interact with genes related to the innate immune response in a statistically 
significant manner. 
 
To characterize the IR genes in more detail, we first determined the possible overlap of IR genes 
with immune-related genes, cilia genes, and psychiatric disease–related genes (designated PD; 
Figure 3AB). The 317 IR genes (Supplementary Table 2) included 32 cilia genes (Figure 3C) and 
34 immune-related genes (Figure 3D). Because many IR genes listed in Table 1 are involved in 
innate immunity, including viral and bacterial infection, we next examined whether IR genes 
could specifically interact with genes involved in the innate immune response (Figure 3E). Indeed, 
IR genes were found to interact specifically with genes involved in innate immunity (statistically 
significant, P < 0.0234). Figure 3F shows the ranking of the IR gene interactions. Among the IR 
genes, STAT1 (signal transducer and activation of transcription gene 1; Table 1 (39)) had the 
greatest number of interactions with innate immunity genes. Notably, STAT1 is involved in the 
JAK-STAT pathway (39), which contributes to both innate and adaptive immunity including 
inflammation (see Discussion). We also assessed interactions between IR genes and genes 
involved in leukocyte activation (adaptive immunity) or the immune response, revealing that 
STAT1 ranked highest in each comparison (Figure 3JK). 
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IR-DEG interactome  
 
Using all the protein-coding genes of the DEGs (285 upregulated + 433 downregulated) and IR 
genes (129 IncIR + 172 DecIR + 8 common to both), we created a large interactome (Figure 4A). 
Within the large interactome, many hub genes were connected to other genes (Supplementary 
Table 3). The largest hub centered on SRC (40), one of the DEGs, which was connected to 43 
genes (Figure 4B). Among the IR genes, the largest hub was DLG4 (41), which is involved in 
synaptic function. The second was STAT1. The third and fifth were integrin genes (42, 43), and 
the fourth was HLA-A (44), which is involved in antigen presentation. The sixth was MYH10 
(45), myosin heavy chain, having 11 links, one of which is linked to myosin light chain kinase 
(MYLK) (46, 47); importantly, IR of the MYH10 transcript was restored in subjects after 
administration of HKT (see Discussion). 
 
Recovery of IR genes by administration of HKT to subjects 
 

After 2 months of HKT administration, PBMCs were isolated from blood samples of the 
subjects, and RNA-seq was performed (Figure 1A). We characterized two types of IR genes for 
which IR was recovered after HKT administration, namely reverse V-shape recovery in Figure 
5A, comprising 30 protein-coding genes and V-shape recovery in Figure 5B, comprising 34 
protein-coding genes (Supplementary Table 4). Because only 17 genes (7 for the V-shape recovery 
and 10 for the reverse V-shape recovery) were restored among those identified as DEGs (Figure 
5D), the fact that IR was recovered after HKT treatment in four times as many IR genes as DEGs 
suggested that IR is superior to DEGs as a marker for evaluating the efficacy of a drug in the 
present case. 
  Characterization of the 64 protein-coding genes for which IR was restored after HKT treatment 
(Figure 5C) revealed that inflammation-related genes were the most affected (21 genes; 37.5%), 
with 7 mitochondria-related and 7 cilia-related genes—each accounting for 10.9%. The anti-
inflammatory effect shown here is consistent with the reported efficacy of many Japanese herbal 
medicines (31), including HKT (30). Interestingly, whereas HKT has been reported to have anti-
inflammatory effects by restoring the activity of inducible nitric oxide synthase, IR of the mRNA 
of the encoding gene, NOSIP (48), which modulates cellular NO level, was consistently recovered 
by HKT treatment (Figure 5B, Table 2). The identification of three hematopoiesis genes may also 
indicate that inflammation and hematopoiesis are linked in a compensatory way, as inflammation 
consumes a large number of macrophages, which should be supplied again. Oxidative stress is 
common in depressed patients (49) and can lead to increased DNA damage together with 
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mitochondrial dysfunction (49). The restoration of these genes may be one of the hallmarks of 
this herbal medicine. 
 
