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Abstract 

BACKGROUND: Peripheral inflammation is often associated with depressive disorders, and 

immunological biomarkers of depression remain a focus of investigation. 

METHODS: We performed RNA-seq analysis of human peripheral blood mononuclear cell 

(PBMC) RNA transcripts from a case-control study including subjects with self-reported 

depression in the pre-symptomatic state of major depressive disorder (MDD), and analysed 

differential expression of genes (DEGs) and intron retention (IR) using rMats. 

RESULTS: Among the DEGs with a statistically significant value, both 651 up-regulated and 

820 down-regulated genes were enriched in GO (gene ontology) terms of innate and adaptive 

immunity. The former was particularly enriched in bacterial infection and phagocytosis, while 

the latter was enriched in genes related to antigen presentation and T cell proliferation and 

maturation. Genes with the 158 increased and 211 decreased IRs (termed IncIR and DecIR 

genes, respectively) in the depressed subjects were analysed. Their GO terms were very similar 

to those of the up- and down-regulated genes, with an emphasis on ciliary assembly and 

function in the DecIR. The results also showed that a Japanese herbal medicine partially 

reversed the depression in these subjects after recovering the DecIR and IncIR genes. By 

imposing the recovered genes on the network of depressed subjects, several new pathways for 

recovery from depression were successfully discovered.  

CONCLUSION: Depression was associated with activation of the innate immune response and 

relative inactivation of T cell signalling. DEGs reflect physiological demands at the 

transcriptional level, whereas IRs are a mechanism for fine-tuning cytoplasmic homeostasis. 

Accordingly, IR is a stress response and IR genes are sensors of the physiological state in the 
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cytoplasm. In particular, where ciliary genes were detected by IR analysis, it is expected that 

there is a defect in ciliary function or immune synaptogenesis in depression. We demonstrate the 

potential of IR biomarkers in the immunological stratification of depressed patients and their 

utility in the discovery of novel pathways involved in recovery from depression. 

 

Introduction 

 

In 2017, it was estimated that more than 320 million people worldwide were affected by 

clinical depression (1). It is likely that this number - along with the number of people affected 

by other mental disorders - is increasing as the stresses of everyday life continue to rise, 

particularly since the outbreak of COVID-19. In fact, depression has become the leading cause 

of disability worldwide. Major depressive disorder (MDD) is often accompanied by anxiety 

disorder, which is also the leading cause of death by suicide (1). Currently, there is no reliable 

laboratory test or effective treatment strategy to diagnose or cure MDD. Another important issue 

in depression is the low remission rate, with only about half of patients achieving complete 

remission and the remission rate decreasing with each subsequent treatment. Therefore, to better 

understand the pathogenesis of depression and its aetiology, there is an urgent need to identify 

biomarkers for monitoring treatment outcome and genes that can be targeted for drug therapy (2, 

3, 4, 5, 6).  

There is increasing evidence that depression and inflammation are often associated (7, 8, 9, 

10, 11, 12, 13, 14). Several case-control studies of major depressive disorder (MDD) have 

reported elevated peripheral blood levels of inflammatory cytokines such as CRP, interleukin 6 

and tumour necrosis factor in MDD (15, 16, 17). In these cases, where inflammation occurs first 

and depressive symptoms appear later, the view that inflammation is the cause of depression is 

gaining ground. Furthermore, the prevalence of comorbid depression is increased in many 

non-psychotic inflammatory diseases, such as rheumatoid arthritis (18), suggesting a possible 

causal role of inflammation in depression. Ed. Bullmore (in his excellent book "THE 

INFLAMED MIND"(19)) has proposed that stress causes inflammation and that inflammation 

causes depression. Much of the current data seems to be consistent with his proposal (20). 

Alternative pre-mRNA splicing is a mechanism by which multiple protein isoforms can be 

produced from a single gene transcript. One type of alternative splicing is termed 'intron 

retention' (IR), which was previously thought to simply reflect one or more errors during 

pre-mRNA splicing. More recently, however, IR has been considered to be a biologically 

meaningful phenomenon rather than an alternative splicing error, because an increase or 

decrease in the number of introns has been associated with certain biological phenomena, such 

as cell differentiation (21, 22, 23, 24), ageing (25) and oncogenesis (26). Using mouse models 
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of ageing such as Klotho mice (27) and SAMP8 mice (28), we have previously shown that IR 

occurs as a stress response in the pre-symptomatic state and that when the state is restored by 

administration of the Japanese herbal medicine, the incidence of IR is restored to that of the 

healthy state (27, 28). In addition, we have proposed that genes affected by IR (termed IR 

genes) play a sensor role in detecting perturbations in cellular homeostasis (29).  

We hypothesised that by analysing the IR genes, it would be possible to identify the 

stresses experienced by patients and the gene dysfunctions that are hidden as causes of their 

depression. In other words, we wanted to explore the possibility of using IR as a means of 

investigating aetiology. 

 

Materials and Methods 

 

Ethics declarations, ethics approval and consent to participate. 

This research has been reviewed by the Kitasato Institute Hospital, Research Ethics 

Committee and assigned research number 21037. Please note that the Kitasato Institute Hospital, 

Research Ethics Committee deliberates in accordance with the Ethical Guidelines for Medical 

and Health Research Involving Human Subjects. Other documents were prepared in accordance 

with the guidelines, and the study was initiated. All subjects who participated in the study gave 

their written consent to the research procedures, including genetic analysis. The research 

procedures were conducted in accordance with the research protocol. 

 

Subjects 

We recruited subjects with depressive symptoms who had consented to participate in the 

"Study of Hangekobokuto (30) and the Intestinal Environment" conducted by the Kitasato 

University Oriental Medicine Research Center, and who scored between 6 and 20 on the Brief 

Depressive Symptom Scale (QIDS-J). After the benefits and risks of the study were explained to 

the subjects, written informed consent was obtained, and the following exclusion criteria were 

applied to those who consented. 1) Subjects already receiving treatment for depression, 2) 

Subjects who had taken herbal medicinal preparations within the previous 4 weeks, 3) Subjects 

who had taken antibiotics within the previous 4 weeks, 4) Subjects who were clearly in need of 

Western medical treatment, 5) Subjects who had been diagnosed with ulcerative colitis or 

Crohn's disease, 6) subjects with clinically significant hepatic or renal impairment, 7) subjects 

who have participated in other clinical studies within the past 12 weeks, and 8) subjects who are 

deemed by the investigator to be unsuitable for the study.  

Subjects took a daily dose of a Japanese herbal medicine, Hangekobokuto (HKT), at home. 

The BDI™-II Beck Depression Questionnaire (BDI-II) was administered at the time of the 
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screening test and at hospital visits 2 months after taking HKT, and blood was collected using 

BD Vacutainer CPTTM Blood Collection Tubes (Nippon Becton Dickinson, Japan). Subjects 

were classified according to their BDI-II scores, with 6 control subjects (CON) scoring less than 

16 and 8 subjects with depression symptoms (before medical treatment (BMT) and after 

medical treatment (AMT)) scoring 17 or higher. 