Pathways for which IR was restored by HKT can be characterized from the DEG-IR 
interactome 
 
The 64 protein-coding IR genes (Figure 5AB) and 17 DEGs (Figure 5D) for which IR was 
restored by HKT were overlaid on the DEG-IR interactome (shown in Figure 4) to determine 
whether any of these 81 genes could interact and network with each other. Ten new pathways 
were found (Figure 6). Protein-protein interactions in some of these pathways are known, but to 
our knowledge this is the first time that these pathways have been shown to be involved in 
restoring a physiological state. The implications of some of these pathways for the efficacy of 
HKT are discussed in the later section. As the IR-DEG interactome was generated independently 
of HKT treatment, this method offers the possibility that new pathways will be discovered when 
different drugs are used in similar subjects. Thus, IR-DEG interactome analysis could allow us to 
uncover new pathways involved in the mechanism of action of different types of drugs, including 
herbal medicines, and identify their commonalities and unique characteristics. 
 
Discussion 
 
The upregulated DEGs identified for depressed patients in this study were significantly enriched 
in GO terms associated with innate immunity, including phagocytosis. Approximately 50% of 
these genes encode immunoglobulin heavy chains (Figure 1B, Supplementary Table 1). In 
contrast, the downregulated DEGs were enriched in GO terms associated with adaptive immunity, 
including antigen presentation and T-cell function. This trend in depressed patients has been 
reported previously (3, 4).  
 
Intron fine-tuning model links IR to protein homeostasis. 
 
An important aspect of our study is that the data show that IR can be used as an alternative clinical 
means of diagnosing depression, in place of traditional DEG-based methods. Roughly speaking, 
GO terms enriched in IncIR genes corresponded to GO terms of upregulated DEGs, whereas GO 
terms enriched in DecIR genes corresponded to GO terms of downregulated DEGs. This 
correspondence can be better understood in the light of our recently proposed intron fine-tuning 
model (29). That is, an increase in IR leads to a decrease in the amount of mature cytoplasmic 
mRNA (and thus a decrease in cytoplasmic protein), whereas a decrease in IR leads to an increase 
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in mature cytoplasmic mRNA (and thus an increase in cytoplasmic protein). In other words, IR is 
a function that optimizes the amount of cytoplasmic protein by detecting changes in the amount 
of protein required in the cytoplasm due to physiological adaptations that occur in response to 
stress. Namely, this is the molecular mechanism by which intracellular protein homeostasis is 
regulated. 
 
The sensor role of IR is evolutionarily conserved. 
 

As can be easily imagined from the model described above, genes that undergo IR have a 
sensor role. Indeed, in the literature describing the gene functions of many of the depression-
related IR genes we identified, the article titles often include the word 'sensor' or 'regulate' (Table 
1). Therefore, if an IR is observed in depressed patients for a gene whose sensor role is not 
reported in the literature, analysis of the IR gene may reveal a new, as yet unidentified, regulatory 
sensor role for the gene in clinically depressed patients. 

In many cases, the IR genes we identified did not correspond to genes in the DEGs themselves. 
Of the 30 DEGs shown in Figure 1B, only one gene, HLA-DRB1 (50), is actually subject to IR. 
DEGs are often reflect quantitative aspects, whereas IR genes are more qualitative. By analogy, 
the DEG is the soldier, the manual worker, whereas the IR genes are the commander in chief. A 
typical example of the qualitative difference between DEGs and IR genes is secreted proteins, 
which are sometimes detected as DEGs (indeed, half of the upregulated genes we identified were 
immunoglobulins; Supplementary Figure 1) but not as IR genes. This is because these proteins 
are secreted from cells via the Golgi and are therefore not captured by the homeostasis detection 
mechanism in the cytoplasm (29). 

Based on our previous publications (27, 28, 29), it is likely that some genes (about 10%) of 
the 20,000-30,000 genes in the mammalian genome are originally ASSIGNED to play a sensor 
role by retaining introns during stress. In budding yeast, for example, introns may play a mediator 
role in monitoring the physiological state of the cell (51, 52). Thus, the sensor function of IR 
genes is likely to be evolutionarily conserved, as described in the present study. However, the 
mechanisms by which IR genes sense the physiological stresses experienced by cells and 
contribute to homeostasis (29) remain to be elucidated.  