 

Japanese herbal medicine 

Japanese herbal medicines originated in ancient China and are widely used in Japan for a 

variety of conditions (31, 32). HKT (30) is one of the formulations and is taken for symptoms of 

mental anxiety, stagnant gas in the stomach and usually poor digestive function. In this study, 

HKT was used as a decoction in the following proportions, based on the formula of the Kitasato 

University Oriental Medicine Research Centre: Hange (Pinelliae Tuber) 6.0 g; Bukuryo 

(Hoelen) 5.0 g; Koboku (Magnoliae Cortex) 3.0 g, Shisoyo (Perillae Herba) 2.0 g; Syokyo 

(Zingiberis Rhizoma) 0.5 g. 

 

PBMCs preparation, RNA extraction, RNA library preparation and RNA-sequencing 

Blood samples collected in BD Vacutainer CPTTM Blood Collection Tubes are 

centrifuged within 2 hours to separate the PBMC layer. After centrifugation, PBMC samples can 

be stored and transported at -80 °C. RNA extraction was performed on individual PBMC 

samples. Library construction and paired-end sequencing (150 base pairs × 2) using the 

NovaSeq 6000 platform (Illumina) were outsourced to Azenta Life Sciences, Tokyo, Japan. 

RNA sequencing yielded 109 ~ 148 million (× 2, paired-ends) raw reads per sample. These were 

then purified using conventional procedures (33, 34, 35, 36). 

 

Differential expressed genes (DEG) analysis 

Using the edgeR package in R, significantly differentially expressed genes were detected 

by performing likelihood ratio tests. The results showed that 922 downregulated and 641 

upregulated genes were significantly differentially expressed between the 6 CONs and 8 BMTs 

with P < 0.05 and fold-change > 1.2. DEGs were used for GO and KEGG pathway enrichment 

analysis using the DAVID website. Similarly, the same test was calculated under the same 

conditions between BMT and AMT to investigate the effect of HKT administration. 

 

Detection of intron retentions 

IR-containing genes were analysed to determine their possible role in stress sensing as proposed 

in the previous study (27, 28, 29). rMATS v.4.1. was used to assess the differential IR landscape 

embedded in the RNA-seq data. The optional parameters for the rMATS program are as follows: 
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[--cstat 0.05 -t paired --readLength 150 --variable-read-length]. A cut-off of P < 0.05 in the 

likelihood ratio test and an absolute difference of the IR ratio > 0.05, used as the statistical 

significance test in the rMATS program, was used to call differential IR events. Similarly, the 

same test was calculated under the same conditions between BMT and AMT to study the effect 

of HKT administration. 

 

Interactome analysis 

A protein-protein interaction network was generated using Cytoscape ver. 3.9.1 with StringApp 

version 1.7.1. The network type "full STRING network" was selected for drawing and a 

confidence (score) cut-off value of 0.7 was used (Other parameters were used as default values.). 

Fig. 5 was calculated with a confidence (score) cut-off value of 0.7 using proteins encoded by 

IR genes and DEGs, and we analysed protein-protein interactions with each functional gene 

group, cilia-related genes (proteins), psychiatric disorders-relevant (PD) genes (proteins), 

adaptive and innate immunity related genes (proteins). 

 

Results 

RNA-seq and analysis of DEG.  

 

The study included a group of subjects with depression ranging from 17 to 27 on the BDI-II 

score, designated as BMT group (8 individuals), which is neither severe nor mild. Relatively 

mild subjects with scores ranging from 7 to 16 were used as controls, designated as CON group 

(6 individuals), and healthy subjects were not used as controls (Figure 1A(i)(ii)). As we are all 

on the spectrum, we wanted to gain molecular insight into the transition from mild to moderate 

depression. All subjects were also screened to ensure that they had not taken any medication or 

been hospitalised during the three-month period before examination (see details in the method 

section). These are the characteristics of subjects in this study. PBMC and RNA were isolated 

from each sample and used for RNA-seq. DEG analysis resulted in the identification of 651 

upregulated and 820 downregulated genes for the BMT group compared to the CON group 

(Figure 1BC, Supplementary Table 1). GO enrichment analysis was performed for upregulated 

genes (Figure 1D, Supplementary Figure 1), showing enrichment for innate immunity-related 

terms such as infection, phagocytosis and inflammation as well as adaptive immunity, and for 

downregulated genes (Figure 1E, Supplementary Figure 2), showing enrichment for adaptive 

immunity-related terms such as antigen presentation, T cell activation as well as synapse-related 

terms. Figure 1B shows the genes involved in positive regulation of T cell activation (5 genes in 

Figure 1E) from the downregulated genes and the genes involved in innate immune responses 

(21 genes in Figure 1D) from the upregulated genes, which include a large number of 
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immunoglobulin heavy chains (37, 38), suggesting an inflammatory phenotype of the subjects 

(37). 

 

Identification of IncIR and DecIR genes in the depressed subjects.  

 

Since IR is a stress response and genes susceptible to IR are a physiological sensor ((27, 28); 

see later), we characterised genes for increased intron (IncIR) and those for decreased intron 

(DecIR) in depressed subjects, considering that such an analysis would give an indication of the 

type of stress to which the subjects were exposed. The 158 IncIR and 198 DecIR genes were 

isolated (Figure 2AB, Supplementary Table 2) and their characteristics were first studied from 

the literature. As expected, many sensor or regulatory genes were isolated from the 

protein-coding IR genes, some of which are shown in Table 1 (45 genes). This is only half of 

the genes identified as sensors, regulators and modulators among the IR genes in this analysis, 

in which genes controlling inflammation, innate immunity and adaptive immunity were found. 

Their GO enrichments were then analysed, as shown in Figure 2CD. In IncIR, TNF signalling 

pathway and several terms related to innate immune response were enriched, and in DecIR 

genes, T cell signalling and other adaptive immune response as well as inflammation and innate 

immune processes were enriched. In short, both innate and adaptive immunity were highlighted 

in the IR analysis, as in the case of the DEG analysis, suggesting that IR genes are mirrored by 

DEG genes. The important difference between IR genes and DEG genes is that immunoglobulin 

was included in the DEG list (in fact, almost half of the upregulated genes in our RNA-seq 

analysis are immunoglobulin genes, see Supplementary Figure 1), but not in the IR genes. The 

reason why immunoglobulin genes were not listed in the IR genes is discussed later. Most 

interestingly, the highest enrichment score of genes in DecIR was for cilium assembly, 

suggesting that cilium is involved in sensing depressive stress in these subjects (see Discussion). 

 

IR genes statistically significantly interact with those for innate immune response.  

 

To characterise the IR genes in more detail, we first determined the possible overlap of IR genes 

with immune-related genes, cilia genes and psychiatric disease-related genes (PD genes) using a 

Venn diagram (Figure 3AB). Among the 317 IR genes (Supplementary Table 2), 32 cilia genes 

(Figure 3C) and 34 immune-related genes (Figure 3D) were included. Since many IR genes in 

Table 1 were involved in innate immunity, including viral and bacterial infection, we next 

examined whether IR genes could specifically interact with genes involved in the innate 

immune response (Figure 3E). Compared to the interaction of randomly chosen genes, IR genes 

interact with genes involved in innate immunity in a statistically significant manner. Figure 3F 
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shows the ranking of the IR gene interactions. Among the IR genes, the STAT1 gene, signal 

transducer and activation of transcription gene 1 ((39); Table 1), has the highest number of 

interactions with innate immunity genes. It is interesting to note that this gene is an important 

member of the JAK-STAT pathway (39), which is involved in both innate and adaptive 

immunity including inflammation (see Discussion).  

   We also looked at the interaction of IR genes with genes involved in leukocyte activation 

(adaptive immunity) or immune response. Their ranking of IR gene interaction was informative 

(Figure 3JK), as STAT1 ranked highest in both cases. 

 

IR-DEG interactome  

 

Using all the protein-coding genes of DEG (285 up-regulated + 433 down-regulated) and IR 

(127 IncIR + 169 DecIR + 8 Mixed), we can create a large interactome using the PPI network 

software (Figure 4A). A large interactome was formed, with many hub genes connecting to 

other genes (Supplementary Table 3). The largest hub is the SRC gene (40), one of the DEGs, 

connected to 43 genes (Figure 4B). Among the IR genes, the largest hub was DLG4 (41), which 

is involved in synaptic function. The second was STAT1, a member of the JAK-STAT pathway 

(39). The third and fifth were integrin genes (42, 43), and the fourth was HLA-A (44), which is 

involved in antigen presentation. The sixth was MYH10 (45), myosin heavy chain, which has 

11 links, one of which was linked to myosin light chain kinase (MYLK) (46, 47) and was 

restored by the administration of Japanese herbal medicine (see later). 

 

Recovery of IR genes by administration of HKT 

 

After 2 months of HKT, PMBC were isolated from the subjects and RNA-seq was 

performed (Figure 1A). We characterised two types of IR gene recovery, reverse V-shaped 

recovery (Figure 5A) and V-shaped recovery (Figure 5B), consisting of 30 and 34 

protein-coding genes, respectively (Supplementary Table 4). Since only 17 genes (7 V-shaped 

genes and 10 reverse V-shaped genes) were recovered in DEG (data not shown), the fact that 

four times as many genes were recovered in IR suggests that IR is superior to DEG as a marker 

for evaluating the efficacy of a drug in the present case. 

  Characterisation of the IR genes restored by HKT (Figure 5C) showed that 

inflammation-related genes were the major restored IR genes (24 genes; 37.5%), with 7 

mitochondria-related and 7 cilia-related genes each accounting for 10.9%. The 

anti-inflammatory effect shown here is consistent with the reported efficacy of many Japanese 

herbal medicines (31), including HKT (30). Interestingly, while HKT has been reported to have 
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anti-inflammatory effects by reducing inducible nitric oxide synthase (iNOS), the IR of NOSIP 

(48), which has been reported as a modulator of NO, was consistently restored in the present 

study. The appearance of haemopoietic genes (3 genes) may also indicate that inflammation and 

haemopoiesis are linked in a compensatory way, as inflammation consumes a large number of 

macrophages. Oxidative stress is common in depressed patients (49) and can lead to increased 

DNA damage together with mitochondrial dysfunction (49). The restoration of these genes may 

be the hallmark of this herbal medicine. 

 

Pathways recovered by herbal medicine can be characterized from the DEG-IR 

interactome. 

 

The recovered 64 IR genes shown in Figure 5 and 17 DEGs were superimposed on the DEG-IR 

interactome (shown in Figure 4) to determine whether these recovered genes can network with 

each other. Ten new pathways were found (Figure 6). Some of these pathways are known to 

have protein-protein interactions, but to our knowledge this is the first time that these pathways 

have been shown to be involved in restoring a physiological state. As the DEG-IR interactome 

was generated without the use of herbal medicines, different new pathways would be found if 

different medicines were used in the same patient. This means that this method can be used to 

discover new pathways involved in the mechanism of action of drugs. 

 

Discussion 

 

The upregulated genes in this study were significantly enriched in GO terms associated with 

innate and adaptive immunity. Many of these genes (approximately 50%) were related to 

immunoglobulin heavy chains (Figure 1B, Supplementary Table 1). In contrast, downregulated 

genes were enriched in GO terms associated with antigen presentation, T cell function and 

adaptive immunity. This trend in depressed patients has been reported previously (3, 4).  

   An important aspect of our study is that we have shown that IR can be used as an alternative 

method to detect specific changes in depression, in addition to traditional DEG methods. 

Roughly speaking, GOs detected in IncIR genes correspond to GOs of upregulated DEGs, 

whereas GOs detected in DecIR genes correspond to GOs of downregulated DEGs. This 

correspondence can be better understood in the light of our recently proposed intron fine-tuning 

model (29). That is, an increase in introns leads to a decrease in the amount of mature 

cytoplasmic mRNA (and thus a decrease in cytoplasmic protein), whereas a decrease in introns 

leads to an increase in mature cytoplasmic mRNA (and thus an increase in cytoplasmic protein). 

In other words, IR is thought to play a role in regulating the correct amount of protein in the 
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cytoplasm. This is the molecular mechanism by which intracellular homeostasis is regulated. 

As can be easily imagined from the model described above, genes that cause IR have a 

sensor role. Indeed, many of the IR genes analysed in this study have the word 'sensor' or 

'regulate' in their title of the literature to describe their role (Table 1). Analysis of IR genes may 

reveal new, as yet unidentified, regulatory roles of these genes in the stress of depression. 

In many cases, IR genes do not correspond to DEGs. Of the 30 DEGs shown in Figure 1B, 

only one gene, HLA-DRB1 (50), is actually subject to IR. DEGs are often quantitative, whereas 

IR genes are more qualitative. By analogy, the DEG is the soldier, the manual worker, whereas 

the IR genes is the commander in chief. A typical example of the qualitative difference between 

DEGs and IR genes is secreted proteins, where secreted proteins are sometimes detected as 

DEGs (indeed, half of the upregulated genes are immunoglobulins; Supplementary Figure 1), 

but not as IR genes. This is because these proteins are secreted out of the cell via the Golgi 

apparatus and are therefore not captured by the homeostasis detection mechanism in the 

cytoplasm. 

 There are 20-30,000 genes in the genome, some of which may have a predetermined role 

as commanders in causing IR. Indeed, in budding yeast, introns have been shown to play a 

mediator role in monitoring the physiological state of the cell (51, 52). Thus, the function of IRs 

as sensors described here is likely to be an evolutionarily conserved universal function. It 

remains to be seen by what mechanism this particular intron reflects physiological states and is 

involved in cellular homeostasis (29), which is a major challenge for the future. 

 

Many researchers have analysed DEGs between case-controls to look for markers of 

depression. What has been found is that even when the top 10 genes with the highest expression 

variability are examined, the data differ from experiment to experiment and do not match (53). 

As shown in the current study, IR variation is likely to be more sensitive as a marker of 

depression. Consider this in practice: a 10% fluctuation in immunoglobulin levels in DEG 

would not represent the physiological state of many individuals, but a 10% reduction in the 

intron of the inflammation sensor STAT1 (39) would have a significant impact on immune 

homeostasis because it would increase the amount of STAT1 protein in the cytosol by 10%. The 

accumulation of various studies to date suggests that the cause of depression is polygenic (54), 

but it is more plausible that the reason why genes for better markers have not been found in the 

DEGs is due to the nature of the DEGs themselves, rather than because depression is polygenic. 

 

So, among the genes that cause IR, are there any that are particularly likely to be common 

markers for depression? Depression is an immune disorder. Therefore, among the IR genes 

analysed in this study, the 34 genes identified as immune-related (Figure 3D) are likely to be 
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good candidates. In addition, immune-related genes change with depression, and the IR genes 

most likely to interact with them are most likely to change with depression, so IR genes with a 

high ranking for interaction with immune-related genes, shown in Figure 3FJK, also have a high 

potential to be markers. Also, hub IR genes with many connections in the interactome (Figure 

4B), which we discussed earlier, are also good candidates.  