 
IR is an excellent marker for diagnosing depressive states and is superior to DEG. 
 

Many researchers have analyzed DEGs between cases and controls to identify markers of 
depression. It has been found that even when the top 10 genes with the highest expression 
variability are examined, the data differ from experiment to experiment and do not agree (53). As 
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our current study shows, IR variation is likely to be a more sensitive marker than DEGs for the 
diagnosis of depression. Consider the following practical interpretation: a 10% variation in 
immunoglobulin levels detected by DEG does not necessarily represent the physiological state of 
a particular individual, but a 10% decrease in the IR of the inflammation sensor STAT1 (39) could 
result in a 10% increase in the amount of cytosolic STAT1 protein, thus having a significant 
impact on immune homeostasis. The accumulation of various studies to date suggests that the 
cause of depression is polygenic as an explanation for the fact that DEG data fluctuate and do not 
agree from experiment to experiment (54), but the failure to find a better marker gene in the DEG 
is not so much that depression is polygenic, likely due to the nature of the DEGs themselves. 

 
Examples of markers for the diagnosis of depressive states 
 
So, among the genes that cause IR, are there any that are particularly likely to be common 

markers for depression? Depression is an immune disease. Therefore, among the IR genes we 
identified, the 34 genes identified as immune-related (Figure 3D) are likely to be good candidates. 
In addition, the expression of immune-related genes changes in response to depression, and the 
IR genes most likely to interact with them would likely change with depression. Therefore, IR 
genes with a high ranking for interaction with immune-related genes, as shown in Figure 3FJK, 
also have great potential as markers for depression. Hub IR genes with many connections in the 
interactome (Figure 4B), which we discussed earlier, are also good candidates.  

In terms of common markers of depression, a particular highlight of the present study is the 
detection of a number of cilia-related genes (32 genes; Figure 3C) as IR genes. This may reflect 
the functional stress state of cilia as antennae in leukocyte cells, although the presence of cilia on 
leukocyte cells is controversial (55). It is known that when dendritic cells present antigens to T 
cells, these two types of cells form structures known as immunological synapses, in which the 
internal structure of the T cell resembles that of cilia (56, 57, 58). Therefore, the observation of 
IR in ciliary genes may represent a failure of T cells to recognize antigens during depression. This 
interpretation is consistent with the observations that several T cell activation genes were 
downregulated (Figure 1E) and that those involved in the T cell signaling pathway were 
characterized as DecIR genes (Figure 2D).  

Of the 1117 cilia genes currently known, IR was observed in 32 genes in this study (Figure 
3C). Surprisingly, of the 37 cilia-specific genes currently known to cause Joubert syndrome, six 
(AHI1 (59), CELSR2 (60), CEP104 (61), IFT172 (62), NPHP1 (63), TMEM107 (64)) were found 
to be among the IR genes. In addition, IR was restored for four of these six genes in response to 
treatment with HKT (Figure 5AB). Thus, the Joubert syndrome genes appear to be frequently IR 
and highly responsive to HKT, suggesting that these genes are the best candidates for marker 
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genes for depression. AHI1 and NPHP1 were also found to be involved in pathways for recovery, 
as described below (see Figures 5 and 6). Future clinical studies are awaited to confirm these 
possibilities, where it will be necessary to determine more reads during sequencing, assuming 
rMATS is used (rMATS requires approximately five times more sequencing reads than DEGs). 