In terms of common markers for depression, a particular highlight of the present study is the 

detection of a number of cilia-related genes (32 genes; Figure 3C) as IR genes. This may reflect 

the functional stress state of cilia as antennae in leukaemic cells, although the presence of cilia 

on leukaemic cells is controversial (55). It is known that when dendritic cells present antigens to 

T cells, they form structures known as immunological synapses, in which the internal 

environment of the T cell resembles that of cilia (56, 57, 58). Therefore, the observation of IR in 

cilia genes may represent a failure of T cells to recognise antigens during depression. An 

interesting possibility is that cilia-related genes are not equally likely to be IR genes. Of the 

1117 ciliary genes currently known, IR was observed in 32 genes in this study (Figure 3C). 

Surprisingly, of the 37 ciliary genes currently known to cause Joubert syndrome, six (AHI1 (59), 

CELSR2 (60), CEP104 (61), IFT172 (62), NPHP1 (63), TMEM107 (64)) were found to be 

among the IR genes. In addition, four of these six genes were found to be restored by Japanese 

herbal medicine. Thus, the Joubert syndrome genes are particularly enriched in IR and highly 

responsive to Japanese herbal medicine, making these genes probably the best candidates for 

marker genes for depression. AHI1 and NPHP1 were also found to be pathways for recovery, as 

described below (Figure 5). Future clinical trials are awaited to confirm these possibilities, 

where it will be necessary to determine more reads during sequencing, assuming rMATs is used 

(rMATs requires approximately five times more sequencing reads than DEG). 

 

When these IR-recovered genes were mapped onto the IR-DEG interactome, 10 pathways 

were discovered that recovered in association with each other. Although each of these 10 

pathways deserves detailed investigation (most of them were newly discovered in this study), it 

is important to emphasise that in each of the 10 pathways shown here, changes in the IR of one 

gene are linked to changes in the IR or DEG of another gene, forming a single functional unit 

(which we call a gear). We will discuss a few of these. The first is the NPHP1-AHI1 pathway. 

As mentioned above, these two genes are involved in cilia function and their mutations cause a 

ciliopathy called Joubert syndrome (59, 65, 66, 67). It has been shown experimentally that 

jouberin, a protein encoded by AHI1, can interact with nephrocystin, a protein encoded by 

NPHP1, using the yeast two-hybrid system (68). The two proteins form a heterodimer, and 

mutations in AHI1 that do not form a heterodimer (i.e. V443D in AHI1) alter the intracellular 

localisation of AHI1 and NHPH1 so that the two proteins can, although not always, behave as if 
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they were one protein (59). It is interesting to note that the introns of these two mRNAs are 

reduced in depression and both are restored by the administration of the herbal medicine. In 

other words, the mRNAs transcribed from these two genes seem to be under the same control 

mechanism of RNA processing, as if they were the same mRNA. These observations remind us 

of a model we have recently proposed that there may be a novel mechanism that senses the 

correct level of functional proteins in the cytoplasm and transmits this information to the 

nucleus to regulate the level of IR (29). If such a mechanism exists, it would mean that introns 

in the genes for AHI1 and NPHP1 are regulated by a common factor. 

In the case of the MYLK-MYH10 pathway, inflammatory inputs activate MYLK and 

phosphorylate the L-chain of myosin (47). This causes the contracted L-chain of myosin to 

transmit information to the H-chain, which in turn regulates the copy number of mitochondrial 

DNA, which is tightly bound to the non-muscle H-chain (45). In this biological GEAR, the 

input is inflammation and the output is the control of the number of copies of mitochondrial 

DNA. The other eight pathways, including the two already postulated, need to be demonstrated 

biochemically in practice, but brief outlines of the hypothetical pathways are given in the legend 

of Figure 6. 

 

Figure 5K shows the 10 pathways restored by HKT mapped on the IR-DEG interactome 

described in this study. This interactome was generated using data from depressed patients and 

controls only. This means that if a different drug with a different effect to the one used here was 

used, the new pathways restored by the drug could be detected. Accordingly, such an IR-DEG 

interactome should be useful for assessing the efficacy of all drugs, including herbal medicines, 

and for finding new pathways affected by drugs. 

   In short, we have shown in this paper that IR can be an excellent marker of depression. The 

combination of network analysis and drug response gene analysis may also reveal new 

pathways of drug efficacy. The strategy presented here are not limited to the analysis of 

depression, but can be applied to any disease. 
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Figure legends. 

 

Fig. 1. Comparison of RNA expression between depressed subjects and less depressed 

controls. (A) (�) Table of subject information. Classification was based on the BDI-II score at 

the first examination, with <16 being less depressed controls and ≥16 being depressed subjects. 

(CON, less depressed controls; BMT, depressed subjects (before medical treatment); AMT, 

depressed subjects after 2 months of taking HKT (after medical treatment)) (i�) In each group, 

mean and standard deviation of sex, age, and BDI-II score were shown. (B) Volcano plot of 

RNA expression between BMT and CON groups. Horizontal axis shows log2 fold-change of 

BMT/CON and vertical axis shows -log10P values. Significantly upregulated genes are 

indicated by red dots (FC > 1.2 and P < 0.05), downregulated genes are indicated by blue dots 

(FC > 1/1.2 and P < 0.05), and no significant differences are shown in grey using the likelihood 

ratio test. Gene symbols of T cell associated genes were indicated. (C) Heatmap of significantly 

differentially expressed genes between BMT and CON individuals. (D-E) Enrichment analysis 

of biological process gene ontology and KEGG pathway terms using 641 up-regulated (D) or 

922 down-regulated (E) genes in BMT. Horizontal axis shows -log10P values. Green bars 

indicate gene ontology biological process terms and yellow bars indicate KEGG pathway terms.  

 

Fig. 2. IR genes were isolated and characterised by comparison between BMT and CON. 

(A) Bar chart of the number of IR genes with significantly increased (IncIR) or decreased 

(DecIR) in BMT using rMATS software v.4.1.1. Significant difference criteria are P-value less 

than 0.05 and difference in intron ratios greater than 0.05. (B) Heatmap of significantly different 

IR loci between BMT and CON. (C-D) Bar chart of enrichment analysis of biological process 

gene ontology and KEGG pathway terms using 158 genes with IncIR (C) and 198 genes with 

DecIR (D) in BMT. Gene symbols corresponding to the terms are shown on the right. The 
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horizontal axis shows -log10P values. Green bars indicate gene ontology biological process 

terms and yellow bars indicate KEGG pathway terms.  