 
Ten characteristic pathways represented by efficacies of HKT 
 

Mapping of HKT-responsive IR genes and DEGs onto the IR-DEG interactome revealed 10 
pathways for which IR of certain genes was recovered in concert with that of other genes. 
Although each of these 10 pathways deserves detailed investigation (most of them were newly 
discovered in this study), it is important to emphasize that, in each of these 10 pathways, changes 
in IR of one gene were linked to changes in IR or DEGs, forming a single functional unit (which 
we call a gear). We will discuss a few of these. The first is the NPHP1-AHI1 pathway (Figure 6G). 
As mentioned above, these two genes are involved in cilia function, and mutations cause a 
ciliopathy called Joubert syndrome (59, 65, 66, 67). A yeast two-hybrid analysis revealed that 
jouberin (encoded by AHI1) can interact with nephrocystin (encoded by NPHP1) (68). The two 
proteins form a heterodimer, and a mutation in AHI1 (V443D) that prevents heterodimer 
formation alters the intracellular localization of AHI1 and NHPH1 so that the two proteins can, 
although not always, behave as if they were one protein (59). It is interesting to note that the IR 
of these two mRNAs is reduced in depression and that IR of both mRNAs was returned to that of 
the healthy state in response to treatment with HKT (Figure 6G). In other words, the mRNAs 
transcribed from these two genes seem to be under the same control mechanism of RNA 
processing, as if they were the same mRNA. These observations remind us of a model we recently 
proposed, i.e., a novel mechanism may exist that senses the correct level of functional proteins in 
the cytoplasm and transmits this information to the nucleus to regulate the level of IR (29). If such 
a mechanism exists, it would mean that IR in of AHI1 and NPHP1 is regulated by a common 
factor. 

In the case of the MYLK-MYH10 pathway (Figure 6I), inflammatory inputs activate MYLK 
and phosphorylate the L-chain of myosin (47). This causes the contracted L-chain of myosin to 
transmit information to the H-chain, which in turn regulates the copy number of mitochondrial 
DNA, which is tightly bound to the non-muscle H-chain (45). In this biological GEAR, the input 
is inflammation and the output is the control of the number of copies of mitochondrial DNA. The 
GEAR function in these ten pathways, including the two already postulated, need to be 
demonstrated biochemically, but brief outlines of the hypothetical pathways are given in the 
legend of Figure 6. 

Figure 6K shows the mapping of the 10 pathways for which IR was restored by HKT on the 
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IR-DEG interactome described in this study. This interactome was generated using data from 
depressed patients and controls only. Thus, if a drug other than HKT (i.e., with a different effect) 
was used, new pathways restored by the drug could be detected. Accordingly, this IR-DEG 
interactome should be useful for assessing the efficacy of individual drugs, including herbal 
medicines, and for identifying new pathways affected by drugs. 
 
In summary, our results show that IR can be an excellent marker of depression. The combination 
of network analysis and analysis of drug-responsive IR genes may also reveal new pathways of 
drug action. The strategy presented here is not limited to the analysis of depression, but rather 
could be applied to any disease. 
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Figure legends 
 
Fig. 1. Comparison of RNA expression between depressed subjects and less depressed 
controls. (A) (ⅰ) Subject information. Classification was based on the BDI-II score at first 
examination. Subjects with BDI-II score < 16 were categorized as less depressed (controls, CON), 
and those with BDI-II score ≥ 16 were categorized as depressed. BMT, depressed subjects before 
medical treatment; AMT, depressed subjects after 2 months of taking HKT. (ii) Mean and standard 
deviation of sex, age, and BDI-II score for each group. (B) Volcano plot of RNA expression 
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between the BMT and CON groups. The horizontal axis shows the log2 fold-change of 
BMT/CON, and the vertical axis shows –log10 P-values. Red dots denote significantly 
upregulated genes (FC (fold change) > 1.2 and P < 0.05), blue dots denote significantly 
downregulated genes (FC > 1/1.2 and P < 0.05), and grey dots indicate no significant difference 
in expression (likelihood ratio test). Gene symbols for T cell–associated genes are indicated. (C) 
Heatmap of significantly differentially expressed genes between BMT and CON subjects. (D, E) 
Enrichment analysis of biological processes among Gene Ontology and KEGG pathway terms 
for the 641 upregulated (D) or 922 downregulated (E) genes in the BMT group. The horizontal 
axis shows –log10 P-values. Green bars indicate Gene Ontology biological process terms, and 
yellow bars indicate KEGG pathway terms.  
 