 

Figure 3. IR loci interact preferentially with genes involved in innate immunity. (A) 

Number of IR genes and IR protein-coding genes. (B) Venn diagram between IR genes, 

cilia-related genes (GO:0060271 cilium assembly + SCGSv2 ciliary genes (69)), adaptive and 

innate immunity related genes (GO:0046649 lymphocyte activation and GO:0006955 immune 

response). psychiatric disorders-relevant (PD) genes. The PD gene sets was constructed by 

merging genes from the following databases or previous studies: SFARI (autism-related gene 

database, https://www.sfari.org/resource/sfari-gene/); PsyGeNET (mental disorder-related gene 

database, https://www.sfari.org/resource/sfari-gene/); Psychiatric disorders-related genes 

http://www.psygenet.org/web/PsyGeNET/menu/home); Psychiatric disorders-relevant genes 

(70); Major depression risk genes (71) (C) Gene symbols shared between IR and cilia-related 

genes are shown, corresponding to the area circled in red in Fig. 3B. Groups were classified as 

IncIR, DecIR or Mixed ('Mixed' indicates a gene containing both IncIR and DecIR). (D) Gene 

symbols shared between IR and immunity related genes, corresponding to the area surrounded 

by blue in Fig. 3B. (E) Network showing significant protein-protein interactions (PPI) between 

IR genes and innate immune response-related genes. The interaction score was calculated using 

the full STRING network confidence score 0.7 from the STRING database. (left) Network of 

PPIs between proteins encoded by IR genes and innate immune response proteins 

(GO:0045087). Innate immune response proteins are placed in the central circle and IR proteins 

(red: IncIR, blue: DecIR, green: mixed) on either side. (right) Instead of IR proteins, an equal 

number of randomly selected gene sets were placed on both sides. Ranking table of the top 30 

proteins with the highest number of interactions (number of links) with the IR in (F) and with 5 

randomly selected protein sets in (G). (H) Bar chart comparing the average number of 

interactions (number of links) with innate immune response proteins in the IR and 5 random 

protein sets. (I) Bar chart comparing the average number of interactions (number of links) with 

innate immune response proteins in DecIR and IncIR proteins. (J) Ranking table of the top 30 

proteins with the highest number of interactions (links) to lymphocyte activation proteins 

(GO:0046649) in IR proteins. (K) Ranking table of the top 30 proteins with the highest number 

of interactions (links) to immune response proteins (GO:0006955) in the IR proteins. 

 

Fig.4. PPI network of IR and DEG proteins.  (A) A main network showing protein-protein 

interactions using all IR and DEG proteins between CON and BMT. The interaction score was 

calculated using the full STRING network confidence score 0.7 from the STRING database. 

(IncIR: red filled circle, DecIR: blue filled circle, Mixed: green filled circle, Upregulation: small 
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circle with red border, Downregulation: small circle with blue border). Only the largest 

networks are shown, singletons and smaller networks are excluded. IR protein names are shown. 

(A Square bottom right) Proteins with ≥10 interactions (number of links) are marked with 

symbols. (B) Ranking table of protein names with 10 or more interactions. (C-E) Proteins 

corresponding to cilia (brown, GO:0060271 cilium assembly) in (C), lymphocyte activation 

(purple, GO:0046649 lymphocyte activation) in (D) and innate immunity (light green, 

GO:0045087 innate immune response) in (E) are coloured in the network in Figure 4A. 

 

Fig. 5. Recovery of IR by administration of HKT.  (A) (Top, left) Venn diagram of intronic 

loci that were significantly increased (IncIR between CON and BMT) and those that were 

decreased (DecIR between BMT and AMT) by drug treatment. (Bottom, left) Gene symbols 

with recovered loci are shown (Protein coding genes are shown in bold.). (Right) Box plot 

showing average intron ratios at recovered loci. (B) (Top, left) Venn diagram of intronic loci that 

were significantly decreased (DecIR between CON and BMT) and those that were increased 

(IncIR between BMT and AMT) by drug treatment. (Bottom, right) Gene symbols with 

recovered loci are shown (Protein coding genes are shown in bold.). (C) Table of functional 

categorisation from the literature of the recovered IR genes.  

 

Figure 6. New pathways discovered from drug recovery on the PPI network.  

(A-J) The network was extracted from the PPI network overlaid with recovered IR and DEG 

loci. All recovered IR loci except PLD2 showed a significant difference (P < 0.05, FC > 1.2) 

between CON and BMT and between BMT and AMT. All DEG loci showed a significant 

difference (P < 0.05, FC > 1.2) between CON and BMT, but their significance between BMT 

and AMT is marginal (P < 0.3) using the likelihood ratio test. IR gene is indicated by a large 

circle, where blue is DecIR and red is IncIR. DEG is indicated by a small circle, where blue 

indicates downregulation and red indicates upregulation. Bar graphs show intron ratios for IR 

and gene expression levels for DEG. In the bar graph, asterisks indicate statistically significant 

differences (*: p < 0.05, **: p < 0.01, ***: p < 0.001, NS: not significant). (A) The pathway 

involving NDUFA5, FOXRED1, NDUFV2 and ATP5MGL (72) regulates mitochondrial 

function. (B) The TP73 (73) - FAS (74) - CAV1 (75, 76) - PDGFRA (77) pathway is involved in 

inflammatory signalling. (C) The CAV1 (75, 76) - PLD2 (78) - NAPEPLD (79, 80) signalling 

pathway is involved in the regulation of lipid metabolism involving caveolae as a vital plasma 

membrane sensor. (D) The DDX5 (81, 82) - ZWINT (83) - UBE2T (84) pathway is involved in 

the amplification by ubiquitination of an inflammatory signal taken up by DDX5 via the 

immune infiltration stimulated by ZWINT. (E) The CERT1 (85) - COL4A3 (86) - ITGA9 (87) 

pathway is involved in anti-inflammatory responses. (F) The HOXA1 (88) - ROBO3 (89) - 
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NTN1 (90) signalling pathway regulates inflammation. (G) See text. (H) The SMARCD2 (91, 

92) - BRD9 (93, 94) signalling pathway is involved in a mediator of an inflammatory input 

activated by BRD9 leading to mediated granulopoiesis as an output through activation of 

SMARCD2. (I) See text. (J) The EOGT (95) - DOCK6 (96) pathway is involved in the 

regulation of haematopoiesis. (K) On the main network, each position of the pathways (A - H) 

is indicated by a red square. 

 

 

Table 1. Sensor / Regulatory genes were isolated from the protein-coding IR genes 

Category Gene Function Ref. 

Sensor 

ADGRB2  Metabotropic mechanosensor  (123) 

AIF1  Innate response sensor  (124) 

CD163  Macrophage innate immune sensor  (125) 

DDX5  Interferon antiviral sensor  (126) 

DDX3X  Interferon antiviral sensor  (126) 

ERLIN1  Innate immune sensor  (127) 

GBF1  ER_sensor  (102) 

HTRA2  Mitochondria stress sensor  (128) 

LRSAM1  Bacterial sensor  (129) 

MAP3K12 

(DLK)  
axon-damage sensor  (130) 

MOK (RAGE)  Haem sensor  (131) 

NDRG2  Inflammaton sensor  (115) 

NFATC4  Nerve sensor  (116) 

OAS2  Viral sensor  (117) 

PQBP1  HIV innate response sensor  (132) 

SARM1  Metabolic sensor  (133) 

SLC9A5 (NHE5)  PH sensor  (134) 

SLC16A11  Glucose lipid sensor  (135) 

ZNF598  Collided_ribosome sensor  (136) 

Regulator 

ADCY4 Controls  caspase-11 inflammasome activation (107) 

BRD9 Regulates interferon-stimulated genes (93) 

BTBD3 Controls dendrite orientation (137) 

BTN3A3 Regulates ERK1/2 phosphorylation (138) 

CACNB3 Regulates ATP-dependent migration of dendritic cells (139) 
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CFB  Regulates cellular senescence (140) 

CLK4 Regulates DNA damage induced NF-kB (141) 

HAGHL Regulates human colorectal cancer progression (142) 

ITGAL Regulates glioma growth (143) 

MAT2B Regulates EGFR signaling pathway (144) 

Mettl17 
Regulates mitochondrial ribosomal RNA 

modifications 
(145) 

MICAL1 Regulates actin microfilaments (146) 

MSH5 Regulates Ig class switch recombination (147) 

MYO1G 
Regulates exocytosis, and endocytosis in B 

lymphocytes 
(148) 

MYSM1 Regulates hematopoietic stem cell maintenance (149) 

NAPEPLD Regulates liver lipid metabolism (79) 

PGM3 Regulates beta-catenin activity (150) 

PLD2 Regulates phagocyte cell migration (151) 

PTPN18 Regulates the c-MYC-CDK4 axis (152) 

ROBO3 
Modulates prognosis via AXL-associated 

inflammatory network 
(89) 

SCFD1 Regulates SNARE complex formation (153) 

SNAP23 Regulates phagocytosis (154) 

STARD9 Regulates Spindle Pole Assembly (155) 

STAT1 
Regulates transcription in the interferon JAK-STAT 

pathway 
(39) 

TRA2A Regulates EZH2/beta-catenin pathway (156) 

UBE2T Promotes autophagy (121) 
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up-regulation

GOBP

KEGG

Bacteria infection

Inflammation, adaptive immunity
and innate immunity

(A) (i)

(ii)

sample ID Individual
ID

sex age
BDI-II score

before medicine
(BMT)

after medicine
(AMT)

CON-1 COI04 M 40s 7 –

CON-2 COI20 M 40s 7 –

CON-3 COI23 F 20s 9 –

CON-4 COI06 F 40s 13 –

CON-5 COI07 M 40s 16 –

CON-6 COI21 M 30s 16 –

BMT-1 & AMT-1 COI08 F 30s 17 6

BMT-2 & AMT-2 COI18 F 40s 18 8

BMT-3 & AMT-3 COI22 F 20s 21 12

BMT-4 & AMT-4 COI02 M 30s 22 21
BMT-5 & AMT-5 COI01 F 50s 23 11
BMT-6 & AMT-6 COI12 M 30s 25 9

BMT-7  & AMT-7 COI14 M 50s 27 0

BMT-8 & AMT-8 COI19 F 30s 27 18

CON BMT AMT

N 6 8

gender M4 : F2 M3 : F5 
Age at the 1st medical 

examination
40.67 ± 6.52 40.38 ± 9.04

BDI-II score 11.33 ± 3.86 22.50 ± 3.54 10.63± 6.20

(B)
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Synapse related

Antigen Presentation
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IFT27, IFT172, BBS1, CFAP70, IFT140, AHI1, WDR90, GBF1, TTLL3
SNAP23, SCFD1, GBF1
IFT27, LRRC37A2, ENSG00000284946, AHI1, SCFD1, HPS4, AP2M1
MYO1G, SNAP23, LRRC37A2, WASH6P, LLGL2
NUP62, STAMBP, MFN2
SNX32, HLA-A, STAMBP, TFRC, PLD2, GBF1, AP2M1
FMR1, AHI1, AP2M1
EIF2B5, HLA-A, BTN3A3, LIME1, CACNB3
IFT27, IFT172, IFT140
SNX32, NUP62, SNAP23, LRRC37A2, ENSG00000284946, SCFD1, PITPNM1, VPS51, GBF1
SNX32, WASH6P, VPS51, GBF1
ALS2CL, ALS2, ARHGAP27, SBF1
NFATC4, MINK1, BTBD3
CFB, USP21, NCSTN, MYSM1, HTRA2, HPN, SPG7, CTSF, GPAA1
ITGB4, ITGAL, ITGA3
WNT10B, HLA-A, IFNAR2, STAT1, RPS6KB2, LLGL2, ITGB4, PPP2R5D, ITGA3
TNFAIP3, USP34, BAP1
IFNAR2, STAT1, HTRA2
GABARAPL1, TNFAIP3, IFNAR2, STAT1, OAS2, MFN2
USP21, TNFAIP3, STAMBP, USP34, BAP1
TNFAIP3, HLA-A, IFNAR2, STAT1, ITGAL, OAS2
DDX3X, FMR1, IFNAR2, GBF1
NDRG2, TNFAIP3, AIF1, MFN2
DDX3X, EIF2B5, RPS6KB2
TTC37, SKIV2L
ZNF598, TTC37, SKIV2L
TTC37, SKIV2L, OAS2
HTRA2, HPS4, BAP1
KAT6B, MSL3, ING4

0 50 100 150 200 250 300

IncIR

DecIR

166 loci (158 genes)

211 loci (198 genes)

166 IncIR loci

211 DecIR loci

(A) (B)

CTSH, CTSL, C1R
CTSZ, CTSH, CTSL
BRPF1, TONSL, BRD9, LRWD1, KDM3A, CHD4, L3MBTL1
CTSH, CTSL, FAS
BAIAP2L2, ACTN1, MICAL1
CTSH, CTSL, HLA-DRB1
FIG4, GPC1
GMPPA, GALE, HEXA, CYB5R3
CREB3L4, TRAF5, FAS, CXCL2, JAG1
CTSZ, SCARB2, CTSH, CTSL, HEXA
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Lymphocyte activation
+

Immune response

Cilia

IncIR + DecIR

1259

38

894 1676

139

14

193 27

7 3

20

Shared between Cilia and IncIR + DecIR 
(32 genes)

BBS2 IncIR AHI1 DecIR
CALM3 IncIR BBS1 DecIR
CDK20 IncIR CEP104 DecIR
CELSR2 IncIR CFAP70 DecIR
CFAP119 IncIR CNTRL DecIR
INVS IncIR DNHD1 DecIR
KDM3A IncIR EZH2 DecIR
KIF5A IncIR IFT140 DecIR
MYH10 IncIR IFT172 DecIR
NPHP4 IncIR IFT27 DecIR
PQBP1 IncIR MOK DecIR

TMEM107 IncIR NAPEPLD DecIR
NPHP1 DecIR

CCDC78 Mixed NUP62 DecIR
GBF1 Mixed ODF2L DecIR

TEDC2 DecIR
TTLL3 DecIR
WDR90 DecIR

2

0

24

263

PD

(A)

innate immune response innate immune response

Random gene set (1)IncIR + DecIR gene set

DecIR
169 proteins

IncIR
128 proteins

Mixed
7 proteins

0

0.5

1

1.5

2

2.5

3

3.5

IncIR+DecIR Random

numLinks

Rank IR Group numLinks

1 STAT1 DecIR 104
2 HLA-A DecIR 46
3 OAS2 DecIR 46
4 IFNAR2 DecIR 34
5 DDX3X DecIR 23
6 CXCL2 IncIR 20
7 FAS IncIR 20
8 CD163 DecIR 19
9 SNAP23 DecIR 17

10 C1S IncIR 17
11 TNFAIP3 DecIR 16
12 C1R IncIR 16
13 HLA-DRB1 IncIR 14
14 CHD4 IncIR 14
15 DDX5 DecIR 13
16 CFB DecIR 13
17 CARD8 IncIR 13
18 TRAF5 IncIR 13
19 EZH2 DecIR 12
20 PPP2R5D DecIR 12
21 DLG4 DecIR 11
22 SARM1 DecIR 11
23 CALM3 IncIR 10
24 RPL23 DecIR 9
25 SPG7 DecIR 9
26 MYH10 IncIR 9
27 ACTN1 IncIR 9
28 GPC1 IncIR 9
29 NUP85 IncIR 9
30 POLR3A IncIR 9