Fig. 2. Identification and characterization of IR genes. (A) Number of IR genes with 
significantly increased IR (IncIR) or decreased IR (DecIR) for BMT versus CON using rMATS 
software v.4.1.1. The statistical significance of differences between values was based on a P-value 
of <0.05 and a difference in intron ratio of >0.05. (B) Heatmap of significantly different IR loci 
between BMT and CON. (C, D) Enrichment analysis of biological processes among Gene 
Ontology and KEGG pathway terms using 158 IncIR genes (C) and 198 DecIR genes (D) in the 
BMT group. Gene symbols corresponding to the terms are shown on the right. The horizontal axis 
shows –log10 P-values. Green bars indicate Gene Ontology biological process terms, and yellow 
bars indicate KEGG pathway terms.  
 
Fig. 3. IR loci interact preferentially with genes involved in innate immunity. (A) Number of 
IR genes and IR protein-coding genes. (B) Venn diagram between IR genes, cilia-related genes 
(GO: 0060271 cilium assembly + SCGSv2 ciliary genes (69)), adaptive and innate immunity–
related genes (GO: 0046649 lymphocyte activation and GO: 0006955 immune response), and 
psychiatric disorders–relevant (PD) genes. The PD gene set was constructed by merging genes 
from the following databases or previous studies: SFARI (autism-related gene database, 
https://www.sfari.org/resource/sfari-gene/); PsyGeNET (mental disorder-related gene database, 
https://www.sfari.org/resource/sfari-gene/); PD genes 
http://www.psygenet.org/web/PsyGeNET/menu/home); PD genes (70); major depression risk 
genes (71). (C) Gene symbols shared between IR and cilia-related genes, corresponding to the 
area outlined in red in B. Groups were classified as IncIR, DecIR or Mixed ('Mixed' indicates a 
gene for which one intron was classified as IncIR and another classified as DecIR). (D) Gene 
symbols shared between IR and immunity–related genes, corresponding to the area outlined by 
blue in B. (E) Network showing significant protein-protein interactions (PPI) between proteins 
encoded by IR genes and those encoded by innate immune response–related genes. The 
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interaction score was calculated using the full STRING network confidence score 0.7 from the 
STRING database. (Left) Network of PPIs between proteins encoded by IR genes and innate 
immune response genes (GO: 0045087). Innate immune-response proteins were placed in the 
central circle and IR proteins (red: IncIR, blue: DecIR, green: Mixed) on either side. (Right) 
Instead of IR proteins, equal numbers of randomly selected gene sets were placed on both sides. 
Ranking table shows the top 30 proteins with the greatest number of interactions (number of links) 
with the IR genes in (F) and with 5 randomly selected protein sets in (G). (H) Comparison of the 
average number of interactions (number of links) with innate immune-response proteins among 
the IR genes and 5 random protein sets. (I) Comparison of the average number of interactions 
(number of links) with innate immune-response proteins of genes classified as IncIR or DecIR. 
(J) Ranking table showing the top 30 proteins with the greatest number of interactions (links) to 
lymphocyte-activation proteins (GO: 0046649) among the IR proteins. (K) Ranking table 
showing the top 30 proteins with the greatest number of interactions (links) to immune-response 
proteins (GO: 0006955) among the IR proteins. 
 
Fig. 4. PPI network of IR and DEG proteins. (A) Main network showing PPIs using all IR and 
DEG proteins between BMT and CON. The interaction score was calculated using the full 
STRING network confidence score 0.7 from the STRING database. IncIR: red circles, DecIR: 
blue circles, Mixed: green circles. Upregulation: small circle with red border, downregulation: 
small circle with blue border. Only the largest networks are shown, as singletons and smaller 
networks were excluded. IR protein names are shown. Inset, bottom-right: (A square bottom right) 
Proteins with ≥10 interactions (number of links) are marked with symbols. (B) Ranking table of 
protein names with 10 or more interactions. (C–E) Proteins corresponding to cilia (brown, GO: 
0060271 cilium assembly) in (C), lymphocyte activation (purple, GO: 0046649 lymphocyte 
activation) in (D), and innate immunity (light green, GO: 0045087 innate immune response) in 
(E) are colored as in the network in panel A. 
 
Fig. 5. Recovery of IR by administration of HKT. (A) (Top, left) Venn diagram of intronic loci 
that were significantly increased (IncIR between BMT and CON) and those that were decreased 
(DecIR between BMT and AMT) by HKT treatment. (Bottom, left) Gene symbols with recovered 
loci are shown (protein-coding genes are shown in bold). (Right) Box plot showing average intron 
ratio at recovered loci. (B) (Top, left) Venn diagram of intronic loci that were significantly 
decreased (DecIR between BMT and CON) and those that were increased (IncIR between BMT 
and AMT) by HKT treatment. (Bottom, right) Gene symbols with recovered loci are shown 
(protein-coding genes are shown in bold). (C) Table of functional categorization from the 
literature of the recovered IR genes.  
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Fig. 6. New pathways restored by HKT overlaid on the PPI network. (A–J) The network was 
extracted from the PPI network and then overlaid with the recovered IR and DEG loci. All 
recovered IR loci except PLD2 showed a significant difference (P < 0.05, FC > 1.2) between 
BMT and CON and between BMT and AMT. All DEG loci showed a significant difference (P < 
0.05, FC > 1.2) between BMT and CON, but their significance between BMT and AMT was 
marginal (P < 0.3; likelihood ratio test). Each IR gene is indicated by a large circle, where blue 
indicates DecIR and red IncIR. DEGs are indicated by a small circle, where blue indicates 
downregulation and red indicates upregulation. Intron ratio for IR and gene expression levels for 
DEGs. In the bar graph, asterisks indicate statistically significant differences (*p < 0.05, **p < 
0.01, ***p < 0.001, NS: not significant). (A) The pathway involving NDUFA5, FOXRED1, 
NDUFV2 and ATP5MGL (72) regulates mitochondrial function. (B) The TP73 (73) - FAS (74) - 
CAV1 (75, 76) - PDGFRA (77) pathway is involved in inflammatory signaling. (C) The CAV1 
(75, 76) - PLD2 (78) - NAPEPLD (79, 80) signaling pathway is involved in the regulation of lipid 
metabolism involving caveolae as a vital plasma-membrane sensor. (D) The DDX5 (81, 82) - 
ZWINT (83) - UBE2T (84) pathway is involved in the amplification by ubiquitination of an 
inflammatory signal taken up by DDX5 via the immune infiltration stimulated by ZWINT. (E) The 
CERT1 (85) - COL4A3 (86) - ITGA9 (87) pathway is involved in anti-inflammatory responses. 
(F) The HOXA1 (88) - ROBO3 (89) - NTN1 (90) signaling pathway regulates inflammation. (G) 
See text. (H) The SMARCD2 (91, 92) - BRD9 (93, 94) signaling pathway mediates inflammatory 
input activated by BRD9, thereby mediating granulopoiesis as an output through activation of 
SMARCD2. (I) See text. (J) The EOGT (95) - DOCK6 (96) pathway regulates hematopoiesis. (K) 
In the main network, each position of the pathways (A–H) is indicated by a red outline. 
 
 
 
 
 
Table 1. Sensor and regulatory genes that were identified from among the protein-coding 
IR genes 

Category Gene Function Ref. 

Sensor 

ADGRB2  Metabotropic mechanosensor  (123) 

AIF1  Innate response sensor  (124) 

CD163  Macrophage innate immune sensor  (125) 

DDX5  Interferon antiviral sensor  (126) 

DDX3X  Interferon antiviral sensor  (126) 
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ERLIN1  Innate immune sensor  (127) 

GBF1  ER_sensor  (102) 

HTRA2  Mitochondria stress sensor  (128) 

LRSAM1  Bacterial sensor  (129) 

MAP3K12 

(DLK)  
axon-damage sensor  (130) 

MOK (RAGE)  Heme sensor  (131) 

NDRG2  Inflammation sensor  (115) 

NFATC4  Nerve sensor  (116) 

OAS2  Viral sensor  (117) 

PQBP1  HIV innate response sensor  (132) 

SARM1  Metabolic sensor  (133) 

SLC9A5 (NHE5)   PH sensor  (134) 

SLC16A11  Glucose lipid sensor  (135) 

ZNF598  Collided_ribosome sensor  (136) 