3.72
2.69

0

2

4

6

8

10

12

14

16

DecIR IncIR

numLinks

P-value = NS

P-value = 0.0234

(E)

(F)

(H) (I)

numLoci numGenes numProtein-coding
IncIR 166 158 137

DecIR 211 198 180

Number of protein-coding IncIR + DecIR genes

(B)

(C) Shared between Lymphocyte activation + 
Immune response and IncIR + DecIR (34 genes)

(D)
C1R IncIR AIF1 DecIR
C1S IncIR BTN3A3 DecIR

CARD8 IncIR CTPS1 DecIR
CERT1 IncIR DDX3X DecIR
CTSH IncIR EPHB6 DecIR
CTSL IncIR EZH2 DecIR
CXCL2 IncIR HLA-A DecIR
FAS IncIR IFNAR2 DecIR

G3BP1 IncIR ITGAL DecIR
GBP3 IncIR JAML DecIR

HLA-DRB1 IncIR LIME1 DecIR
JAG1 IncIR MYO1G DecIR

POLR3A IncIR NCSTN DecIR
PQBP1 IncIR OAS2 DecIR

SARM1 DecIR
SLC22A5 DecIR

GBF1 Mixed SNAP23 DecIR
STAT1 DecIR

Rank Random1 numLinks Random2 numLinks Random3 numLinks Random4 numLinks Random5 numLinks

1 HRAS 43 TRAF2 42 IL6 77 AKT1 59 SYK 53
2 IFITM3 33 UBE2D2 32 IRF2 46 IRF1 57 EP300 51
3 IL1A 29 UBE2I 26 TRAF3 44 NFKB1 54 IP6K2 34
4 NRAS 26 DEFB114 24 GRB2 44 STAT2 54 IFI44L 29
5 TAB2 26 DEFB128 24 GBP2 38 DEFB1 31 ALB 26
6 IL10RB 22 CASP3 23 IFITM3 34 DEFB135 24 IRS1 19
7 PIK3CD 19 C2 21 TICAM1 26 NOS2 19 C1S 17
8 LRRK2 16 LILRB2 18 DDX60 26 RPL11 18 HCST 13
9 VAMP2 15 HSPD1 18 RTP4 24 ITGAV 18 MAP3K5 12

10 PSMD4 14 AKT2 16 RACK1 23 AIM2 17 DNM2 11
11 GRAP2 14 CARD8 13 FCGR2B 20 KLRD1 16 EFNA1 10
12 BDNF 14 LY86 11 PIK3R2 18 IL12RB2 16 TNRC6B 9
13 GNG2 14 POLR2K 11 RPS23 17 ITCH 15 EPHA5 9
14 PSME3 12 PRKCE 10 RPSA 17 RB1 14 CX3CL1 9
15 RPL23 11 CD59 10 MAPK13 15 MAPK12 13 TBL1XR1 9
16 NFKBIE 10 CTSS 10 TBX21 14 HNRNPK 13 WDR43 9
17 PSME4 9 POLR3G 9 HTT 14 PKM 12 ERN1 9
18 RNF4 9 STX17 9 RPL26 14 SELL 11 DLG1 9
19 DDX17 8 CAT 9 RPS17 13 PRKCE 11 TBL3 9
20 STX16 8 RPL8 9 RPL27 13 KDM1A 11 NCOA2 8
21 WRN 8 PARP2 8 RPL21 13 MAP1LC3B 10 NIFK 8
22 BAG4 7 MYO6 8 LILRB1 13 POLR3GL 10 RPS27 8
23 SORT1 7 RPL10A 8 ETS1 11 NMD3 9 ITGA5 7
24 TSPAN33 7 MSH6 7 ILF2 11 RPS14 9 AIF1 7
25 GSPT1 7 STX10 6 POLD1 11 MCL1 9 RPL7 7
26 UPF1 6 SND1 6 MLH1 10 EFNA1 9 KMT2A 7
27 SND1 6 BAG4 6 CCDC124 10 CDK2 9 RBBP5 7
28 ERVW-1 6 PIP5K1B 6 ERC1 10 ATR 8 ACTN4 6
29 HNRNPD 6 UNC93B1 6 TNFRSF13C 10 FABP1 8 VDR 6
30 RPL22 6 CD33 6 PLEK 9 PKLR 8 GRIA4 5

(G)

vs innate immune response

Rank IR Group numLinks
1 STAT1 DecIR 62
2 HLA-A DecIR 34
3 HLA-DRB1 IncIR 30
4 IFNAR2 DecIR 26
5 ITGAL DecIR 20
6 FAS IncIR 20
7 EZH2 DecIR 18
8 PPP2R5D DecIR 13
9 ERCC8 DecIR 13

10 CXCL2 IncIR 12
11 CHD4 IncIR 12
12 JAG1 IncIR 12
13 CD163 DecIR 12
14 RAD52 DecIR 11
15 DLG4 DecIR 11
16 PMS2 IncIR 10
17 NCSTN DecIR 10
18 ITGB4 DecIR 10
19 TFRC DecIR 10
20 DDX5 DecIR 9
21 ITGA3 DecIR 9
22 ACTN1 IncIR 9
23 WNT10B DecIR 9
24 OAS2 DecIR 9
25 SMC4 DecIR 8
26 AP2M1 DecIR 8
27 PLD2 DecIR 7
28 SPG7 DecIR 7
29 TNFAIP3 DecIR 7
30 NUP62 DecIR 6

Rank IR Group numLinks
1 STAT1 DecIR 148
2 HLA-A DecIR 90
3 HLA-DRB1 IncIR 53
4 OAS2 DecIR 51
5 CXCL2 IncIR 50
6 IFNAR2 DecIR 41
7 CD163 DecIR 33
8 FAS IncIR 30
9 ITGAL DecIR 24

10 SNAP23 DecIR 23
11 DDX3X DecIR 23
12 TRAF5 IncIR 23
13 TNFAIP3 DecIR 21
14 ITGB4 DecIR 20
15 ITGA3 DecIR 19
16 EZH2 DecIR 18
17 DLG4 DecIR 18
18 PPP2R5D DecIR 17
19 CHD4 IncIR 17
20 C1S IncIR 17
21 TFRC DecIR 16
22 CFB DecIR 16
23 C1R IncIR 16
24 CTSL IncIR 16
25 AIF1 DecIR 15
26 DDX5 DecIR 15
27 RAD52 DecIR 14
28 RPL23 DecIR 13
29 PLD2 DecIR 13
30 AP2M1 DecIR 13

(J) (K)vs Lymphocyte activation vs immune response
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(A)

(B) symbol numLinks IR DEG
SRC 43 down-regulation
RAC1 25 down-regulation
DLG4 18 DecIR
CAV1 16 up-regulation
JUN 16 up-regulation

CTNND1 15 down-regulation
SNAP25 15 down-regulation
STAT1 14 DecIR
ITGB4 13 DecIR
PPARG 13 down-regulation

CACNA1D 12 down-regulation
HLA-A 12 DecIR
EDN1 11 down-regulation
ITGA3 11 DecIR up-regulation
MYH10 11 IncIR (recovery)
ITGA9 10 down-regulation

NOTCH3 10 down-regulation
RYR1 10 down-regulation

Cilium

Lymphocyte activation Innate immune response

(C)

(D) (E)
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(C)

Functional 
category Gene

IR
V 

shape

IR
reverse

-V
Description Ref.

Erythropoiesis

CDIN1 ✓ The congenital dyserythropoieitic anemias: genetics and pathophysiology (97)

EOGT ✓ Synergistic regulation of Notch signaling by different O-glycans promotes hematopoiesis (95)

SMARCD2 ✓ A SMARCD2-containing m SWI/ SNF complex is required for granulopoiesis (98)

DNArepair,
recombination

PMS2 ✓ Elevated levels of mutation in multiple tissues of mice deficient in the DNA mismatch repair gene Pms2 (99)

REC8 ✓ Meiotic prophase roles of Rec8 in crossover recombination and chromosome structure (100)

Cilia

AHI1 ✓ AHI1, whose human ortholog is mutated in Joubert syndrome, is required for Rab8a localization, ciliogenesis and vesicle trafficking (59)

CELSR2 ✓ CELSR2, Encoding a Planar Cell Polarity Protein, is a Putative Gene in Joubert Syndrome with Cortical Heterotopia, Microophthalmia, 
and Growth Hormone Deficiency (60)

CEP104 ✓ Joubert Syndrome in French Canadians and Identification of Mutations in CEP104 (61)
DNHD1 ✓ Bi-allelic variants in DNHD1 cause flagellar axoneme defects and asthenoteratozoospermia in humans and mice (101)
GBF1 ✓ The Arf GEF GBF1 and ARF4 synergize with the sensory receptor cargo, rhodopsin, to regulate ciliary membrane trafficking (102)

NAPEPLD ✓ Small Molecule Activation of NAPE-PLD Enhances Efferocytosis by Macrophages (80)
NPHP1 ✓ Many Genes—One Disease? Genetics of Nephronophthisis (NPHP) and NPHP-Associated Disorders (67)

Mitochondria

FOXRED1 ✓ Characterization of mitochondrial FOXRED1 in the assembly of respiratory chain complex I (72)

MFN2 ✓ Mitofusin 2 (MFN2) links mitochondrial andendoplasmic reticulum function with insulin signaling and is essential for normal glucose 
homeostasis (103)

MYH10 ✓ Actin and myosin contribute to mammalian mitochondrial DNA maintenance (45)

NDUFA5 ✓ Supernumerary subunits NDUFA3, NDUFA5 and NDUFA12 are required for the formation of the extramembrane arm of human 
mitochondrial complex I (72)

SIGMAR1 ✓ The role of SIGMAR1 gene mutation and mitochondrial dysfunction in amyotrophic lateral sclerosis (104)
SPG7 ✓ SPG7 Is an Essential and Conserved Component of the Mitochondrial Permeability Transition Pore (105)
TEFM ✓ TEFM (c17orf42) is necessary for transcription of human mtDNA (106)

Inflammation

ADCY4 ✓ cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis (107)
BRD9 ✓ Bromodomain containing 9 (BRD9) regulates macrophage inflammatory responses by potentiating glucocorticoid receptor activity (93)
CDCA3 ✓ CDCA3 promotes cell proliferation by activating the NF-kB/cyclin D1 signaling pathway in colorectal cancer (108)
CERT1 ✓ Ceramides as Mediators of Oxidative Stress and Inflammation in Cardiometabolic Disease (85)
CXCL2 ✓ NF-kB and STAT1 control CXCL1 and CXCL2 gene transcription (109)
DDX5 ✓ IL-17D-induced inhibition of DDX5 expression in keratinocytes amplifies IL-36R-mediated skin inflammation (110)

ERLIN1 ✓ The ERLIN1-CHUK-CWF19L1 gene cluster influences liver fat deposition and hepatic inflammation in the NHLBI Family Heart Study (111)

FAS ✓ The Many Roles of FAS Receptor Signaling in the Immune System (112)
IL17RB ✓ Cutting Edge: IL-17B Uses IL-17RA and IL-17RB to Induce Type 2 inflammation from Human Lymphocytes (113)
MYLK ✓ Myosin Light Chain Kinase: A Potential Target for Treatment of Inflammatory Diseases (47)

NCSTN ✓ Keratin 5-Cre-driven deletion of NCSTN in an acne inversa-like mouse model leads to a markedly increased IL-36a and SPRR2
expression (114)

NDRG2 ✓ Association between NDRG2/IL-6/STAT3 signaling pathway and diabetic retinopathy in rats (115)
NFATC4 ✓ NFAT is a nerve activity sensor in skeletal muscle and controls activity-dependent myosin switching (116)
NOSIP ✓ NOSIP, a novel modulator of endothelial nitric oxide synthase activity (44)

OAS2 ✓ OAS1, OAS2, and OAS3 Contribute to Epidermal Keratinocyte Proliferation by Regulating Cell Cycle and Augmenting IFN-1- induced 
Jak1‒Signal Transducer and Activator of Transcription 1 Phosphorylation in Psoriasis 

(117)

PRMT7 ✓ The Role of Protein Arginine Methyltransferases in Inflammatory Responses (118)

ROBO3 ✓ Axon guidance receptor ROBO3 modulates subtype identity and prognosis via AXL-associated inflammatory network in pancreatic 
cancer (89)

SLC22A5 ✓ Charactarisation of exosomal SLC22A5 (OCTN2) carnitine transporter (119)

TRIM16 ✓ TRIM16 exerts protective function on myocardial ischemia/reperfusion injury through reducing pyroptosis and inflammation via NLRP3 
signaling (120)

UBE2T ✓ Correlateions between UBE2T Expression and Immune Infiltration in Different Cancers (121)
USP21 ✓ USP21 Deubiquitinase Regulates AIM2 Inflammasome Activation (122)

IncCON-BKT (166 loci) DecBKT-AKT (143 loci)

133 8033

(A) (B) DecCON-BKT (211 loci) IncBKT-AKT (109 loci)

170 6841

reverse
V-shape 

33 loci,
33 genes,
30 protein-

coding

ADCY4, ALG5, BRD9, C21orf58, 
CCHCR1, CDCA3, CDIN1, CELSR2, 
CENPT, CERT1, CXCL2, EOGT, 
FAM153A, FAS, GBA1LP, GBF1, 
GMPPA, IL17RB, LIMS2, 
LINC03049, MYH10, MYLK, PMS2, 
POLR3A, REC8, RGP1, SKIC3, 
SNHG17, TEFM, TRIM16, TVP23C, 
ZNF714, ZNF789

V-shape

41 loci,
39 genes,
34 protein-

coding

ABHD14A-ACY1, AHI1, AP2M1, 
ATXN7L2, BCKDK, CCDC24, CEP104, 
DDX5, DNHD1, ERLIN1, FAM131B, 
FOXRED1, KMT5B, LINC01569, MFN2, 
NAPEPLD, NCSTN, NDRG2, NDUFA5, 
NFATC4, NOSIP, NPHP1, OAS2, 
PCSK4, PRMT7, ROBO3, SIGMAR1, 
SLC22A5, SMARCD2, SMC4, SPG7, 
STX18-AS1, TMEM25, UBE2T, USP21, 
ZFAND2A-DT, ZNF37BP, ZWINT, 
ENSG00000284946
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