Regulator 

ADCY4 Controls caspase-11 inflammasome activation (107) 

BRD9 Regulates interferon-stimulated genes (93) 

BTBD3 Controls dendrite orientation (137) 

BTN3A3 Regulates ERK1/2 phosphorylation (138) 

CACNB3 Regulates ATP-dependent migration of dendritic cells (139) 

CFB  Regulates cellular senescence (140) 

CLK4 Regulates DNA damage induced NF-kB (141) 

HAGHL Regulates human colorectal cancer progression (142) 

ITGAL Regulates glioma growth (143) 

MAT2B Regulates EGFR signaling pathway (144) 

Mettl17 Regulates mitochondrial ribosomal RNA modifications (145) 

MICAL1 Regulates actin microfilaments (146) 

MSH5 Regulates Ig class switch recombination (147) 

MYO1G Regulates exocytosis, and endocytosis in B lymphocytes (148) 

MYSM1 Regulates hematopoietic stem cell maintenance (149) 

NAPEPLD Regulates liver lipid metabolism (79) 

PGM3 Regulates beta-catenin activity (150) 

PLD2 Regulates phagocyte cell migration (151) 

PTPN18 Regulates the c-MYC-CDK4 axis (152) 

ROBO3 Modulates prognosis via AXL-associated inflammatory network (89) 
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SCFD1 Regulates SNARE complex formation (153) 

SNAP23 Regulates phagocytosis (154) 

STARD9 Regulates Spindle Pole Assembly (155) 

STAT1 Regulates transcription in the interferon JAK-STAT pathway (39) 

TRA2A Regulates EZH2/beta-catenin pathway (156) 

UBE2T Promotes autophagy (121) 

 
 

Table 2. Functional categorization of recovery IR genes.

Functional 

category 
Gene 

IR 

V-shape 

IR 

reverse 

V 

Description Ref. 

DNArepair, 

Recombination 

PMS2   ✓ 
Elevated levels of mutation in multiple tissues of mice 

deficient in the DNA mismatch repair gene Pms2 
(99) 

REC8   ✓ 
Meiotic prophase roles of Rec8 in crossover recombination 

and chromosome structure 
(100) 

Erythropoiesis 

CDIN1   ✓ 
The congenital dyserythropoieitic anemias: genetics and 

pathophysiology 
(97) 

EOGT   ✓ 
Synergistic regulation of Notch signaling by different O-

glycans promotes hematopoiesis 
(95) 

SMARCD2 ✓   
A SMARCD2-containing m SWI/ SNF complex is required 

for granulopoiesis 
(98) 

Cilia 

AHI1 ✓   

AHI1, whose human ortholog is mutated in Joubert 

syndrome, is required for Rab8a localization, ciliogenesis 

and vesicle trafficking  

(59) 

CELSR2   ✓ 

CELSR2, Encoding a Planar Cell Polarity Protein, is a 

Putative Gene in Joubert Syndrome with Cortical 

Heterotopia, Microophthalmia, and Growth Hormone 

Deficiency 

(60) 

CEP104 ✓   
Joubert Syndrome in French Canadians and Identification of 

Mutations in CEP104  
(61) 

DNHD1 ✓   
Bi-allelic variants in DNHD1 cause flagellar axoneme 

defects and asthenoteratozoospermia in humans and mice  
(101) 

GBF1   ✓ 

The Arf GEF GBF1 and ARF4 synergize with the sensory 

receptor cargo, rhodopsin, to regulate ciliary membrane 

trafficking 

(102) 
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NAPEPLD ✓   
Small Molecule Activation of NAPE-PLD Enhances 

Efferocytosis by Macrophages 
(80) 

NPHP1 ✓   
Many Genes—One Disease? Genetics of Nephronophthisis 

(NPHP) and NPHP-Associated Disorders 
(67) 

Mitochondria 

FOXRED1 ✓   
Characterization of mitochondrial FOXRED1 in the 

assembly of respiratory chain complex I 
(72) 

MFN2 ✓   

Mitofusin 2 (MFN2) links mitochondrial andendoplasmic 

reticulum function with insulin signaling and is essential for 

normal glucose homeostasis 

(103) 

MYH10   ✓ 
Actin and myosin contribute to mammalian mitochondrial 

DNA maintenance 
(45) 

NDUFA5 ✓   

Supernumerary subunits NDUFA3, NDUFA5 and 

NDUFA12 are required for the formation of the 

extramembrane arm of human mitochondrial complex I 

(72) 

SIGMAR1 ✓   
The role of SIGMAR1 gene mutation and mitochondrial 

dysfunction in amyotrophic lateral sclerosis 
(104) 

SPG7 ✓   
SPG7 Is an Essential and Conserved Component of the 

Mitochondrial Permeability Transition Pore 
(105) 

TEFM   ✓ 
TEFM (c17orf42) is necessary for transcription of human 

mtDNA 
(106) 

Inflammation 

ADCY4   ✓ 
cAMP metabolism controls caspase-11 inflammasome 

activation and pyroptosis in sepsis 
(107) 

BRD9   ✓ 

Bromodomain containing 9 (BRD9) regulates macrophage 

inflammatory responses by potentiating glucocorticoid 

receptor activity 

(93) 

CDCA3   ✓ 
CDCA3 promotes cell proliferation by activating the NF-

kB/cyclin D1 signaling pathway in colorectal cancer 
(108) 

CERT1   ✓ 
Ceramides as Mediators of Oxidative Stress and 

Inflammation in Cardiometabolic Disease 
(85) 

CXCL2   ✓ 
NF-kB and STAT1 control CXCL1 and CXCL2 gene 

transcription 
(109) 

DDX5 ✓   
IL-17D-induced inhibition of DDX5 expression in 

keratinocytes amplifies IL-36R-mediated skin inflammation 
(110) 

ERLIN1 ✓   

The ERLIN1-CHUK-CWF19L1 gene cluster influences liver 

fat deposition and hepatic inflammation in the NHLBI 

Family Heart Study  

(111) 
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FAS   ✓ 
The Many Roles of FAS Receptor Signaling in the Immune 

System 
(112) 

IL17RB   ✓ 
Cutting Edge: IL-17B Uses IL-17RA and IL-17RB to Induce 

Type 2 inflammation from Human Lymphocytes 
(113) 

MYLK   ✓ 
Myosin Light Chain Kinase: A Potential Target for 

Treatment of Inflammatory Diseases 
(47) 

NCSTN ✓   

Keratin 5-Cre-driven deletion of NCSTN in an acne inversa-

like mouse model leads to a markedly increased IL-36a and 

SPRR2 expression 

(114) 

NDRG2 ✓   
Association between NDRG2/IL-6/STAT3 signaling pathway 

and diabetic retinopathy in rats 
(115) 

NFATC4 ✓   
NFAT is a nerve activity sensor in skeletal muscle and 

controls activity-dependent myosin switching 
(116) 

NOSIP ✓   
NOSIP, a novel modulator of endothelial nitric oxide 

synthase activity 

(44) 

OAS2 ✓   

OAS1, OAS2, and OAS3 Contribute to Epidermal 

Keratinocyte Proliferation by Regulating Cell Cycle and 

Augmenting IFN-1- induced Jak1‒Signal Transducer and 

Activator of Transcription 1 Phosphorylation in Psoriasis  

(117) 

PRMT7 ✓   
The Role of Protein Arginine Methyltransferases in 

Inflammatory Responses 
(118) 

ROBO3 ✓   

Axon guidance receptor ROBO3 modulates subtype identity 

and prognosis via AXL-associated inflammatory network in 

pancreatic cancer 

(89) 

SLC22A5 ✓   
Charactarisation of exosomal SLC22A5 (OCTN2) carnitine 

transporter 
(119) 

TRIM16   ✓ 

TRIM16 exerts protective function on myocardial 

ischemia/reperfusion injury through reducing pyroptosis and 

inflammation via NLRP3 signaling 

(120) 

UBE2T ✓   
Correlateions between UBE2T Expression and Immune 

Infiltration in Different Cancers 
(121) 

USP21 ✓   
USP21 Deubiquitinase Regulates AIM2 Inflammasome 

Activation 
(122) 
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